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Abstract. Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, 

enabling future rising demands for air travel to be met.  The development of appropriate electrical 

power systems to provide thrust for the aircraft is a significant challenge due to the much higher 

required power generation capacity levels and complexity of the aero-electrical power systems 

(AEPS).  The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid 

propulsion are not mitigated by the electrical power train.  Hence it is proposed that for larger 

aircraft (~200 passengers) superconducting power systems are used to meet target power 

densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical 

protection and fault management system.  It is known from previous studies that the choice of 

protection system may have a significant impact on the overall efficiency of the AEPS.  Hence 

an informed design process which considers the key trades between choice of cable and 

protection requirements is needed.  To date the fault response of a voltage source converter 

interfaced DC link rail to rail fault in a superconducting power system has only been investigated 

using simulation models validated by theoretical values from the literature. This paper will 

present the experimentally obtained fault response for a variety of different types of 

superconducting tape for a rail to rail DC fault.  The paper will then use these as a platform to 

identify key trades between protection requirements and cable design, providing guidelines to 

enable future informed decisions to optimise hybrid propulsion electrical power system and 

protection design. 

1. Introduction 

It is expected that by 2030, 32,600 new aircraft will be required to replace aging existing fleets and 

support the anticipated growth in demand for air travel [1]. A number of government agencies have 

outlined development goals that future aircraft must reach if the industry is to able to grow while meeting 

regulatory stipulations [2, 3]. These goals encompass CO2 emissions, noise emissions, efficiency and 

runway field length. To meet these targets, new and innovative design approaches are required for both 

the drivetrain and the aircraft body itself. One concept that has the potential to realise significant gains 

is turbo-electric distributed propulsion (TeDP) [3]. Unlike conventional aircraft, which utilise gas 

turbine engines to provide thrust, it is proposed that thrust on a TeDP aircraft is produced from 

electrically driven propulsor motors, with gas engine driven generators utilised to provide this electrical 

power. A key advantage of TeDP is the flexibility in where the propulsor motors can be placed on the 

aircraft which can lead to significant aerodynamic and practical advantages [3].  In order for a TeDP 



 
 
 
 
 
 

architecture to be feasibly placed on an aircraft, the power densities of the components must be 

extremely high. For this reason, it has been suggested that superconducting materials should be used for 

the machines as this can improve the power density by a factor of four [4].  

 

While the weight is a significant factor, it is also critical that the design of the electrical power system 

does not mitigate the overall aircraft performance benefits of TeDP.  A key design choice is whether the 

transmission and distribution system should be AC or DC. Although it has been shown that an AC 

superconducting system can result in a system with lower mass [5], there are a number of advantages to 

DC such as allowing for more efficient electrical decoupling of the generation and propulsion sources 

and offering greater control opportunities. This paper considers the fault response in such a power-

electronics interfaced, DC system. The TeDP electrical power system will require appropriate electrical 

protection methods to be in place so that in the event of an electrical fault, component damage is 

minimized and the wider system is able to maintain stability.  

 

One key area identified as an issue for protection system design is the discharge of a DC link filter 

capacitor following a short circuit condition. Due to the lack of impedance offered by superconducting 

components in the initial moments of a fault, the fault current can be extremely large. Electrically, the 

capacitor is closer to the fault than the generators. Thus, the peak fault current is shaped in the first 

instance by the capacitive discharge [6]. This paper explores these initial moments of a DC link capacitor 

discharge experimentally through superconducting tapes and a cable section in order to assess the 

response of the superconducting material to a large pulse of current at a range of voltage levels. With 

respect to these results, this paper will discuss the implications for protection system requirements and 

the stability of the wider network.  

2. Experimental Setup 

The aim of the experiment was to capture the response of a capacitive unit discharging through 

superconducting tapes. To achieve this, the experiment proceeded in two phases. The first phase of the 

experiment was to charge of a 47 mF, 100V rated capacitor using a controlled voltage source. This was 

disconnected from the circuit using a mechanical breaker following the charging phase completion. The 

second phase of the experiment was the discharge of the capacitor. This was realised through the 

operation of three MOSFETs [7], connected in parallel to ensure that the rated current of the individual 

MOSFETs was never exceeded. These were controlled via LabVIEW. An inductor was embedded 

within the discharge circuit to ensure a smooth discharge curve. The discharge circuit was connected to 

the superconducting tapes through 100 A rated copper cables. All superconducting devices in this 

experiment used YBCO as the active material. The superconducting components were submerged in a 

bath of liquid nitrogen to achieve an operating temperature of 77 K.  Figure 1 shows the circuit used for 

the experiments. To provide a baseline for comparison, Figure 2 shows the current discharge through a 

copper cable rated for 100 A continuous current.  

 
Figure 1. Circuit for Experiment 



 
 
 
 
 
 

 
Figure 2. Discharge of capacitor through 100 A Copper Cables 

 

3. Experimental Results 

 

3.1 100 A Copper-Stabilized Tape Discharge 

A controlled discharge of the capacitor was carried out through a 100 A Superpower Inc. tape at a range 

of pre-fault voltage levels from 5V to 80V. The superconducting tape was 4 mm wide, 10 cm long with 

a 100 µm copper stabilizer.  Figure 3 (a) shows the discharge current for each of these tests while figure 

3 (b) shows the voltage drop produced across the superconducting tapes. 

 
 

Figure 3. Stabilized Tapes (a) Current Profile and (b) Voltage Developed 

 

It can be seen by comparing the current profile between Figures 2 and 3 (a) that a slight reduction in the 

peak current occurs due to the electric field generated across the tapes. From Figure 3 (b) it can be seen 

that above a 30 V charging voltage level, that the superconducting tape starts to produce a noticeable 

voltage signal between the measurement taps, which are placed across 5.5cm of the tape length. This 

indicated that quench had taken place. The critical current of the superconducting tape was measured 

before and after the discharge experiment and the results indicated that no degradation of Ic had taken 

place. This is because the energy dissipated in the superconductor during the experiment resulted in a 

temperature rise which was not high enough to cause degradation to take place, normally estimated as 

400 K [8]. This demonstrates that these tapes are capable of withstanding short periods of transient 

overcurrents many multiples of the critical current, Ic. However, they will have a negligible effect on 

reducing fault current experienced by the system because of the low impedance path offered by the 

copper stabilizer. 

 



 
 
 
 
 
 

3.2 420 A Cable Discharge 

The 420 A superconducting cable was constructed of a 20 mm2 copper former with 4 copper stabilized 

superconducting tapes wound around this core.  The cable measured approximately 30 cm in length. 

The cable provided negligible impedance to the discharge current as evidenced by the current profile 

shown on Figure 4.   

 
Figure 4. Current Profile of 420 A Cable Discharge. 

 

The voltage profile is almost indiscernible from background noise, and as such is omitted from this 

paper. This is due to the copper former providing a very low impedance path for the excess fault current 

to traverse in the case of currents exceeding Ic. By inspection, neither the cable nor the stabilized tape 

are seen to have a significant impact on the fault current profile when compared to the discharge through 

the copper cable. Hence, without including additional damping, fault currents would be extremely high 

due to the initial discharge of DC link capacitors. A consequence of this would be that other components 

in the system, such as the diodes in the power electronics converters, would have to dissipate high 

amounts of fault energy.  This potentially could result in the damage of components critical to the safe 

flight of the aircraft. The fast discharge of the capacitor in this very low impedance scenario could cause 

significant voltage depreciation throughout the system as DC-link capacitors connected across healthy 

branches begin to discharge into the fault. This would impact on voltage stability. To counter this, 

extremely fast acting protection systems may present a solution. It can be seen however that the critical 

current of the superconducting cable and tape does not degrade due to the high fault current, despite it 

being significantly above the critical threshold, indicating that these components are tolerant of large 

overcurrents due to the parallel paths provided by the copper materials used in each. 

 

3.3 50 A Superconducting Tape Without Stabilizer Discharge 

A controlled discharge was performed through a 50 A tape without a copper stabilizer, which was 

replaced by a thin layer (1um) of silver laminated across the superconducting material of the tape.  Figure 

5 (a) shows the current profile resulting from the capacitor discharge, and Figure 5 (b) shows the voltage 

profile. In contrast to the previous results, it is shown on Figure 5 (a) that there is a reduction in the peak 

current when compared to the original discharge through standard copper connectors. For the 80 V 

discharge test this reduction was approximately 700 A. The voltage drop across the superconductor is 

also orders of magnitude larger in comparison to the discharge through the copper stabilized tape. The 

voltage signal for the 80 V test (Figure 5 (b)) rapidly drops to zero after 0.0015 s. This is because the 

temperature reached by the superconducting material exceeded the melting point of the solder on the 

connections to the voltage measurement equipment, 461 K. Unlike the results presented for the copper 

stabilised cable, significant critical current degradation was observed following the 70 V discharge test 

for the tape without a stabilizer. The 80 V discharge completely destroyed the superconducting 



 
 
 
 
 
 

properties of the YBCO material. Interestingly, no physical damage was apparent upon a visual 

inspection. 

 

 
Figure 5. Non-stabilized superconducting tapes (a) Discharge current profile (b) Voltage drop. 

 

Scanning electron microscope (SEM) analysis showed scarring of the superconducting layer at the 

microscopic level which indicates a possible reason for the destruction to the superconducting 

properties. Figure 6 shows the critical current of the superconducting tape following successive tests. 

 

 
Figure 6. Critical Current Degradation of Unstabilized Tape. 

 

This series of tests showed that the peak discharge current of the filtering capacitor is significantly 

reduced by using tapes that are highly resistive post quench.  By consideration of Ohm’s law, this is 
expected. This demonstrates the potential for using superconducting materials in the design of the 

transmission network which are highly resistive post quench, as a means to reduce the amount of fault 

current experienced by components on the network. This may allow for certain components to be de-

rated, reducing the weight and volume penalties they incur.  Further investigation into the benefits this 

would bring to the overall performance of the electrical power system is required, but is out with the 

scope of this paper. The discharge time constant is also significantly larger than the previous experiments 

that utilised copper to provide shunt paths, due to the higher post quench resistance. This may have 

benefits for post-fault voltage stability, due to the slower discharge of DC link filters, reducing the speed 

of fault propagation to healthy branches of the network.  However, it must be noted that during this 

experiment the tape experienced significant thermal and electrical stress, eventually causing the 

complete breakdown of superconducting properties. In order to take advantage of this potential 

functionality, components would have to be designed to withstand the maximum current and 



 
 
 
 
 
 

temperature reached during the fault period. Temperature rise experienced will be directly related to the 

volume available for dissipating heat. As resistance is inversely proportional to the cable area, a trade-

off between fault impedance and temperature rise is created. 

 

3.4 Parallel Tape Arrangement 

The parallel tape discharge test utilised 3 SuNAM tapes. Each tape was 6 mm wide, 10 cm in length, 

possessing a copper stabilizer with a 100 µm thickness, and with a critical current of 175 A. Above 50 

V discharge voltage, the quench voltage became noticeable across the tapes. Figure 7 shows the voltage 

profile for a 50 V discharge test while Figure 8 shows the associated current distribution between the 

tapes. 

 
Figure 7. Voltage Across Tapes. 

 
Figure 8. Current Distribution Between Tapes. 

 

The small voltage signal highlights the difficulty of detecting the quench voltage at current levels below 

1.3-1.5 Ic. It is also noted that the current is not shared equally between the tapes. As the voltage of the 

discharge is increased the uniformity of current sharing increases and the current becomes more evenly 

distributed between the three tapes. This is due to the inductive voltage produced by the tapes, created 

by the large rate of change of current outweighs the impedance offered by the quenching process and 

any contact resistances present in the tapes connections. This can make it difficult to detect the quench 

taking place as the detection mechanism will have to compensate for the inductive voltage produced by 

large transients. This could be even more prominent in cables with tapes wound helically as the 

inductance would be significantly larger than in the small tapes considered here. Figures 9 and 10 show 

the voltage drop across the tapes and the current distribution during the 80 V discharge test.  
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Figure 9. Voltage Drop Across the tapes for 80 V Discharge Test. 

 
Figure 10. Current Distribution during 80 V Test 

 

Current sharing under large transient conditions (Figure 10) can be compared to Figure 11 where the 

current is ramped up in a slowly controlled fashion at a rate of 10 A per second. In the load ramp case 

it can be seen that the current sharing between the tapes is dominated by contact impedance, causing 

significant differences between the currents carried by each of the three tapes, reaching a peak deviation 

of 30 %. This shows that under significant transients, inductance is the dominant factor in current 

distribution between parallel superconducting components in a DC system while contact impedance is 

more significant in steady state conditions.  

 

Figure 11. Current Sharing Between Tapes During Ramp Current Test. 
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4. Conclusion 

This paper has shown the resulting current and voltage profiles for a series of capacitive discharge tests 

conducted in laboratory conditions. It has been shown that tapes and cables that utilise low impedance 

parallel paths will have negligible impact on fault current, which could result in significant peak currents 

forming. Although these components are unlikely to suffer degradation as a result of brief transients 

brought about by a DC link capacitive discharge event, the lack of resistive damping could result in 

voltage instability throughout all branches connected across a common link. Further work will 

investigate this potentially hazardous system condition and how solutions such as extremely fast acting 

circuit breakers can mitigate its effects. Conversely, materials with a high impedance parallel path will 

significantly reduce the fault current peak. This is at the expense of potential cable degradation if the 

shunt path is not sized appropriately, creating a protection trade-off between component temperature 

margins and wider system stability. Current distribution in parallel tapes is also explored, with the results 

indicating that inductance plays a major role in this process during large transient events while contact 

impedance dominates steady state situations. Future work will include introducing a DC offset to the 

fault current such that the fault response of a converter interfaced network can be emulated and 

protection algorithms can be experimentally evaluated.  
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