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Abstract 

The goal of the paper is to highlight the management of the complexities and risks for light non-aqueous 

phase liquid (LNAPL) sites, and how the “Illustrated Handbook of LNAPL Transport and Fate in the 

Subsurface” (CL:AIRE, London. ISBN 978-1-905046-24-9. http://www.CL:AIRE.co.uk/LNAPL; 

LNAPL illustrated handbook) is useful guidance and a tool for professionals to understand these 

complexities and risks. The LNAPL illustrated handbook provides a clear and concise best-practice 

guidance document, which is a valuable decision support tool for use in discussions and negotiations 

regarding LNAPL impacted sites with respect to the risks of LNAPL sites. The LNAPL illustrated 

handbook is a user-friendly overview of the nature of LNAPL contamination in various geological 

settings including unconsolidated, consolidated, and fractured rock environments to best understand its 

fate and behavior leading to the appropriate management and/or remedial approach of the two major risks 

associated with a LNAPL source. As a source term, LNAPL has chemicals that form dissolved- and 

vapor-phase plumes, which are referred to as composition-based risks; and being a liquid there is the risk 

that the source may expand impacting a greater volume of the aquifer, which are referred to as saturation-

based risks. There have been significant developments in recent years on the understanding of the 

complex behavior of LNAPL and associated groundwater and vapor plumes; however, the state of 
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practice has often lagged these improvements in knowledge. The LNAPL illustrated handbook aids the 

site investigator, site owners, and regulators to understand these risks, and understand how these risks 

behave through better conceptual understanding of LNAPL transport and fate in the subsurface.   
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1. Introduction 

Releases of fuels such as gasoline, diesel, heating oils, jet fuel, lubricants, collectively referred to as light 

non-aqueous phase liquids (LNAPLs), have long been management concerns related to their risks posed 

to human-health and the environment from contact with chemicals in or direct contact with LNAPL. 

LNAPLs are among the most commonly encountered organic contaminants in the subsurface environment 

due to their pervasive use, poor historic disposal practices, accidental release during handling, storage or 

transfer at fuel manufacturing facilities, refineries, bulk-product terminals, gas stations, airports, military 

bases, and from smaller scale storage at domestic properties, industrial facilities and farms (CL:AIRE, 

2002, 2014; Molins et al., 2010; USEPA, 2009; USGS, 1998). Typically, these are releases from 

underground and above ground storage tanks, conveyance piping, and overage filling. Unfortunately, 

LNAPLs released into the subsurface have been managed inappropriately for many years and decades 

after their release without proper understanding of the risks associated with these liquid sources. This 

relates to ill-defined and weak conceptual site models (CSMs) of the LNAPL source, for which rationale 

risk-management strategies can be built.  The goal of the paper is to highlight the management of the 

complexities and risks for LNAPL sites, and how the “Illustrated Handbook of LNAPL Transport and 

Fate in the Subsurface” (LNAPL illustrated handbook; Figure 1) is a best-practice guidance and tool for 

professionals to understand these complexities and risks pertaining to LNAPL behavior in the subsurface 

(CL:AIRE, 2014). 

Shown in Figure 2 is a simplified CSM of a LNAPL release; the primary concern with a LNAPL release 

is to ensure there are no emergency conditions (see 1, Figure 2). LNAPLs like other sources have 

chemicals that contribute towards the dissolved- and vapor-phase pathways that may potentially affect a 

receptor (see 2, 3a, & 3b, Figure 2). Risks related to toxicity of the chemicals that diffuse and dissolve 

from LNAPL are known as composition-based risks and are feeding both dissolved- and vapor-phase 

plumes like other source terms that may pose a potential impact to receptors (ASTM, 2014; CL:AIRE, 

2014; ITRC, 2009a; Johnston, 2010). LNAPL is also a liquid source. As a liquid, and if sufficient in 

quantity or saturation (i.e., fraction of the pore space occupied by LNAPL), there are perceived risks 

related to the ability of the liquid to spread and impact a greater volume of the aquifer (see 4, Figure 2) or 

has the potential to directly contact a receptor, or simply the aesthetic, reputation, or the regulatory 

requirement to remove the LNAPL to the maximum extent practicable (see 5, Figure 2). This potential 

for a LNAPL to spread is referred to as saturation-based risk (CL:AIRE, 2014; ITRC, 2009a). 

Management of these two risks, composition and saturation, ultimately manages the primary risks and 

provides a more sustainable and risk-based management of LNAPL releases. 

Most LNAPL sites can be considered complex (ITRC, 2017); however, understanding the risks and their 

management from release to closure is critical and guidance like the LNAPL illustrated handbook assists 

site investigators, site owners, and regulators in conducting site investigations and risk assessments, and 

in selecting the appropriate remediation and management approaches.  

2. Complexity of LNAPL Sites 

The amount of detail necessary within a LNAPL CSM increases with complexities of the hydrogeologic 

and plume conditions, and concerns related to potential risks. Simply, the more complex the site 

conditions are to understand and the more concerns there are with sensitive receptors and other risks, 

there is more value on a thorough CSM for the best management decision. ASTM E2531 attempted to 

show this degree of complexity graphically (Figure 3); wherein, as drivers or potential risk factors like 

offsite plume, sensitive receptors, toxicity, and site use and community issues increase, and complexity of 

hydrogeologic and plume factors increase the more complex the site, and the greater detail is necessitated 

in development of the CSM (ASTM, 2014). A weight of evidence determination is made by a 



professional on the level of detail to understand the complexities and drivers related to both the 

composition- and saturation-based risks. 

3. Saturation-based risks: LNAPL transport and distribution in porous media 

LNAPL behavior and movement, commonly referred to as migration, in the subsurface is complex. 

Migration of LNAPL within the vadose zone from a release behaves similarly to a dense non-aqueous 

phase liquid (DNAPL) release (Charbeneau et al., 1999, 2000; Kueper et al., 2003; Mercer and Cohen, 

1990). If only a small amount of LNAPL is released, migration will cease within the vadose zone as mass 

is immobilized within soil pores due to retentive capillary forces (CL:AIRE, 2014). For larger discrete 

releases, LNAPL will drain under gravitational influence and will undergo spreading controlled by 

lithology of the overburden or structure of the bedrock geology. Unlike DNAPLs that sink once reaching 

the water table, LNAPLs being lighter than water, the saturated aquifer will impede, but not completely 

prevent, their migration deeper due to both increasing water content and associated buoyancy forces 

arising from the LNAPL-water fluid density contrast (CL:AIRE, 2014). Driving forces of a LNAPL 

release will penetrate below the water table, and lateral spread of LNAPL near the water table is 

determined principally by the LNAPL head gradient (i.e., the height of the LNAPL release above the 

water table, LNAPL head) due to the LNAPL release that is initially greater than the water table gradient; 

however, the LNAPL gradient will dissipate with time eventually leading to LNAPL footprint 

stabilization (see Figure 4). Stabilization depends on the type of LNAPL with low viscosity LNAPLs 

(e.g., gasoline and diesel) taking weeks to months, and high viscosity LNAPLs (e.g., heating oil) 

requiring months to years to eventually stabilize (CL:AIRE, 2014). For distinct releases of LNAPL, the 

LNAPL will eventually become stable, and will form a source of varying levels of saturation within the 

pores of the formation. The LNAPL saturation at the leading edge will drop in saturation to below 

residual (i.e., fraction of the pore space occupied by LNAPL that cannot be mobilized under an applied 

gradient), and through balances of factors at the leading edge due to insufficient LNAPL head to exceed 

pore entry pressure, lower saturations (i.e., residual), and natural source zone depletion (NSZD) 

processes, further explanation is provided in the LNAPL illustrated handbook. 

Historically the distribution of LNAPL within the subsurface was believed to be an immiscible liquid 

floating on top of water like a pancake (USEPA, 1996). This thinking overestimated the volume of 

LNAPL within the subsurface, assumed that all LNAPL formed a continuous layer of complete saturation 

filling the entire porosity by LNAPL (i.e., 100% of the porosity filled with LNAPL). This earlier 

understanding failed to fully recognize the controls of capillary forces and greatly over-predicted the 

amount of LNAPL within the subsurface and the amount of potentially recoverable LNAPL. 

Farr et al (1990) and Lenhard and Parker (1990), provided a paradigm shift in the understanding of 

LNAPL distribution within the subsurface. They considered capillary pressures of various liquid phases 

and developed functions that related fluid contents of the porous media to capillary pressures. Extending 

these concepts, the LNAPL saturation profile at the water table interface of an unconfined homogeneous 

isotropic aquifer is predicted to assume a shark fin like shape (see Figure 5) under equilibrium conditions 

when capillary pressures considerations are invoked (CL:AIRE, 2014; Farr et al., 1990; ITRC, 2016; 

Lenhard and Parker, 1990). A detailed review of these concepts is provided in the LNAPL illustrated 

handbook. 

As shown on Figure 5, when LNAPL saturation is above residual saturation a monitoring well through 

the LNAPL source will typically show measurable thickness of LNAPL (see Figure 5c); whereas, when 

the LNAPL saturation is below residual the same well will typically not observe LNAPL (see Figure 5d) 

(ITRC, 2016). Residual saturation is discontinuous and immobile LNAPL under prevailing conditions 



and not typically hydraulically recoverable (ASTM, 2014). The portion of the LNAPL distribution above 

residual is referred to as the mobile or recoverable fraction (i.e., LNAPL saturation fraction of the pore 

space occupied by LNAPL above residual is referred to as mobile, and under applied gradient or higher 

LNAPL saturations is potentially migrating), as depicted on Figure 6 (CL:AIRE, 2014; ITRC, 2016). 

This mobile fraction is the source of saturation-based risks; however, the entire LNAPL source including 

the residual is the source of composition-based risks. Work by Pickell et al. (1966), indicated that the 

residual saturation is a percentage or fraction of the saturation and that it varied based upon the maximum 

saturation, this percentage or fraction (i.e., f-factor) was further defined upon soil type (Kueper et al., 

1993; Steffy et al., 1997). LNAPL residual saturation based upon this f-factor is depicted as the dashed 

line on Figures 5 and 6. Further details on residual saturation are provided in the LNAPL illustrated 

handbook. Note the idealized conditions presented in Figures 5 and 6 are not typical as shown in Figure 

7 depicting measured and modeled homogeneous and heterogeneous cases (Beckett and Lundegard, 1997; 

Huntley et al., 1994a, 1994b). 

The LNAPL distribution that accumulates in the subsurface is the ‘source zone’ of contamination. It 

comprises both immobile residual LNAPL, which is trapped in pore spaces by capillary forces; and 

mobile (i.e., recoverable) LNAPL, which exists as a continuous liquid across interconnected pores and 

can migrate when subjected to a sufficient driving forces. The potential that mobile LNAPL may migrate 

is managed as a saturation-based risk. The LNAPL illustrated handbook further covers LNAPL migration 

in porous media as well as fractured rock including factors influencing LNAPL distribution and 

redistribution due to water table fluctuations. 

4. Composition-based risks: LNAPL properties and mass transfer 

Many environmental practitioners have encountered LNAPL in the subsurface, and LNAPL sites are 

typically among the sites with the longest management history due to their complexity of chemical 

composition in a multi-phase LNAPL-water-air environment, and in some cases, they are addressing 

saturation-based risks through LNAPL recovery which does not address the chemicals within the 

LNAPL.  

As detailed within the LNAPL illustrated handbook, many LNAPLs released to the environment are a 

complex mixture of organic compounds (CL:AIRE, 2014). For example, gasoline is a complex mixture of 

over 500 hydrocarbons that may have between 5 to 12 carbons and include in greatest amounts alkanes, 

and to a lesser extent alkane cyclic and aromatic compounds, as well as alkenes (Dabelstein et al., 2007). 

Many LNAPLs have additives formulated into the mixture such as ethanol and historically methyl tert 

butyl ether (MTBE), as well as others, to enhance and extend their performance as fuels or lubricants. 

Some of the additive components are primary composition-based risk drivers due to their greater toxicity. 

LNAPL being a source, these various chemicals within the source form dissolved- and vapor-phase 

plumes, which drive composition-based risks associated with LNAPL. Details of the types and uses of 

commonly encountered LNAPLs, elaborating on the key physical-chemical properties such as density, 

viscosity, interfacial tension against water, composition, aqueous solubility, vapor pressure and wetting 

behavior that influence their environmental fate are defined within the LNAPL illustrated handbook. 

The physical-chemical properties of individual compounds within a LNAPL mixture control rates of 

partitioning from LNAPL to the gas and aqueous phases (CL:AIRE, 2014). This mass transfer leads to the 

development of vapor-phase plumes in the vadose zone above the water table and shallow dissolved-

phase plumes in groundwater laterally flowing beneath the water table. Some of these processes are 

conceptualized in Figure 8. The LNAPL illustrated handbook provides further details on the LNAPL 



mass transfer process and the fate and transport of the respective plumes that are produced, including the 

role of natural attenuation in the management of the composition-based risks.  

5. Conceptual models of LNAPL behavior  

The goal of site characterization is to understand the source-pathway-receptor processes for the identified 

LNAPL source. Site characterization is used to develop and refine the CSM understanding. With respect 

to a LNAPL release, characterization is typically focused on understanding the area of the site with the 

LNAPL source zone. In addition to understanding the geological and aquifer features of the site, the 

investigation aims to establish the distribution of LNAPL, if LNAPL is stable or expanding, chemical 

composition, and to identify pathways to potential receptors. 

There are two main drivers in the management of LNAPL-impacted sites that inform site characterization 

needs of the CSM (CL:AIRE, 2014): 

 to understand potential risks posed to receptors by both current and plausible future mobile 

LNAPL distributions (i.e., saturation-based risks), and migration of their associated dissolved- 

and vapor-phase plumes (i.e., composition-based risks); and  

 to understand LNAPL constraints on remediation selection, design and operation which often 

requires more targeted investigation and pilot testing.  

Development of CSMs are typically an iterative process during the site investigation and assessment 

phases, with a site-specific level of detail related to the complexity of environmental conditions at a site, 

regulatory framework, and site management objectives. Information typically required to develop a CSM 

for a LNAPL-impacted site may include (ASTM, 2014; CL:AIRE, 2014; EA, 2001; ITRC, 2009a): 

 site setting (historical and current): land use, LNAPL use/storage (including amounts and periods) 

and release mechanisms, groundwater classification and use, receptor presence and proximity, 

etc. 

 geological and hydrogeological information/setting; 

 LNAPL physical (density, viscosity, interfacial tension, vapor pressure) and chemical (constituent 

chemistry, solubility and mole fractions) properties; 

 LNAPL body spatial distribution (vertical and horizontal); 

 LNAPL mobility and body stability information; 

 LNAPL recoverability information; 

 associated dissolved-phase and vapor-phase plume information; and 

 LNAPL natural source zone depletion processes. 

Central to the LNAPL illustrated handbook and management of risks posed is development of CSMs of 

LNAPL transport and fate across a comprehensive range of common hydrogeological systems including 

both unconsolidated and bedrock environments to understand the various complexities of these liquid 

sources. The development of the individual CSMs are supported by the various sections of the LNAPL 

illustrated handbook including: Section 2: Types of LNAPL and their properties; Section 3: LNAPL 

transport and distribution; and Section 4: LNAPL mass transfer and plume fate.  These are considered the 

hub from which CSMs may be developed that fundamentally support both the characterization and 

investigation of sites and the management and remediation of sites designed to address unacceptable 

composition- and saturation-based risks. Various exemplar hydrogeological environments that could exist 

based upon commonly encountered aquifer material and flow characteristics are summarized on Table 1. 

These cover intergranular sediments and bedrocks of contrasting permeability and porosity types, and 

made (artificial) ground. The annotated exemplar CSMs summarize LNAPL migration and stabilized 



distribution of LNAPL, and an understanding of the dissolved- and vapor-phase pathways; thus, 

providing an understanding of the composition- and saturation-based risks within the various geological 

environments. An example for cemented fractured sandstone is shown on Figure 8. Detailed narratives 

and illustrations of exemplar hydrogeological environment CSMs are provided in the LNAPL illustrated 

handbook for beach sands, marine clays, glacio-fluvial sands and gravel, glacial till, granite/igneous rock, 

karst limestone, cemented sandstone/gritstone, chalk, shale/mudstone, sandstone, and made 

ground/backfill (Table 1).   

6. Management of Composition- and Saturation-based Risks 

As previously noted, LNAPL when released into the subsurface poses risks, which can be a considerable 

technical and management challenge (ASTM, 2014; CL:AIRE, 2014; ITRC, 2017). The requirement for 

remediation may be driven by a range of concerns related to the composition- and/or saturation-based 

risks. These risks alone are complex to understand, and factoring in the geological and hydrogeological 

heterogeneity of the subsurface, and more so in bedrock, the complexity of the understanding of the 

LNAPL source is further complicated with respect to their management and potential remediation 

objectives. The LNAPL illustrated handbook provides details on these differences. 

Where unacceptable risks are confirmed then the development of a remedial strategy evaluates the options 

to mitigate these risks. This may include treatment of the source, action to break the pathway and/or 

protection of the receptor. The identification of a suitable remedial technology is then undertaken via a 

feasibility study that includes a range of criteria including assessment of technical effectiveness, cost, 

durability, practicality and increasingly, sustainability. 

Central to understanding these remedial objectives is the relationship between LNAPL mass removal and 

risk reduction; in particular, the expected impact of changing reducing the composition- and saturation-

based risks on down-gradient dissolved concentrations and plume longevity as summarized on Figure 9 

(ITRC, 2009a; Johnston, 2010). Anticipated changes that may occur due to either a reduction in LNAPL 

composition (concentrations) or saturation (timescale) are illustrated and demonstrate the importance of 

understanding these changes in relation to the remedial objectives (CL:AIRE, 2014). 

For saturation-based risks, these are typically managed through direct LNAPL removal via mass removal 

methods such as interceptor trenches, skimmer wells, single/dual well total fluids pumping, vacuum 

enhanced recovery, with other methods detailed within the LNAPL illustrated handbook. As noted in 

Figure 9, these mass removal methods do not address the composition-based risks, but rather aid in 

reducing and minimizing the concern that the LNAPL source term will expand further. Defining when to 

initiate LNAPL recovery is typically assessed through measurement of LNAPL transmissivity (ASTM, 

2013; CL:AIRE, 2014; Charbeneau et al., 2016; ITRC, 2009a, 2016,), and for ceasing recovery measures 

of LNAPL transmissivity and the use of decline-curve analysis are typical (Poston and Poe, 2008; Sun, 

2015). 

Composition-based remediation is typically via phase change remedial methods, which are aimed at 

removal of toxicity of chemicals within the immobile residual phase following removal of the saturation-

based risks but not exclusively. The LNAPL illustrated handbook provides details on various remedial 

approaches including soil vapor extraction and bioventing, air sparging and biosparging, in situ 

bioremediation, and in situ chemical oxidation. 

Passive remedial methods to address the low levels of dissolved- and vapor-phase composition-based 

risks, and the nuisance-levels of saturation-based risks like LNAPL sheens from near or below residual 

levels of remaining LNAPL, include monitored natural attenuation to address dissolved-phase 



groundwater composition-based risks and residual LNAPL saturation through NSZD, which simply 

recognizes that LNAPL source zones deplete naturally (CL:AIRE, 2014; ITRC, 2009b; Johnson et al., 

2006; Wiedemeier et al., 1999). NSZD is not only a passive means of managing remaining composition- 

and saturation-based risks, it is also a baseline metric that is useful to understand if added LNAPL mass 

removal measures are necessary, as research has noted LNAPL removal rates in the range of 100 to 1,000 

gallons/acre/year (CL:AIRE, 2014; ITRC, 2009b; Johnson et al., 2006; Lundegard and Johnson, 2006; 

McCoy et al., 2015; Shiota et al., 2011). The LNAPL illustrated handbook provides further details on 

management and remedial processes. 

7. Closing 

The LNAPL illustrated handbook provides a blend of technical detail and real world conceptualization of 

the LNAPL problem and appropriate methods to investigate and manage both composition- and 

saturation-based risks. It is a strong management tool that facilitates access to a wealth of detailed 

research, guidance, and case study literature in relation to concerns of LNAPL releases within both 

unconsolidated and bedrock media (Table 1). The practitioner and research communities will find the 

LNAPL illustrated handbook of great use, and it also provides a valuable educational resource to others 

having a less direct interest or specialized knowledge.  
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Figure 1.  Cover of the LNAPL illustrated handbook, http://www.CL:AIRE.co.uk/LNAPL 

 

  

 

 

 

 

 

 



  

 

  

Figure 2.  Simplified conceptual site model showing the main composition-based and saturation-

based drivers and concerns related to a LNAPL release (Courtesy of S. Garg, Shell, 2009; ITRC, 2016) 



 

 

  

 

Figure 3.  Example factors affecting the conceptual site model for LNAPL sites (Concept after Sale, 

2003; ASTM, 2014)  



 

 

  

 

Figure 4.  Illustration depicting the evolution of a discrete (i.e., not continuous) LNAPL release.  In early time 

the LNAPL head from the release develops a strong LNAPL gradient shown in the top Figure; as the LNAPL 

continues to drain from the release lowering the LNAPL head the gradient dissipates and with time will mimic 

the water table gradient.  (Extracted from the LNAPL illustrated handbook, Figure 3.2; CL:AIRE, 2014). 



 

 

  

 

Figure 5.  LNAPL saturation profile at the water table interface within an unconfined homogeneous isotropic 

aquifer is predicted to assume the shape similar to a shark fin under equilibrium conditions when capillary 

pressures considerations are invoked (Farr et al., 1990; Lenhard and Parker, 1990; CL:AIRE, 2014; ITRC, 2016).  

(a) Maximum initial LNAPL saturation (Sn) which is greater than the residual saturation shown as (b) based 

upon a f-factor relationship (Kueper et al., 1993; Steffy et al., 1997).  As depicted in (c) when LNAPL 

saturation (Sn) is above residual (Sr) LNAPL will be observed in a well; whereas, shown in (d) when Sn is less 

than Sr, LNAPL will not be observed within a well.  (Adapted from CL:AIRE, 2014; ITRC, 2016) 
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Figure 6. Risks of an LNAPL source include Saturation Risk, which is the portion of the LNAPL source with 

saturation above residual saturation that is mobile and may potentially migrate (see Figure 5 for clarity). The 

composition risks include the entire LNAPL source including the residual as well as the mobile fraction are the 

source of dissolved and vapor impacts. (Adapted from CL:AIRE, 2014; ITRC, 2016) 
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Figure 7.  LNAPL saturation near the water table showing observed (symbols) LNAPL saturation compared to 

vertical equilibrium model simulation predictions (lines). The observed in-well LNAPL thickness is shown for: 

a) homogeneous (modified from Beckett and Lundegard, 1997); b) a heterogeneous case with finer grained 

layers (2, 3 and 6) and coarser grained layers (1, 4 and 5) (modified from Huntley et al., 1994a, 1994b). 

(Extracted from the LNAPL illustrated handbook, Figure 3.5; CL:AIRE; 2014)    



 

 

 

 

 

 

 

 

 

 

Figure 8.  LNAPL release from cemented fractured sandstone (Extracted from the LNAPL illustrated 

handbook, Figure 5.7; CL:AIRE, 2014). 



 

 

 

 

 

 

  

 

Figure 9.  Conceptual effect of partial mass removal on LNAPL constituents in a well down gradient in a 

number of scenarios including a base case (A) and three scenarios (B,C,D) where NAPL recovery is 
undertaken and a scenario (E) where the composition is changed (adapted from ITRC, 2009a). The Figure 
illustrates that, relative to the base case A, NAPL mass recovery (C,D) may affect remediation timescales but 
not dissolved-phase concentrations, whilst in other circumstances (B) and where contaminant concentrations 
are reduced (E), relative individual component concentrations but not remedial timescales are reduced 

(Extracted from the LNAPL illustrated handbook, Figure 7.3; CL:AIRE, 2014). 

 



 

 

 

Table 1.  Exemplar hydrogeological environments (amended extract from the LNAPL illustrated handbook, 

Table 5.1) 

Hydrogeological 
environment 

Formation 
characterization 

Flow characteristics Geological 
exemplars 

Intergranular 
superficial (drift) 
sediments 

Low heterogeneity High permeability 
 

Beach sands 

Low permeability 
 

Marine clays 

High heterogeneity High permeability Glacio-fluvial sands 
and gravel 

Low permeability 
 

Glacial till 

Bedrock Low matrix porosity Small aperture 
fractures 

Granite / Igneous 
rock 

Large aperture 
fractures 

Karst limestone 

Fracture and matrix Cemented sandstone 
/ gritstone 

High matrix porosity Small aperture 
fractures 

Chalk 

Large aperture 
fractures 

Shale / Mudstone 

Fracture and matrix 
 

Sandstone 

Anthropogenic strata High heterogeneity Both low and high 
permeability 

Made ground, Backfill 

 

 

 


