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Nomenclature

a = semi-major axis of orbit, km

CR = crossover ratio factor for differential evolution

D = days to repeat during multi-target visiting problem

d(t,i) = Earth central angle between target Pi and sub-satellite points (SSP) at time t, rad

e = orbital eccentricity

F = evolution scaling factor for differential evolution

f = true anomaly of orbit, rad

h = angular momentum of orbit, km2/s

i = inclination of orbit, rad

J = objective function

J2 = Earth’s oblateness perturbation

Jt = objective function to describe visiting time of targets

Jb = objective function to describe bonus term of visited targets

K = number of generations

krand = a random integer from 0 to n
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N = number of optimization variables

n = initial population size

Pi = ith target of multi-target visiting problem

pi = priority of targets

p∗ = high bonus term for the visited target

Q = fitness function

R = revolutions to repeat during multi-target visiting problem

RE = radius of Earth, km

randj = a random number from 0 to 1 for each individual j

t0 = start time of Lambert transfer, s

t f = stop time of Lambert transfer, s

Ui, j(g) = alternative vector components of the generation g

Vi, j(g) = trial vector components of the generation g

Xi, j(g) = individual of the generation g

γ = supplementary angle of λ + η, rad

∆v1 = magnitude of the velocity impulse at departure point of Lambert transfer, m/s

∆v2 = magnitude of the velocity impulse at arrival point of Lambert transfer, m/s

η = half-effective angle of FOV given by mission requirements, rad

θ = rotating angle from initial coordinate system to rotating Earth-fixed frame, rad

θ0 = initial Greenwich hour angle at the start time t0, rad

λ = effective Earth central angle of the field of view (FOV), rad

µ = gravitational constant, km3/s2

ρ = distance between satellite and bounds of sensor on Earth’s surface, km

φ = longitude of sub-satellite points (SSP), rad

ϕ = latitude of sub-satellite points (SSP), rad

Ω = Right Ascension of Ascending Node (RAAN), rad

ω = argument of perigee, rad

ωE = rotational angular velocity of Earth, rad/s

Subscripts

i = sequence number of variables

j = sequence number of individuals

g = sequence number of generations
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0 = departure point of Lambert transfer

f = arrival point of Lambert transfer

Superscripts

U = upper limit of the parameters

L = lower limit of the parameters

best = choose the best vector as based vector

random = choose a random vector as based vector

+ = the instant immediately after the application of an impulse

− = the instant immediately before the application of an impulse

I. Introduction

Differential Evolution (DE) is a basic and robust evolutionary strategy that has been applied to determining the

global optimum for complex optimization problems[1–5]. It was introduced in 1995 by Storn and Price [1] and has been

successfully applied to optimization problems including nonlinear, non-differentiable, non-convex, and multi-model

functions. DE algorithms show good convergence, high-reliability, simplicity, and a reduced number of controllable

parameters [2]. Olds and Kluever [3] applied DE to an interplanetary trajectory optimization problem and demonstrated

the effectiveness of DE to produce rapid solutions. Madavan [4] discussed various modifications to the DE algorithm,

improved its computational efficiency, and applied it to aerodynamic shape optimization problems. DE algorithms are

easy to use, as they require only a few robust control variables, which can be drawn from a well-defined numerical

interval. However, the existing various DE algorithms also have limitations, being susceptible to instability and getting

trapped into local optima[2]. Notable effort has been spent addressing this by coupling DE algorithms with other

optimization algorithms (for example, Self Organizing Maps (SOM) [6], Dynamic Hill Climbing (DHC) [7], Neural

Networks (NN) [7], Particle Swarm Optimization (PSO) [8] ) . In these cases, the additional algorithm is used as

an additional loop within the optimization process, creating a hybrid system with an inner and outer loop. Such

hybrid algorithms are inherently more complex and so the computation cost is increased. Attempting to address this,

a self-adaptive DE was designed and applied to the orbit design problem for prioritized multiple targets by Chen[5].

However, the self-adaptive feature is somewhat limited as it relates only to the number of generations within the

optimization. A Self-adaptive DE which can automatically adapt its learning strategies and the associated parameters

during the evolving procedure was proposed by Qin and Suganthan[9] and 25 test functions were used to verify the

algorithm.

This Note presents an improved DE algorithm that have an opportunity to escape the local optima whilst also

improving the performance of the algorithm without relying on an inner and outer optimization loop. Two improvements
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have been added to the algorithm (in Section II) : a double self-adaptive scaling factors related to the value of the fitness

function of the last generation and the number of generations, and a mutant factor in each generation that will change

randomly to avoid locally optimum solutions. To validate the new method, test functions studies (in Section III) and two

case studies (in Section IV) on transfer orbit design and target observation are investigated to demonstrate the accuracy,

convergence and the results’ standard deviation (SD) of the proposed algorithm.

II. Optimization Algorithm

A. Traditional DE Algorithm

The implementation of DE can be described following [5] and summarized herein. The initial population of the

individuals is generated as

Xi, j(0) = XL
i + randj(0, 1)(XU

i − XL
i ) i = 1, . . . , N; j = 1, . . . , n. (1)

Based on the individuals of the previous generation, a trial vector is generated by a mutation process. This operation

contains two popular selections of the base vector, best and random. The best current vector is chosen as the base vector

by

Vbest
i, j (g) = Xbest

i (g) + F(Xi, j1(g) − Xi, j2(g)) j1 , j2; j1 = 1, . . . , n; j2 = 1, . . . , n; g = 1, . . . ,K; (2)

whilst the base vector is chosen randomly by

V rand
i, j (g) = X rand

i (g) + F(Xi, j1(g) − Xi, j2(g)) j1 , j2; j1 = 1, . . . , n; j2 = 1, . . . , n; g = 1, . . . ,K; (3)

where, the scaling factor is a random, uniformly distributed value between [0,1]

Fi, j = rand(0, 1). (4)

The alternative vector is produced by crossover process using Eq. (5) and the different algorithms use different base

vector.

Ui, j(g) =




V
best/rand

i, j
(g) i f (randj ≤ CRi(g) or j = krand)

Xi, j(g) otherwise

(5)

where, the predefined crossover probability CR controls the fraction of trial vectors that are used and krand ensure that at

least one parameter is changed.

CRi(g) ∈ (0, 1). (6)
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Finally, it is determined whether to select the alternative vector as a member of the new generation, or not, by the

value of fitness function Q. The alternative vector is selected as a member of the new generation if the fitness function is

smaller than the target vector.

Xi, j(g + 1) =




Ui, j(g) i f [QUi, j (g) < QXi, j (g)]

Xi, j(g) otherwise

(7)

This process is iterated from step (2) to step (4) until the stopping criteria are satisfied; usually the maximum number

of generations or the minimum value of fitness function.

B. Double Self-adaptive Scaling Factor

In the previously described, or traditional DE algorithm, the evolution scaling factor F has a significant influence on

the extent of population variations as it describes the search range of the optimization algorithm. The algorithm will

reduce to a random searching algorithm when F = 1, whereas the algorithm will lose its evolution capability when

F = 0 and the self-adaptive factor which only related to the number of generations is studied in [5].

A double self-adaptive evolution scaling factor is introduced to enhance the optimal performance by gradually

decreasing the scale factor F with each new generation. Consequently the algorithm will then have a different search

range in different stages of the optimization. The searching process will proceed over a wide area at the beginning,

similar to finding some tolerable results by random searching, and gradually decrease the search area as the near-optimal

result is found in a local region of the current best individual, similar to local search by Newton downhill method.

However, the searching process continues to require some element of randomness to ensure the exploration of the

searching space.

The scaling factor is established by three parts. The first part Fi, j(Q(g−1)) is related to the value of the fitness function

of the last generation. The second part Fi, j(g) is related to the number of generations, and the third part is a random

factor similar to the traditional DE algorithm. The details of the functions can be designed as required and the equations

used in this Note are only one example selected to illustrate the method. Consequently, the specific expression is

Fi, j = Fi, j(Q(g−1)) × Fi, j(g) × rand(0, 1). (8)

The part of the scaling factor related to the fitness function of the last generation can be designed to ensure the factor

Fi, j(Q(g−1)) tends from 1 to 0 as the fitness function of the prior generation decreases. This is given as

Fi, j(Q(g−1)) =
1

log10(
C×Qbest

(1)���Qbest
(g−1)−Qbest2

(g−1)

���
)

→ Fi, j(Qbest
(g−1)) ∈ (0, 1) (9)
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where, Qbest
(g−1), Qbest2

(g−1) are the two best obtained values of the fitness function in last generation, and Qbest
(1) is the best

value of fitness function among the initial population. The order of magnitude of (Qbest
(g−1) − Qbest2

(g−1)) will, most likely,

change significantly during the optimization process, as such the common logarithm of (
C×Qbest

(1)
Qbest

(g−1)−Q
best2
(g−1)

) is applied to

ensure the factors Fi, j(Q(g−1)) remains smooth. The constant C here is equal to 10 to make sure the factors Fi, j(Q(g−1))

will not exceed 1.

The part of the scaling factor related to the generation sequence number is similarly designed to ensure the factors

Fi, j(g) changes from 1 to 0 as the generation sequence number increases,

Fi, j(g) = (cos( g
K

× π) + 1) × 1

2
→ Fi, j(g) ∈ (0, 1). (10)

C. Random Mutation

Applying the double self-adaptive scaling factor alone would most likely result in the algorithm becoming trapped

in a local optimum, with no means of escape. To resolve this , a random mutation factor is added into the process. This

mutant is produced randomly, like the initial population, rather than evolving with the whole group. The setting of the

random mutation can be regarded as a re-initialization and is defined as

Ui,n(g) = XL
i + randj(0, 1)(XU

i − XL
i ) g = 1, . . . ,K . (11)

Consequently, if the mutant individual has a better performance the optimization algorithm will exit the local

optimal, and restart the evolution process around this individual.

As shown in Table 1, six different algorithms can be derived with different properties based on the choice of the

best or random (rand) base vector, the introduction of the random mutant (RM), and the self-adaptive (SA) factors.

DE (best/rand) algorithms are the traditional differential algorithm, with two kinds of base vector. SA-DE (best/rand)

represent the algorithms that have double self-adaptive scaling factors, and SA-DE-RM (best/rand) represent the

algorithms with both double self-adaptive scaling factors and the random mutant. Each of these algorithms will be

considered in comparison in later sections.

Table 1 The property list for six algorithms

No. Algorithms Random Mutant Self Adaptive Factors Base Vector
1 DE (best) N N the best vector of last generation
2 SA-DE (best) N Y the best vector of last generation
3 SA-DE-RM (best) Y Y the best vector of last generation
4 DE (rand) N N the random vector of last generation
5 SA-DE (rand) N Y the random vector of last generation
6 SA-DE-RM (rand) Y Y the random vector of last generation
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(a) (b) (c)

(d) (e) (f)

Fig. 1 3D-plot of test functions: a) Schaffer, b) Rosenbrock, c) Beale’s, d) Rastrigin, e) Ackley’s, f) Styblinski-

Tang

III. Test Function Simulation

To investigate the feasibility and effectiveness of the introduced algorithm, eight classic functions are used to test the

different algorithms. Figure 1 shows the 3D-plot of the six two dimension (2D) test functions, it can be seen that they all

have a certain complexity, and applying the algorithms in Table 1 provides a comprehensive analysis of the algorithms.

A. Test Function Introduction

Table 2 shows the search space and global minimum of the test functions. These functions are some typical

benchmarks chosen from [1, 2, 6, 10] and they have different properties include multi-modal or unimodal, non-separable

or separable, notated, shifted, scalable. A simple introduction about the test functions is given as following and more

details can be found in [1, 2, 6, 10]. The global minimum of Schaffer function [10] is surrounded by two circular valleys

and the optimization process risks becoming trapped in these local minimums. Rosenbrock valley [10] is a non-convex

function and the global optimum lays inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial,

however convergence to the global optimum is difficult. Beale’s function [6] is multi-modal, with sharp peaks at the

corners of the input domain. Rastrigin function [10] is based on the function of De Jong with the addition of cosine

modulation in order to produce frequent local minimum. Thus, the function is a typical example of nonlinear highly

multi-modal function however, the locations of the minimum are regularly distributed. The Ackley’s function [10] is
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characterized by a nearly flat outer region, and a large hole at the center. The function poses a risk for optimization

algorithms to become trapped in one of its local minimum. In the Styblinski-Tang function, a large difference between

the magnitudes of middle or corner brings the similar difficulty to Beale’s function. The Hyper-Ellipsoid and Griewank

[10] are both 10 dimension (10D) test functions which can verify the performance of algorithms for high dimension

problem.

Table 2 Test function characteristic list

Function Formula Search Space

Schaffer f1(x, y) = 0.5 +
sin2

√
(x2
+y2)−0.5

[1+0.001(x2
+y2)]2 (−100 < x1, y1 < 100)

Rosenbrock f2(x, y) = 100(y − x2)2 + (1 − x)2 (−2.048 < x2, y2 < 2.048)

Beale’s f3(x, y) =
3∑
i=1

[ 3×(2i−1)
2i

− x + xyi]2 (−4.5 < x3, y3 < 4.5)

Rastrigin f4(x, y) = 20 + x2
+ y

2 − 10 cos(2πx) − 10 cos(2πy) (−5.12 < x4, y4 < 5.12)

Ackley’s f5(x, y) = 20 × (1 − e−
1
5

√
1
2
(x2
+y2)) + (1− 1

2
[cos(2πx)+cos(2πy)]) × e (−5 < x5, y5 < 5)

Styblinski-Tang f6(x, y) = x4−16x2
+5x+y4−16y2

+5y

2
+ 78.33234 (−5 < x6, y6 < 5)

Hyper-Ellipsoid f7(xi) =
10∑
i=1

(i2xi
2) (−1 < xi < 1)

Griewank f8(xi) =
10∑
i=1

( xi
2

4000
) −

10∏
i=1

cos( xi√
i
) + 1 (−100 < xi < 100)

B. Numerical Simulations

The algorithms are applied to the eight classical test functions to determine their performance. The simulation

results are shown in Table 3. The maximum number of generations is set as 200, with each generation having 20

individuals, and each optimization is run 50 times. From Table 3, all of the best result for the test functions are within

10−5 of the global minimums. The SA-DE-RM (rand) algorithm gives the best solution both on average and with

minimum standard deviation (SD) .

Figure 2(b) gives the distribution range of the 50 solutions for Beale’s function. It shows the upper and lower bound

of the results for 50 simulations to find the different spread range. Fig. 2(a)gives the corresponding average value.

The result shows when introduced the self-adaptive scaling factor give a better performance than DE algorithms, and

likewise when the random mutant is added a further improvement in performance is gained. It should be noticed from

Fig. 2(a) that the two SA-DE algorithms do get trapped in local optima, and make little or no progress during the last 100

generations. However, the algorithms with the random mutant can escape the local minimum to find a better solution. It

was found that the test results for the other functions gave a similar conclusion, these results are summarized in Table 3.
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Table 3 Simulation results for six algorithms and 50 Monte Carlo samples

Function Metrics
DE

(best)
SA-DE
(best)

SA-DE-RM
(best)

DE
(rand)

SA-DE
(rand)

SA-DE-RM
(rand)

Schaffer
Founction

(2D)

optimum f1(0, 0) = 0
best f1(−4.303567 × 10−9, 6.247260 × 10−10) = 2.8732 × 10−8

average 2.292 × 10−2 1.624 × 10−2 9.847 × 10−3 9.444 × 10−3 8.940 × 10−3 8.520 × 10−3

SD 4.029 × 10−2 2.603 × 10−2 1.169 × 10−2 1.056 × 10−2 9.319 × 10−3 9.052 × 10−3

Rosenbrock
Founction

(2D)

optimum f2(1, 1) = 0
best f2(1.000365, 1.000754) = 1.8966 × 10−7

average 2.994 × 10−1 2.430 × 10−1 1.009 × 10−1 1.695 × 10−1 6.585 × 10−2 1.801 × 10−2

SD 5.348 × 10−1 5.030 × 10−1 1.879 × 10−1 6.111 × 10−1 1.325 × 10−1 3.173 × 10−2

Beale’s
Founction

(2D)

optimum f3(3, 0.5) = 0
best f3(3.000000, 0.500000) = 8.0019 × 10−20

average 2.6394 8.178 × 10−1 4.439 × 10−2 4.939 × 10−2 2.176 × 10−2 1.499 × 10−5

SD 3.4009 1.6236 1.539 × 10−1 1.126 × 10−1 5.331 × 10−2 3.593 × 10−5

Rastrigin
Founction

(2D)

optimum f4(0, 0) = 0
best f4(1.713657 × 10−9,−3.947406 × 10−10) = 3.552714 × 10−15

average 2.9907 1.0548 3.269 × 10−1 4.452 × 10−1 1.419 × 10−1 5.971 × 10−2

SD 4.0222 1.3774 6.360 × 10−1 8.457 × 10−1 3.724 × 10−1 2.437 × 10−1

Ackley’s
Founction

(2D)

optimum f5(0, 0) = 0
best f5(−3.585047 × 10−17,−7.617551 × 10−17) = 8.881784 × 10−16

average 7.053 × 10−1 1.191 × 10−1 4.184 × 10−2 6.596 × 10−3 8.116 × 10−5 2.177 × 10−5

SD 1.1822 2.296 × 10−1 2.327 × 10−1 3.003 × 10−2 2.610 × 10−4 4.357 × 10−5

Styblinski
-Tang

Founction
(2D)

optimum 0 < f6(−2.903534, 2.903534) < 2 × 10−5

best f6(−2.903534, 2.903534) = 8.592457 × 10−6

average 3.765 × 10−1 2.500 × 10−1 3.430 × 10−2 1.392 × 10−4 2.204 × 10−5 8.655 × 10−6

SD 4.100 × 10−1 3.115 × 10−1 8.474 × 10−2 7.738 × 10−4 9.419 × 10−5 8.657 × 10−6

Hyper
-Ellipsoid
Founction

(10D)

optimum f7(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0
best f7 = 1.167836 × 10−13

average 2.696 × 10−1 2.134 × 10−1 2.864 × 10−2 3.088 × 10−3 1.033 × 10−4 4.875 × 10−7

SD 2.951 × 10−1 2.403 × 10−1 5.653 × 10−2 4.621 × 10−3 2.815 × 10−4 3.447 × 10−6

Griewank
Founction

(10D)

optimum f8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0
best f8 = 1.332268 × 10−15

average 1.037 × 10−3 8.585 × 10−4 8.672 × 10−5 1.104 × 10−5 4.811 × 10−7 1.492 × 10−10

SD 1.113 × 10−3 9.456 × 10−4 1.851 × 10−4 2.460 × 10−5 1.224 × 10−6 1.055 × 10−9

Iteration index g 
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Fig. 2 The simulation result of Beale’s function for 50 simulations
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It need to be noticed that the computation time cost of the six algorithm are almost same because it is only related with

the number of populations and the max number of generations.

IV. Case Study Simulation

A. Lambert Transfer Problem Simulation

1. Problem Definition

The problem seeks to minimize the two-impulse optimal transfer between two circulars, non-coplanar orbits.

Therefore, the fitness function is

min(Q) = ∆v1 + ∆v2 (12)

where the two velocity impulses ∆v1 and ∆v2 can be given as

∆v1 = |v(t+0 ) − v(t−0 )|, ∆v2 = |v(t+
f
) − v(t−f )|. (13)

The angular momentum can be written as

h =

√
µa(1 − e2) (14)

The three transform matrices about Ω, i and ω are given as

R(Ω) =



cosΩ sinΩ 0

− sinΩ cosΩ 0

0 0 1


, R(i) =



1 0 0

0 cos i sin i

0 − sin i cos i


, R(ω) =



cosω sinω 0

− sinω cosω 0

0 0 1


. (15)

Thus, the state vectors at the departure point can be derived as

r1 = R′
(Ω0)R

′
(i0)R

′
(ω0)

h2
0
/µ

1 + ecos( f (t−
0
))



cos( f (t−
0
))

sin( f (t−
0
))

0


, (16)

v(t−0 ) = R′
(Ω0)R

′
(i0)R

′
(ω0)
µ

h1



− sin( f (t−
0
))

cos( f (t−
0
)) + e

0


, (17)

where Ω0, i0 and ω0 are the orbit elements of initial orbit; R′
(Ω0),R

′
(i0),R

′
(ω0) are the transposed matrix of each transform

matrix and f (t−
0
) is the true anomaly of the departure point on the initial orbit. Similarly,r2,v(t+

f
) can be calculated

using the orbit elements of final orbit, where f (t+
f
) is the true anomaly of the arrival point on the final orbit. f (t−

0
) and

f (t+
f
) are the first two design variables.

After determining v(t−
0
) and v(t+

f
), as a classic Lambert problem, v(t+

0
),v(t−

f
) can be calculated from r1,r2,∆t
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by algorithm 5.2 (the details of the algorithm is discussed in [11]) and then the total required velocity change of the

maneuver can be given from Eq. (12) and (13) (where ∆t is the third design variable) . As the orbit elements of the

initial and final orbit are known, except the true anomaly, there will be three unknown parameters of the Lambert transfer

problem to be optimized: the true anomaly on the initial orbit at the departure point (where the first impulse occurs)

f (t−
0
),the true anomaly on the final orbit at the arrival point (where the second impulse occurs) f (t−

f
), and transfer time

∆t.

2. Numerical Simulation

For the Lambert transfer problem each different DE algorithm uses 10 particles (n = 10) and 2000 generations (K

= 2000), with each solution generated 50 times via a Monte Carlo approach where the initial population is randomly

distributed each time. Each individual includes three design variables: [ f (t−
0
), f (t+

f
), ∆t]. The design variables are

constrained to the following ranges, which define the search space:

f (t−0 ) ∈ [0, 2π] f (t+f ) ∈ [0, 2π] f∆t ∈ [0, 20TU] (18)

where the normalized set of units are given as: the Earth radius represents the distance unit (DU), whereas the time unit

(TU) is TU=

√
DU3/µ. The search space in Eq. (18) means the true anomaly of the departure point and arrival point

can be search in a complete orbit period and the transfer time is less than twenty time unit.

Table 4 Orbital elements of the initial and target orbits and the optimal transfer

Orbit a, km e i, deg Ω, deg ω, deg
Initial 9645.83 0.2 5 0 270
Target 11575 0.2 0 0 30

Optimal transfer 12441.7 0.104 5.25 7.56 21.24

Table 5 True anomalies and transfer time of the global optimal solution

Optimal parameters Value
f1− 163.8 deg
f2+ 157.5 deg
f1+ 45.0 deg
f2− 158.7 deg
t 4490.5 s

The initial orbit and final orbit are given through their orbit elements in Table 4. Tables 4 and 5 present the results of

the optimization process by SA-DE-RM algorithm, including the true anomaly of the departure point on the initial orbit

and transfer orbit, the true anomaly of the arrival point on the final orbit and transfer orbit, and the orbit elements of

transfer orbit. The required velocity change, as shown Table 6, is 1.392970 km/s .

As shown in Table 6, Fig. 3(a) and 3(b), the six different algorithms behave differently in various evaluation

parameters and the random base vector method typically performs better than the best base vector. Focusing on the two
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Fig. 3 The simulation result of Lambert problem for 50 simulations

base vector types, the performance of the evolution algorithm is significantly improved with each step: introducing the

self-adaptive factors and the random mutant. It should be noticed that the four algorithms with self-adaptive factors show

a better convergence and furthermore the two algorithms with random mutants are better at escaping local optimum

when trapped and, as a result, are able to find a better solution. From Fig. 3, the algorithm in [5] performs only better

than the two traditional DE algorithm.

From Table 6, the SA-DE-RM (rand) algorithm has the most stable performance, with the lowest standard deviation

(SD) of 0.0295. Fig. 3(a) illustrates the objective evolution as a function of the iteration index and y-axis represents

the error with the optimal value in logarithmic scale. Fig. 3(b) gives the distribution range of the result of 50 Monte

Carlo simulations, with the SA-DE-RM (rand) algorithm again seen to have the smallest range, and to be nearest to the

best found solution. In this case, the best found transfer trajectory gives a minimum value of Q equal to 1.392970km/s.

Whilst the result given by the algorithm in [5] is 1.393264km/s, and hence very similar it is of note that the SD is

significantly greater.

Table 6 Simulation results, average and SD for six algorithms by 50 Monte Carlo samples

No. Algorithms Best Result, km/s Average Value, km/s SD
1 DE (best) 1.619151 1.628888 0.2410682
2 SA-DE (best) 1.393047 1.480205 0.1477757
3 SA-DE-RM (best) 1.392989 1.417463 0.0662108
4 DE (rand) 1.398566 1.527296 0.1687570
5 SA-DE (rand) 1.392994 1.443502 0.1220198
6 SA-DE-RM (rand) 1.392970 1.401533 0.0295157
7 Algorithm in [5] 1.393264 1.513093 0.1672050
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B. Multi-target Visiting Problem Simulation

1. Problem Definition

The objective in this case study is to find a trajectory that will naturally overfly multiple fixed targets as often as

possible, and as close to nadir as possible, during a given period. The effective Earth central angle λ of the field of view

(FOV) for an observation satellite can be computed, following[12], as

sin λ =
ρ sin η

RE

, ρ = RE cos γ + a cos η, sin γ =
a sin η

RE

(19)

.

Then, using Eq. (16) to compute the position of the satellite r = [X,Y, Z] in an inertial coordinate system, the

satellite’s position about rotating Earth-fixed frame r
′
= [X ′,Y ′, Z ′] is given as follows:

r
′
=



cos θ sin θ 0

− sin θ cos θ 0

0 0 1


r (20)

where, at time t = t0 + ∆t, the rotating angle is θ = θ0 + ωE∆t.

Thus, the latitude ϕ and longitude φ of the sub-satellite points (SSP) can be given as

ϕ = sin−1(Z ′/a) (21)

φ =




cos−1( X′

a cosϕ
) i f (Y ′ > 0)

360 − cos−1( X′

a cosϕ
) i f (Y ′ ≤ 0)

. (22)

Considering an oblate Earth to the order of J2, ÛΩ and Ûω can be given, following[11], as,

ÛΩ = −[3
2

√
µJ2R2

E

(1 − e2)2a
7
2

] cos i, Ûω = −[3
2

√
µJ2R2

E

(1 − e2)2a
7
2

](5
2

sin2 i − 2) (23)

Thus during the computation of SSP, Ω and ω at time t = t0 + ∆t need to be updated as

Ω = Ω0 +
ÛΩ∆t, ω = ω0 + Ûω∆t (24)

The corresponding semi-major axis can be compute by iterative algorithm, following[11], as

a0 =
µ

1
3

(nωE )
2
3

, n =
R

D
(25)
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ak+1 =
µ

1
3

(nωE )
2
3

[1 − 3

2
(−J2)(

RE

ak
)2(1 − 3

2
sin2 i)] 3

2 1 + (−J2)(
RE

ak
)2[3

2
(n cos i − 3

4
(5 cos2 i − 1)]

3
2

, (26)

where R and D are both integer variables and the stopping criterion is

|ak+1 − ak | < tolerance (27)

with tolerance set to 10−10 km.

Assuming the projection of FOV is a circle, the target position, Pi , is [φi, ϕi] and the position of SSP at time t is

[φt, ϕt ], the Earth central angle between the target and SSP is given as follows by use of spherical triangle

d(t,i) = cos−1(cos(π
2
− ϕt ) cos(π

2
− ϕi) + sin(π

2
− ϕt ) sin(π

2
− ϕi) cos(φt − φi)). (28)

The target Pi will be visited at time t when the following condition is true,

d(t,i) < λ (29)

where λ is given by Eq. (19) .

Considering the priority of targets, pi , a priority-weighted objective function is given as follows:

max(J) = Jt + Jb (30)

Jt =

N1∑

i=1

pi(
∑N2

j=1
ti, j)

10
, Jb =

N1∑

i=1

p∗ · oi (31)

where, oi = 1 means the target Pi is visited at least once and oi = 0 represents the target is missed; p∗ = 100 means a

high bonus term for the target not be lost. ti, j represents the time period of the jth times visiting for the target Pi and

N1, N2 represent the number of targets and the times of visit for Pi . Here a conversion Q = 1/J is necessary and Q will

be used during the optimal process as the fitness function to make sure the smaller fitness function is better.

2. Numerical Simulation

The maximum generation is set to 500, with 20 individuals in each generation. An orbit is sought to flyover the 10

targets shown in Table 7 within a repeat period of 2 days. Considering the imaging resolution constraint and the effect of

atmospheric drag, the bounds of altitude are set as [300 km, 900 km], and the corresponding bounds of R is [29,31]. As

shown in Table 7, the highest latitude of the targets is 55.5 deg, thus the bounds of inclination i should be set to [50,90].

The sensor’s half-effective FOV is given by mission requirements but assumed here to be η = 20 deg, and this study

14



assumes the start time is 00:00:00 at 01 Jan 2017, giving an initial Greenwich hour angle θ0 = 100.84 deg. Table 8 and

Table 7 Distribution and Priority of Observation Targets

ID City Longitude, deg Latitude, deg Priority
P1 Moscow 37.4 55.5 0.72
P2 London 0.1 51.3 0.85
P3 Peking 116.2 39.6 1.00
P4 Washington -77.0 38.5 1.00
P5 Los Angeles -118.2 34 0.85
P6 Miami -80.1 25.5 0.73
P7 HongKong 115.1 21.2 0.68
P8 Rio -43.2 -22.5 0.62
P9 Sydney 151.1 -33.5 0.90
P10 Buenos Aires -58.3 -34.4 0.65

Table 8 Simulation results of multi-visiting problem

No. Algorithms i, deg Ω, deg f , deg R Jt Jb
1 DE (best) 63.21 16.82 23.64 29 73.35 1000
2 SA-DE (best) 64.35 106.75 178.46 29 76.81 1000
3 SA-DE-RM (best) 55.18 171.59 172.80 29 79.16 1000
4 DE (rand) 55.64 96.07 62.53 29 76.73 1000
5 SA-DE (rand) 55.52 30.20 60.69 29 79.43 1000
6 SA-DE-RM (rand) 55.51 125.69 295.75 29 80.11 1000
7 Algorithm in [5] 54.97 125.01 176.51 29 75.70 1000
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Fig. 4 The convergence of six algorithms for multi-target visiting problem

Fig. 4 shows the convergence result for multi-target visiting problem. As all the targets have been visited at least once,

the second part of the objective function, Jb , is 1000, and Jt represents the priority-weighted function to describe the

visiting time of targets. As the results shows, although all the six algorithm can give a result with 100% coverage, the

SA-DE-RM (rand) algorithm obtains the best solution J = 1080.11 which is better than the result of algorithm in [5].

Fig. 5 gives the ground track of the optimal orbit, which visits the targets 17 times over the 29 revolutions in two

days, and Table 9 shows the mission schedule of the best found result.
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Fig. 5 Ground track of the optimal orbit

Table 9 Schedule Results

Target
ID

Recurring
ID: j

Start time Stop time Duration
timed − h : m : s d − h : m : s

P8 1 0-03:25:25 0-03:26:35 t8,1=70
P1 1 0-03:54:35 0-03:55:35 t1,1=60
P2 1 0-05:30:05 0-05:31:25 t2,1=80
P1 2 0-05:36:25 0-05:37:45 t1,2=80
P4 1 0-08:39:45 0-08:40:35 t4,1=50
P6 1 0-17:16:45 0-17:17:15 t6,1=30
P8 2 0-17:33:35 0-17:34:15 t8,2=40
P10 1 0-19:15:25 0-19:16:35 t10,1 =70
P3 1 0-20:06:35 0-20:07:35 t3,1=60
P3 2 1-02:59:05 1-02:59:45 t3,2=40
P1 3 1-04:25:45 1-04:27:05 t1,3=80
P7 1 1-04:44:55 1-04:45:05 t7,1=10
P9 1 1-05:02:45 1-05:03:55 t9,1=70
P1 4 1-06:07:55 1-06:08:35 t1,4=40
P2 2 1-09:26:05 1-09:27:05 t2,2=60
P5 1 1-10:45:15 1-10:46:25 t5,1=70
P4 2 1-16:03:25 1-16:04:45 t4,2=80
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V. Conclusions

This paper proposed a double self-adaptive differential evolution algorithm with a random mutant. When a random

mutant and a double self-adaptive scaling factor are introduced into the traditional differential evolution algorithm, the

scaling factors of the proposed algorithm can adjust with the optimization procedure and the algorithm can jump out of

the local optimal. Different from the previous research, the self-adaptive scaling factors in this Note can be affected by

not only the number of generations but also the fitness function of the last generation. When the algorithms are applied

to several test function studies include low dimension and high dimension and compared with the other algorithms, the

simulations demonstrated that the advanced algorithm can give a better performance in solution accuracy, convergence,

and the results’ standard deviation. The case studies presented in this Note prove the novel self-adaptive algorithm with

random mutant can provide a better performance on multi-target, maneuver optimal problems than others.
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