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In this study, a new methodology for fault detection in rolling 
element bearings is proposed, which is based on singular 
spectrum analysis (SSA). he main idea of the methodology 
is to build a baseline space rom the feature vectors 
corresponding to the healthy bearing condition. his baseline 
space is made rom the directions of the irst three principal 
components, which are obtained rom the decomposition 
stage of the singular spectrum analysis. hen, the lagged 
version of any new signal corresponding to a measured 
(possibly damaged) condition is projected onto this baseline 
space in order to assess its similarity to the baseline condition. 
he Euclidean norms of these projections are used to form 
three-dimensional feature vectors. he category of a new 
signal vector is determined on the basis of the Mahalanobis 
distance (MD) of its feature vector to the baseline ones. he 
methodology is validated using datasets acquired rom two 
diferent test-rigs. From the results obtained for the correct 
classiication rate, it is shown that this methodology performs 
very well. he suggested methodology also has simple steps 
and is easy to apply. 

Keywords: fault detection, singular spectrum analysis, rolling 
element bearings.

1. Introduction

Fault detection in rolling element bearings (REBs) is commonly 
carried out using vibration analysis as it is a simple, repeatable 
and non-destructive strategy.

During recent decades, there have been many studies that have 
suggested different approaches for the purpose of machinery 
fault detection. There are several studies that focus on reviewing 
and comparing the performance of some of the approaches for 
the health monitoring of rolling element bearings[1-5]. Due to 
the complexity of the bearing vibration signal resulting from 
factors such as clearance and friction, some of these approaches 
are complex in structure but perform well in fault detection. 
Among these approaches are the wavelet transform, which is a 
time-frequency analysis method[6,7], and envelope analysis[6,8], to 
mention a couple. For example, although enveloping is a purely 

signal analysis-based method, its application for bearing fault 
detection requires some preliminary information. Enveloping is 
usually used in combination with other signal analysis techniques 
to determine the appropriate centre and width of the frequency 
band of interest in order to develop a bearing fault detection 
method. To a certain extent, this depends on the a priori 
knowledge of some system characteristics, including bearing 
assembly resonant frequencies, to identify the centre of the 
frequency band of interest, and the bearing geometry, to calculate 
the fundamental fault frequencies of the bearing. Enveloping is 
usually combined with techniques such as spectral kurtosis[9,10], 
for example, for a careful windowing of the initial signal. It also 
requires combining with other signal analysis processes, such as 
band-pass and low-pass filtering. Thus, research aimed towards a 
simple and accurate method is still of interest to many researchers. 

Most fault detection methods based on bearing vibration 
signal analysis usually include the extraction of certain features 
representative of the bearing state, which are used as a means of 
comparison against the healthy state. There are many features 
suggested using a number of methods that are based on analysing 
the vibration signal in the different domains (ie time, frequency 
and time-frequency)[11-13]. Several challenges can accompany the 
extraction and selection of the features, such as the complexity of 
the feature extraction method and the sensitivity of the features 
to the change of a bearing condition.

The methodology proposed in this study is based on singular 
spectrum analysis (SSA) and is simple in structure and easy to 
apply. SSA is a time series analysis method that is primarily used 
to uncover the trend and the periodic components from the 
original time series. It has two main stages: decomposition and 
reconstruction. In the decomposition stage, which is the only 
stage used in this study, signals (in this case a bearing vibration 
signal) are decomposed into a number of new components 
called principal components (PCs). These principal components 
represent the projection of the original signal onto the new space 
directions, called eigenvectors. The directions defined by the 
PCs are used to build the reference space. The rationale behind 
this is that they contain a certain amount of the information 
contained in the original signal in terms of its variance. Thus, the 
reference space is expected to preserve a certain amount of the 
information for the healthy/reference state. From this viewpoint, 
any new signals with an unknown category are projected onto the 
reference space in order to assess their similarity to the reference 
state and hence to the baseline condition. 

One of the main contributions of this study is that the 
eigenvectors corresponding to a healthy bearing condition are 
used to build a reference state onto which all of the signals are 
projected. Thus, SSA is only applied to the signals corresponding 
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to the baseline condition in order to build the reference state. 
Once the reference space is built, any signal can be projected onto 
this space and the norms of its projections can be used to assess 
its similarity to the baseline condition. For the selection of PCs, 
there are several guiding criteria mentioned in the literature[14]. 
One of these criteria is that the percentage of variance portion 
described in these PCs should be equal to or greater than 75% 
of the variance of the original signal. Another criteria is that the 
PCs can be selected at the value where very little or no change in 
the variance is observed when adding new PCs. In this particular 
case, the norms of the projections on the first three PCs are used 
as features. In general, however, the reference state can be built 
using any number of principal components/directions and using 
more components may result in a more precise representation 
of the baseline state. In this case, using the first three principal 
directions was enough for classification/fault detection purposes. 

In general, SSA is a signal analysis method used for climatic 
and forecasting data analysis[15,16] and biomedical signal 
analysis[17,18]. It is also used as an anomaly detection method in 
tool wear health monitoring[19,20] and for damage assessment in 
wind turbine blades[21], but it is still unpopular for fault detection 
in rolling element bearings. SSA has the capability to distinguish 
between different data categories when such are present in the 
data analysed[22-24]. It does this by increasing the distance between 
categories and decreasing the distance between signals from the 
same category[25,26]. The first study of the use of SSA in the fault 
detection of REBs is presented in[27]. It considers both healthy 
and faulty inner race conditions. SSA is applied to both healthy 
and faulty bearing signals and two main time components are 
obtained, namely trend and residual components. From the trend 
component of each bearing signal a number of features, such as 
peak value and standard deviation, are used to form the feature 
vectors and then presented as input to a neural network classifier. 
In[14], SSA is used for multi-decomposition analysis. The number 
of singular values that cumulatively preserve a predetermined 
variance percentage is used as the indicator for fault presence. 
In[28], two different variable sets are proposed and used to form 
two feature vectors, namely the singular values and the energy of 
the first principal components. Both of these feature vectors are 
used as input to the back-propagation neural network (BPNN) 
classifier. 

The methodology suggested here is simpler in comparison 
to the studies mentioned above, since it proposes applying the 
SSA solely to the signals corresponding to the healthy bearing 
condition in order to build a reference (ie baseline) space. Thus, 
the only information needed is the information for the healthy 
bearing state, which can be obtained using a sample of signals 
measured in the healthy bearing state. These signals are subjected 
to SSA in order to find their principal directions defined by the 
first several principal components. So, only the decomposition 
stage is used and, as mentioned, this is applied solely to the 
baseline signals measured on the healthy state. It should also be 
mentioned that the methodology suggested, although simple in 
its nature and easy to apply, gives very precise results for the case 
studies presented here. 

The norms of the projections on the principal directions are 
used as features. The features obtained for a new signal with 

unknown classification are compared to the features obtained for 
the healthy state. The comparison is carried out on the basis of 
the Mahalanobis distance (MD), which provides the possibility 
of comparing each feature vector (FV) to the set of feature 
vectors corresponding to the healthy condition. Accordingly, 
the Mahalanobis distance of each FV to the set of baseline 
FVs is used as a measure of similarity to the baseline (healthy 
condition). The smaller the MD, the greater the similarity to the 
healthy condition. The Mahalanobis distance is used in a number 
of studies for measuring the distance between multidimensional 
variables. Eventually, a threshold for this distance is established 
using the baseline FVs and the classification of the signals from 
different bearing states is carried out using this threshold. If the 
MD is smaller than the established threshold, the signal and the 
bearing state are considered healthy and vice versa.

As the main goal of the current study is targeting only the 
detection of faults and, due to the limitation of the manuscript 
length, the capabilities of the method regarding location 
identification and fault severity estimation will be investigated in 
the next installment of this work.

The methodology is validated using two different datasets and 
it showed excellent performance in terms of correct classification 
rate. The performance of the methodology is assessed based on 
the percentages of correct and incorrect classifications.

It is also important to stress that the present method has very 
good capabilities when applied for fault detection in complex 
systems. This is because the complex signal will be unfolded and 
decomposed into a number of PCs by projecting the signal onto 
the baseline space. Thus, the effect of the presence of a defect 
will be clearly seen when the projections, more specifically the 
norms of the projection vectors, deviate from the baseline values. 
Another important reason for the belief that the present methods 
will be successful when applied to real complex machines is that 
the reference space will be created based on the real data of the 
machine itself (not from a simulated model) when operating in 
a healthy condition. A threshold will then be set up from this 
healthy category data and any anomaly will be detected and 
classified as an observation different to the reference space. 

 The rest of the paper is organised into the following sections: 
Section 2 presents the building of a reference space and Section 
3 describes the proposed fault detection methodology based 
on SSA. In Section 4, two case studies for the validation of the 
suggested method are introduced. In Section 5, the results and 
discussion are presented. Finally, concluding remarks are given 
in Section 6.

2. Building a reference space

his section introduces the building of the reference space based 
on SSA. SSA is a data analysis procedure used for decomposing 
a time series into a number of interpretable components, such 
as trend, periodic and structureless noise components. It has 
two main stages, namely decomposition and reconstruction. 
As mentioned in Section 1, only the decomposition stage is 
considered in this study, so the reconstruction stage will not be 
mentioned. Further information on the reconstruction stage can 
be found in[29].
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First, a trajectory matrix X is formed from a lagged version of the 
measured vibration signal x of length n, x = [x(1), x(2), …, x (n)] 
onto a window of length (L): 

             X =

x 1( ) x 2( ) x 3( ) … x K( )

x 2( ) x 3( ) x 4( ) … x K +1( )

x 3( ) x 4( ) x 5( ) … x K + 2( )
! ! ! " !
x L( ) x L+1( ) x L+ 2( ) … x n( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 ....(1) 

where K = n − L + 1.
Next, the covariance matrix of X is calculated:

                                                     C
X
=
X ′X
L

 .....................................(2)

The C
X
 has a dimension (K × K) and it defines the covariance 

between signal realisations. The C
X
 is then subjected to 

eigendecomposition by singular value decomposition (SVD) in 
order to obtain L eigenvectors (U

i 
, i = 1, 2, …, L) and L eigenvalues  

(λ
i 
, i = 1, 2, …, L) by solving the following expression:

                                                  C
X
U
i
= λ

i
U
i

 .....................................(3)

Each λ
i
 represents a partial variance proportion of the original 

signal in the direction of the corresponding U
i 
. The square roots

of each λ
i 
give the so-called singular value SV

i
 (ie SV

i
= λ

i
). The

L eigenvalues (λ
i
) are usually arranged in decreasing order, so that 

the first one is responsible for the largest part of the variance (ie 
in the direction of (U

1
)), while the last eigenvalue is responsible 

for the lowest part of the variance (ie in the direction of (U
L 

)). 
The plot that displays the trend of λ

i 
versus the index (ie number) 

is called the scree diagram. 
All or some of the first L eigenvectors corresponding to the 

reference state (ie in this study the healthy state of the bearing) 
can be used to define the reference space. Thus, a reference 
space with dimension L is made of the first L eigenvectors  
(U

i  
, i = 1, 2, …, L): RL = [U

1 
, U

2 
,…, U

L 
].

 In this study, the first three eigenvectors are used to build 
the reference space. This is partly for purposes of visualisation 
but in principle any number of PCs can be used for the baseline/
reference state. A larger number of eigenvectors will result in 
more variance/information being preserved in the reference 
set of vectors and might presumably lead to improved fault 
recognition results. 

3. Fault detection methodology

In this section, the fault detection process is explained. It has two 
main parts: feature vector extraction and fault detection.

3.1 Feature extraction 

his section illustrates how features are made by projecting 
the lagged version of a signal onto the reference space. First, 
the signals from the healthy bearing condition are divided into 
a training sample and a testing sample, while all of the signals 

from the faulty bearing conditions are used as testing samples. 
For each signal from the training sample, the trajectory matrix 
X is projected onto each eigenvector U

i
 and provides the 

corresponding principal components PC
i 
:

                                             PC
i
= ′X .U

i
/ λ

i

 ................................(4)

The prime denotes the transpose of the X. The trajectory 
matrix can be decomposed into L elementary matrices X

i 
:

                                               X
i
= λ

i
U
i
P ′C

i

 ..................................(5)

so that: 

                                        X = X
1
+ X

2
+!+ X

L

 .............................(6)

The contribution of the norm of any X
i 
to the norm of the 

original X follows the same trend of the λ
i
[30]. That is, the first X

i 

has the highest contribution, while the last one has provided the 
lowest contribution.

Then, the Euclidean norm of each of the first three PCs of 
each training signal is calculated according to Equation (7): 

             f
ij
= PC

ij
m( )( )

2

m=1

K

∑ , j = 1,2,3, i = 1,2,3…k  .....(7)

where f
ij
 is a norm of the jth PC obtained from the ith signal, K 

is the length of a PC and equals (n − L + 1), k is the number of 
signals corresponding to a baseline condition and PC

ij
(m) is the 

mth element of the jth PC obtained from the ith signal.
In the current study, the first three PCs are selected, as they 

have the majority of the original signal variance and to facilitate 
the graphical representation of the feature space. More PCs can 
be selected and they might improve the method accuracy for fault 
detection. However, the latest PCs are not recommended as they 
usually correspond to the structureless noise[29,31].

The three Euclidean norms corresponding to the first three 
PCs of a signal i are used to form three-dimensional feature 
vectors of the baseline condition: 

                                              fv
i
= f

i1
f
i2
f
i3

⎡⎣ ⎤⎦  ....................................(8)

Figure 1 presents a 3D visual representation of fv
i 
. As the 

Euclidean norm is simply the summation of squared values, all 
of the features have positive values and when they are projected 
onto the feature space they are located in the first quadrant. 

Figure 1. A 3D visualisation of fv
i



The International Journal of Condition Monitoring | Volume 7 | Issue 2 | May 2017
29

SINGULAR SPECTRUM ANALYSIS | FEATURE

A baseline feature matrix (F
baseline 

) is made by arranging the 
baseline FVs in rows:

                                 F
baseline

=

f
11

f
12

f
13

f
21

f
22

f
23

. . .

. . .

f
k1

f
k1

f
k1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 ...........................(9)

Following the steps described above in Equations (4), (7) and 
(8), the feature vectors for any other/new signals (ie the testing 
sample) can be obtained.

3.2 Fault detection

In this section, the process of fault detection is detailed. he 
recognition of the healthy/baseline and the non-healthy/non-
baseline (faulty) conditions is made on the basis of a threshold. 
he Mahalanobis distance is used as a measure of similarity 
between a signal and the baseline condition. hus, all the FVs 
where the distance is equal to or less than the threshold are 
classiied as healthy and all of those where the distance is greater 
than the threshold are considered as faulty. 

3.2.1 Seting a threshold for the baseline condition
he Mahalanobis distance of each of the baselines, from fv

i
 to 

F
baseline 

, is calculated as shown below:

                          D
i
= fv

i
−E

baseline
( ).S−1

. fv
i
−E

baseline
( )′  ..............(10)

where D
i
 is the Mahalanobis distance of fv

i 
to the matrix F

baseline

and S−1 is the inverse of the covariance matrix of F
baseline 

. The

prime ( ' ) denotes the transpose of the vector (fv
i 
−

 
E

baseline 
).

E
baseline 

is the mean of F
baseline

 rows and is given as follows:

                                     E
baseline

=
f
i1
f
i2
f
i3( )

i=1

k∑
k

 ......................(11)

A threshold for the values of D
i
 (corresponding to the baseline 

training FVs) can be made based on the probability distribution 
of a good fit. In this study, it was found that the lognormal 
distribution (p) describes well the distribution of the distances D

i 
.  

The lognormal distribution has a probability density function 
that is given by the following equation:

                                p D
i( ) µ ,σ =

1

σ 2π
e
In D

i( )−µ( )
2
/ 2σ 2( )  ..................(12) 

where p(D
i
) is the lognormal probability distribution function 

value at D
i 
 and µ and σ are the mean and standard deviation of 

p(D
i
), i = 1, 2,…, k

A threshold (Thr
baseline

) can be estimated such that there is a 
probability of 97.5% for D

i 
from a baseline condition, which is 

equal to or less than the threshold.
Figure 2 illustrates the threshold (ie Thr

baseline
) and a possible 

distribution of the baseline FVs around it. The x-axis represents 
the number of FVs while the y-axis represents the MD described 
in Equation (10). The horizontal dashed line represents the value 
of the Thr

baseline 
.

Depending on the value of the Thr
baseline

 , a certain number of 

D
i 
(corresponding to reference FVs) will be below this threshold 

and all of the rest will exceed it.

3.2.2 Comparison of a new testing D
i
 to the threshold

As mentioned at the end of Section 3.1, the FVs of the testing 
sample can be obtained in the same way as the baseline FVs. For 
any new signal from the testing sample, its FV is irst obtained 
and the Mahalanobis distance of the FV to the F

baseline  
is then 

calculated, as described in Equation (10). Finally, it is compared 
to the chosen threshold Thr

baseline 
. If the Mahalanobis distance of 

the new FV is less than or equal to the Thr
baseline 

, the FV is assigned 
to the baseline condition and vice versa.

   
D
i
> Thr

baseline
anFV

i
isassigned to faulty category

D
i
≤ Thr

baseline
anFV

i
isassigned tobaselinecategory

⎫
⎬
⎪

⎭⎪
     ...(13) 

The performance of the methodology in terms of correct 
assignment of the FVs to their actual category (baseline and non-
baseline condition) is evaluated by using the so-called confusion 
matrix. This matrix is a square (K

k
 × K

k 
) matrix, where K

k
 is two (ie 

healthy (H) and faulty (F)). The columns represent the predicted 
categories, while the rows represent the actual categories. Thus, 
the main diagonal represents the correctly classified FVs, while 
all the other elements represent the miscategorised FVs. Table 1 
illustrates the structure of a confusion matrix.

Table 1. he structure of a confusion matrix

Actual class/predicted class H F

H C
HH

% C
HF

%

F C
FH

% C
FF

%

C
HH

% and C
FF

% represent the percentage of FVs assigned 
to their correct classes, while C

HF
% and C

FH
% represent the 

percentage of miscategorised FVs. 
A flowchart showing the steps of the methodology is presented 

in Figure 3. The flowchart has three main blocks given in boxes 
with dashed lines:
1. Building a reference space: this includes subjecting a signal 

from the training sample to SSA and using the first three Us as 
reference space (Section 2). 

2. Extraction of FVs: projecting the lagged versions of the signals 
from the training and testing to obtain the PCs and then 
calculating their norms.

3. Fault detection: this includes measuring the MD, setting a 
threshold and comparing the MD of the FVs corresponding 
to the testing sample with the threshold. 

Figure 2. Illustration of the hr
baseline

 constructed from the 
baseline training FVs
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3.3 Efect of using the norms of the irst three PCs 
on distinguishing between (baseline and non-
baseline) signal classes: visual interpretation

As mentioned in Section 1, only the irst three PCs, which have 
most of the original signal variance, are used in the fault detection 
process. In this section, the way in which the use of the norms of 
the irst three PCs, rather than the use of all the elements of these 
PCs, allows the baseline and non-baseline signal categories to be 
more easily distinguished will be visually illustrated. 

An example from the datasets used in this study is shown to 
illustrate the improvement of the use of norms of the first three 
PCs as features to distinguish between two different conditions 
(ie healthy (H) and faulty (F) bearings).

Figure 4 shows the 3D visualisation and its 2D projections 
using all the elements of the first three PCs. In this Figure, the 
first three PCs corresponding to 30 signals from the baseline 
condition and another 30 from the non-baseline condition are 
plotted. It can be seen that the two conditions are mixed and 
there is no clear visual separation between them.

Thus, it is suggested in this study that each signal is to be 
represented by a single feature, which is the Euclidean norm of its 
first three PCs instead of using all the elements of these PCs. This 
can help reduce the dimension of FV used to represent a signal 
and improve the separation between the two signal categories 
(baseline and non-baseline). 

In Figure 5, the 3D visualisation and the three 2D projections 

of using the norms of the first three PCs are shown. It is clearly 
seen that the two conditions are well separated.

4. Method veriication: case studies

he proposed methodology is tested and validated using various 
bearing vibration datasets acquired from diferent bearing test-rigs. 

4.1 Case study 1

he experimental datasets used in this analysis are those obtained 
from the Bearing Data Center of the Case Western Reserve 
University (CWRU)[32]. he test-rig shown in Figure 6 consists 
of a dynamometer connected to a three-phase induction motor. 
he vibration acceleration data were collected from the drive-end 
SKF 6025 deep groove ball bearing. he datasets were obtained 
for diferent bearing conditions, diferent motor speeds and 
diferent bearing fault sizes at a sampling rate of 12 kHz.

Figure 3. Flowchart showing the steps of the methodology

Figure 4. 2D and 3D visualisation for the case using all the 
elements corresponding to the irst three PCs

Figure 5. 2D and 3D visualisation for the case using norms 
corresponding to the irst three PCs

Figure 6. he bearing test-rig of CWRU[21]
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4.2 Case study 2

he datasets of case study 2 are collected from a bearing test-rig at 
the Department of Mechanical & Aerospace Engineering, University 
of Strathclyde, as shown in Figure 7. he test-rig consists of a 1 HP 
shunt DC motor, bearing assembly and a mechanical loading system. 
he vibration acceleration data are collected from the housing where 
the test bearing (in this case a SKF deep groove 6308 ball bearing) 
is mounted inside. A pinion-toothed belt mechanism is used to 
transmit the torque from the motor to the bearing assembly. A fault 
diameter of 0.05 inches was introduced by an electrical discharge 
machine on the inner race, a ball and the outer race using diferent 
bearings. he bearing vibration acceleration datasets were collected 
at a sampling rate of 12 kHz for diferent speeds (ie 250 r/min,  
750 r/min and 1250 r/min) using a magnetic-based accelerometer 
mounted on the housing of the bearing.

5. Results and discussion

5.1 Case study 1

he data used in the analysis are shown in Table 2. In Table 2, 
(H) refers to a healthy bearing condition, IRF refers to a bearing 
with an inner race fault, BF refers to a bearing with a ball fault 
and ORF refers to a bearing with an outer race fault. he signals 
are segmented into 240 equal non-overlapping signals (ie 4 signal 
classes × 60 signals per class, each one containing 2048 data 
points). hirty of the healthy signals are used for the training 
sample and the remaining 210 (ie 30 healthy and 180 faulty) 
signals are used for the testing sample. 

Figure 8 presents a signal corresponding to a healthy bearing 
in the time domain at 1730 r/min. The x-axis represents the 
number of data points while the y-axis is the acceleration of the 
signal vibration. 

Figure 9 shows the scree diagram of a healthy bearing 
condition at a speed of 1730 r/min. The diagram displays the 

normalised eigenvalues versus the number of PCs for a window, 
L = 10. The y-axis represents the normalised eigenvalues

(ie normalised λ
i
= λ

i
/ λ

ii=1

L∑ ), which explain the percentage of

variance portion explained by each of the PCs. It can be clearly 
seen that the first PCs have the highest variance portions when 
compared to the last ones. In this study, only the first three PCs are 
considered in forming the FVs. The variance proportion accounted 
for in the first three PCs is at least 75% of the variance of the original 
signal, which means that the selection of the threshold percentage 
for PCs meets with one of the guiding criteria mentioned in[14].

Figure 10 shows a 3D visualisation of the 30 feature vectors 
corresponding to the baseline training sample, which are used 
to form the baseline features. As was described in Section 3.1, 

all of the FVs are obtained 
from projecting the lagged 
version of the signal onto the 
reference eigenvectors. Since 
the reference eigenvectors are 
corresponding to a healthy 
bearing condition, it is expected 
that FVs corresponding to non-
baseline bearing condition will 
differ from the baseline FVs.

Figure 7. Bearing test-rig of case study 2

Figure 8. A signal of 2048 data points corresponding to a 
healthy bearing at 1730 r/min

Figure 9. Scree diagram of a healthy signal at 1730 r/min

Case no Motor speed (r/min) Signal category No of signals

1 1730 Healthy, (IRF, BF and ORF)
small fault 0.007" 240 (4 classes × 60 signals each)

2 1750 Healthy, (IRF, BF and ORF) 
small fault 0.007" 240 (4 classes × 60 signals each)

3 1772 Healthy, (IRF, BF and ORF) 
small fault 0.007" 240 (4 classes × 60 signals each)

4 1797 Healthy, (IRF, BF and ORF) 
small fault 0.007" 240 (4 classes × 60 signals each)

Table 2. Bearing vibration datasets obtained from case study 1 used in the bearing fault detection
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Figures 11(a)-(c) show the visualisation of the FVs 
corresponding to the testing sample (the remaining 30 signals of 
a healthy bearing condition and the 180 signals of a faulty bearing 
condition) obtained at 1730 r/min. As mentioned in Section 3, 
the trajectory matrix of each testing sample signal is projected 
onto the baseline eigenvectors. Then, the Euclidean norms of the 
first three PCs are used to form the testing sample FVs. Figure 
11(a) shows the 3D visualisation of the FVs corresponding  
to the baseline bearing condition in blue and the various 
faulty bearings in red, green and black. It can be seen that FVs 
corresponding to the faulty classes are separated from the 
baseline conditions and they are also separated from one another. 
Figures 11(b)-(d) show the distribution of the FVs from different 
2D views. Figure 11(a) shows that selecting three PCs to form 
the FVs improves the separation not only between the baseline 
and non-baseline categories but also among the non-baseline 
categories. 

Figure 12 presents the Mahalanobis distances of the testing 
and the training FVs to the reference/baseline FVs, as given in 
Equation (10). As can be seen from the Figure, there are five 
regions/parts of MD separated by vertical dashed lines. The 
leftmost part represents the MD of the training baseline FVs, 
which represents the MD of each training FV measured to 
F

baseline
. This is the part where the threshold is established, see 

Section 3.2.1. The threshold is represented by the horizontal 
dashed line in the Figure. The part second from left represents 
the MD of the testing baseline FVs measured to the reference/
baseline FVs. All of the other parts represent the MD of the 
testing FVs corresponding to different fault locations. It is clear 
that all the MDs corresponding to training baseline FVs are 
below the threshold and most of the MDs corresponding to 
testing healthy samples are also still below (ie only two out of 30 
are located slightly above the threshold level). However, all the 
other distances corresponding to the faulty condition are quite 
far from the threshold and the healthy (for example the y-axis in 
the Figure is shown in a log scale). 

The confusion matrix corresponding to the classification of 
testing FVs obtained at 1730 r/min is shown in Table 3. It is clearly 
shown that the positive false alarm rate (ie FVs corresponding to 
the healthy class but assigned as faulty) is 6.7%, as only two out 
of 30 are misclassified, while there are no negative false alarms (ie 
none of the FVs corresponding to the faulty bearing category are 
assigned to the healthy category).

Table 3. Confusion matrix of testing FVs at 1730 r/min

Actual class/predicted classes H F

H 93.3% 6.7%

F 0% 100%

For all the datasets considered in this case study (see Table 2), 
the results regarding the correct classification percentage for both 
the training and testing samples are given in Table 4. The first 
column in the Table shows the type of datasets defined in Table 2. 
The second column shows the percentage of the original variance 
preserved in the first three PCs corresponding to the baseline 

Figure 10. 3D visualisation of FVs obtained from the training 
sample of the baseline condition at 1730 r/min

Figure 11. he 2D and 3D visualisation of the FVs 
corresponding to diferent bearing conditions obtained at 
1730 r/min

Figure 12. he MDs as indicators for the fault detection in the 
bearing at 1730 r/min



The International Journal of Condition Monitoring | Volume 7 | Issue 2 | May 2017
33

SINGULAR SPECTRUM ANALYSIS | FEATURE

bearing condition. The third, fourth and fifth columns show the 
correct classification of the training and testing FVs as a percentage. 
It is clear that all of the 180 testing sample FVs corresponding to 
the faulty bearing conditions are correctly assigned to the fault 
class, which means no negative false alarms. The lowest correct 
classification rate for the healthy training FVs (ie H

training
) is 96.7%, 

where only one out of 30 healthy training FVs were assigned 
to a faulty class. For the healthy testing FVs, the lowest correct 
classification rate is seen at the speed of 1772 r/min, where only 
three out of the 30 FVs were misclassified under the faulty class.

Table 4. Performance of the methodology, PCs (1, 2, 3). 
Number of FVs: H

testing 
= 30, H

training 
= 30, F

testing
 = 180 

Speed
(r/min)

% variance contained 
in the first three PCs

% correctly classified

% H
training

% H
testing

% F
testing

1730 81.18 100 93.3 100

1750 79.86 96.7 93.3 100

1772 87.19 100 90 100

1797 94.7 96.7 96.7 100

5.2 Case study 2

For case study 2, the datasets used for analysis are described in 
Table 5. he data corresponding to diferent motor speeds are 
considered in the analysis. For each speed, data are obtained 
for H, IRF, BF and ORF. he number of signals for each case is 
320 (4 classes × 80 signals), each of 2048 length. he signals are 
divided into 40 signals corresponding to healthy bearings as a 
training sample and the other 280 (40 healthy and 240 faulty) 
signals as a testing sample.

Figure 13 shows a vibration acceleration signal corresponding 
to the baseline training sample collected at 750 r/min. 

The signal shown in Figure 13 is subject to SSA of window  
L = 10, to represent the signal in higher dimensional space. Ten 
PCs are obtained by subjecting the signal to SSA. Figure 14 shows 
the contribution of the variance of these PCs to the original signal 
variance. It can clearly be seen that the majority of the original 
signal variance is included in the first three components, while 
low contribution to the original signal variance is accounted for 
in the other PCs.

As described in Section 3, the first three eigenvectors 
corresponding to the baseline training sample are used as the 
reference vectors onto which all of the lagged versions of testing 
sample signals are projected. The Euclidean norms of the 
projection resultants are used to form the FVs. Figures 15(a)-(d) 

show the 2D and 3D visualisations 
of the FVs constructed from the 
training and the testing samples. 
In these Figures, it can be seen 
that the separability exists not 
only between the baseline and 
non-baseline FVs but also among 
the faulty categories.

Figure 13. A signal of 2048 data points corresponding to a 
healthy bearing at 750 r/min

Figure 14. Scree diagram of a healthy signal at 750 r/min (case 
study 2)

Figure 15. he 2D and 3D visualisations of the FVs 
corresponding to diferent bearing conditions obtained at  
750 r/min (case study 2)

Case no Motor speed (r/min) Signal category No of signals

1 250 Healthy, (IRF, BF and ORF) 
small fault 0.005" 320 (4 classes × 80 signals each)

2 750 Healthy, (IRF, BF and ORF) 
small fault 0.005" 320 (4 classes × 80 signals each)

3 1250 Healthy, (IRF, BF and ORF) 
small fault 0.005" 320 (4 classes × 80 signals each)

Table 5. Bearing vibration datasets obtained from case study 2 used in the bearing fault detection
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Figure 16 shows the MDs of both the training and testing 
FVs measured to the baseline testing FVs category. As the MD 
is suggested in this study as a fault indicator, it is compared 
to a predetermined threshold constructed from the MDs 
corresponding to the training baseline. The separation between 
the baseline and non-baseline FVs is very clear and it results in 
accurate detection of the fault.

The performance of the methodology using the datasets of 
case study 2 is shown in Table 6. The first column shows the type 
of datasets as defined in Table 5. The second column shows the 
percentage of the variance proportion of the original variance 
preserved in the first three PCs. The third, fourth and fifth columns 
show the correct classification of the training and testing FVs. It can be 
seen that only 12 out of the 240 faulty testing FVs were misclassified 
at a speed of 250 r/min, which gives a correct classification rate of 
95%. All of the other FVs corresponding to the testing sample at 
speeds of 750 r/min and 1250 r/min are correctly classified into the 
fault class. It can be seen that 95% more of the baseline training FVs 
are classified to within their actual class, while at least 97.5% of the 
baseline training FVs are correctly classified (ie only one or two out 
of 40 of the baseline training FVs are misclassified). 

Table 6. Performance of the methodology, PCs (1, 2, 3). 
Number of FVs: H

testing 
= 40, H

training 
= 40, F

testing 
= 240 

Speed 
(r/min)

% variance contained 
in the first 3 PCs

% correctly classification

% H
training

% H
testing

% F
testing

250 94.04 95 100 95

750 92.89 97.5 100 100

1250 75.525 100 97.5 100

6. Conclusions and discussion

he present study suggests a rather simple and easy to apply but 
accurate method for fault detection in rolling element bearings 
based on singular spectrum analysis. he suggested method is 
simple in application as it solely uses the signals from the healthy 
bearing state to build the reference space. As such, it does not 
require any previous measurements corresponding to faulty/
anomalous conditions. A number of signals measured in the 

Figure 16. he MDs as indicators for fault detection in the 
bearing at 750 r/min

baseline/healthy condition can be used to build the reference 
space. SSA is used only for the purposes of building this reference 
space. he new signals, which are to be classiied, are not 
subjected to SSA; their lagged versions are simply projected onto 
the irst principal directions of the reference space. As such, the 
transformations applied to the measured signals are minimal and 
very simple. he classiication rule, which is based on a threshold 
of the Mahalanobis distance, is also a robust and simple one. 
As a result of this, the method holds considerable potential for 
automatisation and practical implementation. 

There are some conclusions that can be drawn from the 
method itself. The principal components are used to build the 
reference space and the classification/fault detection is carried 
out on the basis of projecting the data onto these PCs. As such, 
it can be argued that the PCs obviously contain information 
regarding the state of the bearing. In this particular application 
only three principal directions are used, but potentially more 
principal directions can be used, which might improve the 
classification for some applications as it can be argued that more 
principal directions will contain more information from the 
measured signals and hence the bearing condition. Thus, further 
interpretation of the PCs used to define the baseline state is seen 
as a direction for further research and knowledge enhancement 
regarding the relationship of the signal information/
characteristics to the principal directions obtained using SSA. 

It should also be noted that the method is rather general and can 
be applied to any measured signals regardless of their stationarity. 
The 3D visualisation shows that not only baseline and non-
baseline signal categories can be distinguished but in some cases 
the method can be used to separate different faulty categories. This 
remains a subject of further research and as such the interpretation 
of the PCs/the principal directions will be very helpful.

Based on the results obtained, it has been shown for the case 
studies considered that SSA is capable of extracting essential 
information regarding the presence of faults in signals where 
different fault locations are detected at different motor speeds. As 
the primary goal of the current study is limited to the detection 
of faults, further investigations are targeted in terms of expanding 
the method for fault qualification and quantification purposes 
and also for online monitoring of the bearing condition. 
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