
Digital Communications and Networks 4 (2018) 277–286
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/en/journals/digital-communications-and-networks/
Semi-supervised multi-layered clustering model for intrusion detection

Omar Y. Al-Jarrah a,*, Yousof Al-Hammdi a, Paul D. Yoo b, Sami Muhaidat a,
Mahmoud Al-Qutayri a

a Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
b Centre for Electronic Warfare, Information and Cyber (EWIC), Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, SN6 8LA, United
Kingdom
A R T I C L E I N F O

Keywords:
Semi-supervised intrusion detection
Machine learning
Classification
Ensembles
Big data
* Corresponding author.
E-mail addresses: omar.aljarrah@kustar.ac.ae (O.Y. A

(S. Muhaidat), mqutayri@kustar.ac.ae (M. Al-Qutayri).

https://doi.org/10.1016/j.dcan.2017.09.009
Received 12 September 2017; Accepted 16 September 20
Available online 22 September 2017
2352-8648/© 2018 Chongqing University of Posts and Tel
ND license (http://creativecommons.org/licenses/by-nc-n
A B S T R A C T

A Machine Learning (ML)-based Intrusion Detection and Prevention System (IDPS) requires a large amount of
labeled up-to-date training data to effectively detect intrusions and generalize well to novel attacks. However, the
labeling of data is costly and becomes infeasible when dealing with big data, such as those generated by Internet
of Things applications. To this effect, building an ML model that learns from non-labeled or partially labeled data
is of critical importance. This paper proposes a Semi-supervised Multi-Layered Clustering ((SMLC)) model for the
detection and prevention of network intrusion. SMLC has the capability to learn from partially labeled data while
achieving a detection performance comparable to that of supervised ML-based IDPS. The performance of SMLC is
compared with that of a well-known semi-supervised model (tri-training) and of supervised ensemble ML models,
namely RandomForest, Bagging, and AdaboostM1 on two benchmark network-intrusion datasets, NSL and Kyoto
2006þ. Experimental results show that SMLC is superior to tri-training, providing a comparable detection ac-
curacy with 20% less labeled instances of training data. Furthermore, our results demonstrate that our scheme has
a detection accuracy comparable to that of the supervised ensemble models.
1. Introduction

As we head towards the Internet of Things (IoT) era, the number of
devices that have the capability to collect and exchange data is increasing
at a phenomenal rate. This is due to advances in semiconductors,
networking, communications, sensors, and Internet-related technologies,
which have resulted in ubiquitous connectivity to vast arrays of Internet-
based infrastructures, services, and applications, such as banking and
energy utility. Many applications in different fields, such as social
networking, economy, healthcare, industry, and science, produce a huge
amount of data, namely big data. In fact, it is predicted that as much data
will be created as was created in the entire history of planet Earth, with
90% of current data being created in the last two years [1]. The emer-
gence of big data combined with disappearing network boundaries and
sophisticated attacks has elevated the risk of network intrusions. Main-
taining the integrity and security of Internet-based services and in-
frastructures, particularly from cyber attacks, is paramount. For example,
smart cities that are evolving based on IoT technologies will simply not
function reliably without agile secure infrastructures.

An Intrusion Detection and Prevention System (IDPS) is an essential
l-Jarrah), yousof.alhammadi@kustar

17

ecommunications. Production and ho
d/4.0/).
component of networks' security infrastructure, as it monitors, detects,
and identifies potential intrusions. IDPSs are classified based on their
ability to recognize attacks known and unknown [2]. Rule-based IDPSs
make decisions based on rule sets defined by domain experts. Such IDPSs
are successful in detecting known attacks, but they have limited capa-
bilities in the case of novel attacks. Given the significant increase in
network traffic, finding and coding rule sets of rule-based IDPSs are
becoming difficult and time-consuming [3]. An anomaly-based IDPS
builds a model of normality and considers a deviation from this model as
an attack. Although anomaly-based IDPSs are shown to be capable of
detecting novel/unknown attacks, pure training datasets of normal traffic
are required to build their detection models. Collecting pure training
datasets of benign/normal network traffic is difficult due to the high
similarity between normal and malicious traffic.

Machine Learning (ML) algorithms have been adopted for IDPSs
owing to their model-free properties, which allow them to learn complex
malicious and normal models [2]. Although ML algorithms brought
significant advantages to IDPSs by automating the generation process of
the models/rules of detection, they have been deployed in limited scale
in the real world [2,4] because supervised ML-based IDPSs require a
.ac.ae (Y. Al-Hammdi), p.yoo@cranfield.ac.uk (P.D. Yoo), sami.muhaidat@kustar.ac.ae

sting by Elsevier B.V. on behalf of KeAi. This is an open access article under the CC BY-NC-

mailto:omar.aljarrah@kustar.ac.ae
mailto:yousof.alhammadi@kustar.ac.ae
mailto:p.yoo@cranfield.ac.uk
mailto:sami.muhaidat@kustar.ac.ae
mailto:mqutayri@kustar.ac.ae
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2017.09.009&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.elsevier.com/locate/dcan
https://doi.org/10.1016/j.dcan.2017.09.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2017.09.009
https://doi.org/10.1016/j.dcan.2017.09.009

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
sufficient supply of labeled training data. Unfortunately, data labeling,
which is normally performed by domain experts, is expensive in terms of
time and cost [3]. In contrast, unsupervised ML-based IDPSs, such as
clustering-based IDPS, build models with unlabeled data. However, the
performance of unsupervised ML-based systems, in general, is not as
good as the performance of supervised ML-based systems [5]. Ensemble
ML models are known for having a better accuracy than individual
classifiers. The basic concept of ensemble models is to reduce the overall
model error by reducing the overall variance error based on the fact that
classification error is composed of bias and variance errors. Basically,
ensemble models improve the detection accuracy of the classification
model by smoothing or averaging the overall variance of multiple clas-
sifiers with almost comparable bias [6]. Often, there is a trade-off rela-
tionship between the bias (i.e., accuracy) and the variance (i.e., precision)
of a classifier where a classifier with low bias tends to have a high
variance, and vice versa. Hence, ensemble models reduce the error due to
variance, resulting in improved detection accuracy. However, the con-
stituent classifiers of the ensemble model should have diversity in their
variance error, otherwise, there would be no means of averaging. This
requires each classifier to commit its error on a test instance indepen-
dently from other classifiers. However, combining multiple classifiers
does not necessarily produce a better result than that produced by the
best classifier in the ensemble model; rather, it reduces the likelihood of
choosing a poor-performing classifier [6]. Thus, with the ever-increasing
size of data, there is a need for powerful unsupervised or semi-supervised
learning algorithms that can perform the tasks of IDPS.

This paper introduces a Semi-supervised Multi-Layered Clustering
(SMLC) model for the detection and prevention of network intrusion. The
proposed model mitigates the deployment issues of existing supervised
ML-based IDPSs as it can achieve comparable/better performance with
partially labeled data. SMLC builds an ensemble model of multiple ran-
domized layers using a K-Means algorithm. The local learning models of
SMLC are learned from the resultant clusters at different layers. The final
prediction of a test instance is obtained by choosing the classification
with themost votes among all decisions from all layers. The contributions
of this work are as follows:

� Design and development of a semi-supervised model for network
intrusion detection tasks. The proposed model utilizes the fact that
instances of the same class type stay close in the Euclidean space to
reduce data labeling errors, which improves the final detection ac-
curacy (Section 3).

� Relying on the concept of the weighted Euclidean distance measure
and atomic clusters, we argue that the time to update the model and
classification time of the proposed model can be significantly reduced
by building binary classifiers at non-atomic clusters only (Section
3.1).

� Comparisons of SMLC with well-known supervised ensemble ML
models, namely RandomForest (RF), Bagging, and AdaBoostM1, and
a semi-supervised model, the tri-training algorithm, in terms of model
accuracy, detection rate, false alarm, Matthews correlation coeffi-
cient, training time, and testing time on two benchmark network
intrusion datasets, NSL and Kyoto 2006þ (Section 4).

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of the current development of ML models for IDPS.
Section 3 describes the proposed SMLC model. Section 4 discusses the
settings of the experiments and the results. Section 5 presents the con-
clusions of this work.

2. Related work

ML refers to computer algorithms that learn from experiences without
being programmed. An ML algorithm takes data of the instance space as
an input and outputs a hypothesis of a defined hypothesis space that
describes regularities in the data [2]. Supervised ML algorithms build
278
learning models on training datasets of paired input instances and their
corresponding labels or outputs. On the other hand, unsupervised algo-
rithms group input instances into clusters based on some similarity
measures. It is worth noting that the ability of an ML algorithm to learn
the underlying patterns in training data and generalize to unseen events
depends on the quality and quantity of the training data [7]. Recently,
combinations of ML techniques, which are also known as ensemble
models, have gained significant attention in the ML community as they
often perform better than individual models and adapt quickly to new
concepts [8–10]. Basically, an ensemble model generates multiple base
classifiers that commit an error on identical data patterns independently.
The final verdict of the ensemble model is derived from the individual
predictions of the constituent base classifiers. Clustered ensemble [11],
Bagging [12] and Boosting [13] are well-known ensemble models. Un-
like previously mentioned ML models, semi-supervised models use both
labeled and unlabeled data to build their final hypothesis [14,15].
Several studies in the literature, such as [16–20], have adopted
semi-supervised learning approaches for the detection and prevention of
intrusion.

Generally speaking, semi-supervised classification techniques can be
categorized into self-training, co-training and multi-view learning, and
generative models and graph-based methods [21]. Self-training methods
use their own predictions to update their learning models. Given data of
labeled and unlabeled data points, initially, a self-training method builds
a learning model using the labeled portion of the data. The learnedmodel
is used to predict the label of unlabeled data points in the data. The data
points with best predictions (i.e., high confidence) are augmented with
the labeled portion of the data and used to rebuild the learning model.
This process is performed repeatedly until all unlabeled data points are
used. Co-training methods assume that the input features can be split into
two sufficient, conditional independent views [22]. Such methods build
two classifiers (h1,h2) using the independent views of the training data.
The most confident predictions of each classifier on the unlabeled data
are then used to iteratively generate additional labeled data points for the
other classifier. Each classifier is retrained iteratively using the labeled
data points and the data points obtained from the other classifier.
Generative models assume that a model p(x,y) is an identifiable mixture
distribution where p(x,y) ¼ p(x)p(xjy) [23]. In large scale data, only one
labeled data point of every component is required to identify the mixture
distribution. Graph-based methods build graphs where nodes represent
data points (labeled or unlabeled) and edges represent the similarity
among the data points [23].

Wagh and Kolhe [16] presented a semi-supervised approach to
intrusion detection. The approach uses the most confident filtered data
from a test dataset to refine the existing training dataset, which is used
automatically to train the system again. Chen et al. [17] proposed two
semi-supervised classification methods, Spectral Graph Transducer and
Gaussian Fields Approach, to detect unknown attacks and one
semi-supervised clustering method, MPCK-means. Li et al. [18] proposed
an intrusion-detection algorithm based on semi-supervised fuzzy clus-
tering in which a few labeled instances are used as seeds to initialize the
classifier of the system. Chiu et al. [19] introduced a semi-supervised
learning mechanism to build an alert filter that reduces false alarms
and keeps a high detection rate. The mechanism uses
Two-Teachers-One-Student (2T1S) as a learner for the proposed ML en-
gine. Meng et al. [20] applied a disagreement-based semi-supervised
learning algorithm to construct a false alarm filter and investigated its
performance on alarm reduction in a network environment. Ashfaq et al.
[24] proposed a novel fuzziness-based semi-supervised learning
approach where a single hidden layer feed-forward neural network is
trained to output a fuzzy membership vector. A sample categorization on
unlabeled datapoints is then performed using the fuzzy quantity. The
classifier is retrained after including each category separately in the
original training data. Zhu and Fang [25] proposed a semi-supervised
intrusion detection algorithm based on the concept of Natural
Neighbor (2 N). The proposed algorithm performs clustering on labeled

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
data and then classification on unlabeled data according to the result of
clustering. Xiang et al. [26] proposed an incremental semi-supervised
training framework that combines the low space complexity advantage
of topology learning and semi-supervised learning for network intrusion
detection. Duong and Hai [27] proposed a semi-supervised model using a
modified Mahanalobis distance based on Principle Component Analysis
(PCA) for network traffic anomaly detection. Mousavi et al. [28] pro-
posed a novel online version of the Laplacian twin support vector ma-
chine classifier, which can exploit the geometry information of the
marginal distribution embedded in unlabeled data.

Contrary to the co-training-based IDPS introduced in Ref. [29], the
proposed SMLC model does not require the generation of different views
of the data. More importantly, SMLC presents a new methodology to
generate a semi-supervised ensemble model. In addition, SMLC does not
place any constraints on the used supervised algorithm. The SMLC model
augments the learning process of its local learning models by 1) utilizing
the unlabeled data and 2) dividing the training data into mutually
exclusive clusters at each layer, exploiting the fact that instances of the
same class type tend to stay close to each other in Euclidean space. SMLC
enhances the overall detection accuracy by 1) providing diversity among
its base classifiers as it generates multiple randomized layers using
K-Means clustering, 2) identifying difficult- and easy-to-classify in-
stances, and 3) employing most votes to arrive at the final prediction of
an instance.

3. Proposed semi-supervised multi-layered clustering model

In this section, we present our SMLC model based on the concept of
data clustering. SMLC follows the work presented in Ref. [30] and ex-
ploits the fact that resultant clusters of the K-Means algorithm depend on
the initialization parameters (e.g., seed, number of clusters) to provide
diversity among its base classifiers [30]. Data instances might be assigned
to different clusters when different initialization parameters are used
[31]. In this context, a layer is defined as an object of K-Means using a
randomized parameter (i.e., seed). Thus, a data point/instance might
belong to different clusters at different layers. Clusters at different layers
might have overlapping but non-identical data, but clusters at the same
layer are mutually exclusive and might have data points of one or mul-
tiple classes. To clarify this, consider a dataset of two classes, as shown in
Fig. 1. (a). In this context, as shown in Fig. 1. (b), a layer is defined as an
object of a K-Means clustering algorithm based on one set of initialization
parameters (i.e., seed). Thus, a data point/instance might belong to
different clusters on different layers, as shown in Fig. 1. (b) and (c).
Clusters at the same layer are mutually exclusive (i.e., non-overlapping).
However, clusters at different layers might have overlapping but
non-identical data, as shown in Fig. 1. (d). Hence, clusters at different
Fig. 1. (a) a dataset of two classes (male and female); (b) resultant clusters of
K-Means algorithm using seed 1 (i.e, layer 1); (c) resultant clusters of K-Means
algorithm using seed 2 (i.e., layer 2); (d) a projection of the resultant clusters
at different layers.

279
layers might be used to build diverse base classifiers, which can be used
to construct an ensemble model that covers the whole decision space, as
shown in Fig. 1(d).

SMLC generates multiple layers of the randomized K-Means algo-
rithm. A training dataset is fed to all layers in the SMLC model and
portioned into K clusters at each layer. The resultant clusters at each layer
might have data points/instances of different classes or one class. We
refer to the cluster of instances of one class type as an atomic cluster (e.g.,
cluster 3 in Fig. 1. (b)), whereas a non-atomic cluster is defined as the
cluster of instances of multiple classes (e.g., cluster 2 in Fig. 1. (b)). In
order to infer dependencies of the data, SMLC builds local learning
models on the resultant clusters at each layer. Basically, it builds binary
classifiers at non-atomic clusters and remembers the class label of atomic
clusters. In the following subsections, we describe 1) the data clustering
using K-Means and a weighted Euclidean distance, 2) the training, 3) and
the testing processes of the SMLC model.
3.1. Data clustering and weighted euclidean distance

The K-Means clustering algorithm is well known and widely used
owing to its simplicity and ease of implementation [32]. However, the
resultant clusters of K-Means depend heavily on the initialization pa-
rameters. SMLC exploits this property to provide diversity among its base
classifiers. It also builds a local learning model on the generated over-
lapping but non-identical clusters at different layers.

Let x1; x2;…; xn be a set of instances in d-dimensional space and K is a
predefined number of clusters. The K-Means algorithm minimizes the
objective function given by Ref. [31]:

Fðx1; x2;…; xNÞ ¼
XK
k¼1

X
xi2ck

k xi � xkk2 (1)

where ck denotes the kth cluster,

xk ¼ 1
nk

X
xi2ck

xi (2)

is the center of the kth cluster, and nk is the number of instances in the kth
cluster. k : k denotes the Euclidean norm used by the K-Means algorithm.
The algorithm starts with K instances that represent the centroids of the
clusters. Each instance in the training dataset is assigned to the centroid
of the closest cluster and the mean of the instances in the same cluster is
calculated. The procedure is repeated iteratively until convergence or an
exit condition is satisfied.

Distance measure is an important aspect to consider in the application
of the K-Means algorithm. Euclidean distance is the most widely used
distance measure, and is given by the following equation [31]:

dðx; zÞ ¼
ffiXd

j¼1

�
xj � zj

�2
vuut (3)

where d is the number of dimensions or features. xj and zj are the values
of the jth attribute of x and z, respectively. Although the Euclidean dis-
tance works well for clusters with spherical homogeneous covariance
matrices, it still treats all attributes equally when computing the distance
between instances. Such an approach is not desirable when some attri-
butes are more important to discriminate between patterns [33]. As such,
deploying such measures might yield a low performance and affect the
required number of iterations until the convergence of the K-Means al-
gorithm. Therefore, we introduce the use of a weighted Euclidean dis-
tance measure based on the observation that different attributes might
have a strong impact on the resultant partitions of data. The weighted
Euclidean distance assigns a weight for each attribute based on its sig-
nificance in distinguishing between class types. These weighted attri-
butes can lead to a higher probability of obtaining atomic clusters with a

Fig. 2. Stepwise procedure of SMLC.

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
lower value of K (i.e., number of clusters), which have the following
advantages:

1. Reducing the overall complexity of the proposed model. This is
mainly due to the fact that SMLC uses the class labels of atomic
clusters only, eliminating the need for building binary classifiers.

2. Increasing the prediction efficiency of the system, since the overall
number of binary classifiers used is reduced. In this case, the test
instances are examined by fewer binary classifiers, which reduce the
testing time per instance.

In this paper, the Information Gain Ratio (IGR) [34] is used as an
attribute's weight, since it reflects the utility and significance of the
attribute in detecting a class type, and it is given by

IGR
�
Y ;Aj

� ¼ HðYÞ � H
�
Y
��Aj

�
H
�
Aj

� (4)

where Y is the class and Aj is the jth attribute. Here, H(.) is the entropy
function given by

HðXÞ ¼ �
X
8i

PðxiÞlog2½PðxiÞ� (5)

where P(.) is the probability operator and i is an index of the probabilities
in a given input. Hereafter, the proposed weighted Euclidean distance
based on IGR is given by

dðx; zÞ ¼
ffiXd

j¼1

wj

�
xj � zj

�2
vuut (6)

where wj denotes the weight of the jth attribute. The weights of the at-
tributes are calculated and then passed to each layer in SMLC. The value
of IGR of the jth attribute is assigned to wj as follows:

wj ¼ IGR
�
Y ;Aj

�
(7)

3.2. Training process of SMLC

SMLC deals with partially labeled data. In this case, the training data
include labeled and unlabeled instances. Each labeled instance is given a
class label. On the other hand, unlabeled instances are not given any
label. Let the training dataset be denoted by T ¼ {TLabeled, TUnlabeled},
where TLabeled ¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxn; ynÞg, n denotes the number of
labeled instances in TLabeled, TUnlabeled ¼ fðxnþ1Þ; ðxnþ2Þ;…; ðxNÞg, N is the
number of instances in T, xi denotes the ith instance (i.e.,
xi ¼< xi1; xi2;…; xid >), d represents the number of attributes, and yi 2 Y
is the class label set. Fig. 2 shows the stepwise procedure of SMLC. The
training process of SMLC has two main phases:

1. SMLC generates overlapping but diverse clusters at different layers by
using different initialization parameter sets (i.e., random seed). The K-
Means generates diverse clusters at different layers,
fC1;2;…;C1;Kg;…; fCL;2;…;CL;Kg. Here we modified the K-Means al-
gorithm to use the distance measure expressed by (6). wj is calculated
according to (7) and its value is obtained from the IGR analyzer. It
should be noted that the IGR analyzer uses TLabeled only to calculate
the weights of the attributes. The class labels of the training instances
have not been considered in data clustering because the training
dataset contains labeled and unlabeled instances.

2. The resultant cluster could be one of three types: a) fully labeled
cluster that contains labeled instances only; b) partially labeled
cluster that contains labeled and unlabeled instances; and c) unla-
beled cluster. During the second phase, SMLC identifies fully labeled,
partially labeled, and unlabeled clusters and builds a learning model
on each cluster as follows:
280
� In the case of fully labeled clusters, SMLC identifies atomic and
non-atomic clusters at each layer. Equation (8) illustrates how a
class distribution function is calculated for each cluster Cl,k:

FCl;k

�
yj
� ¼ X

8ðxi ;yiÞ2Cl;k

θ
�
yj; yi

�
(8)

where

θ
�
yj; yi

� ¼
�
1 if yj ¼ yi
0 otherwise

(9)

The cluster Cl,k is defined as atomic if it satisfies the following equation:

Max8yj2Cl;k

�
FCl;k

�
yj
��

P
8yj2Cl;k

FCl;k

�
yj
� ¼ 1 (10)

Thereafter, the SMLC builds binary classifiers, and C4.5 decision trees
[35] in this study, with non-atomic clusters, and remembers the class label
of atomic clusters. A decision tree is a graphical representation of possible
decisions through a sequence of certain conditions or tests. It consists of
nodes, edges, and branches. Nodes are arranged in a tree hierarchy and
represent a test on an attribute, based onwhich the data is partitioned; each
branch represents the outcome of the test, and each leaf node represents a
class label or decision. Each node has a number of edges, which are labeled
according to the possible value of the test and connect between nodes. A
root node represents the topmost node and has no incoming edges. Deci-
sion trees take labeled training data, which might contain numerical or
categorical values, as an input, and construct decision models that can be
used to predict the class type of a new instance or data point [55].

� SMLC builds tri-training models with partially labeled clusters, which
contain labeled and unlabeled instances, at each layer. A tri-training
model builds three non-identical classifiers with the labeled instances
in each partially labeled cluster [36]. The three classifiers are then
refined using the unlabeled instances in the partially labeled cluster.
In each iteration of the tri-training, an unlabeled instance is labeled
for a classifier if the other two classifiers agree on the labeling [36].
Unless the three base classifiers are drawn from different distribu-
tions, they will always agree on the class label of the unlabeled
instance. Therefore, the base classifiers are initially trained on boot-
strapped training datasets from the labeled instances. The final hy-
pothesis is produced via majority voting among all individual
decisions of the three base classifiers. Please refer to [36] for more
details on how tri-training works.

� The resultant clusters might contain unlabeled instances only. In that
case, at each layer, SMLC finds the nearest neighbor labeled instances
from the labeled portion of the training dataset (TLabeled) to the cen-
troids of the unlabeled clusters. Then, it combines the unlabeled
clusters with its corresponding labeled data to form a new dataset of
labeled and unlabeled instances. Finally, SMLC builds tri-training
models on the newly formed partially labeled clusters, as described
above. Fig. 3 shows a flowchart for building local learning models at
each layer of the SMLC model.

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
3.3. Testing process of SMLC

The testing process of a test instance begins with finding the nearest
clusters' centroid at each layer of SMLC. The cluster that has the mini-
mum distance between its centroid and the testing instance at each layer
is selected as the appropriate cluster. Then, the correspondent classifier
at that layer is used to predict the class type of the testing instance. The
final label of the testing instance is determined by the corresponding
classifiers with the most votes at different layers.

4. Evaluation and analysis

Thorough evaluation of an IDPS is of crucial interest as many ap-
proaches fail to meet expectations in real-world scenarios [4]. This
requires an appropriate dataset that represents the real-world scenario.
The most widely used datasets are DARPA/Lincoln packet traces [37,
38] and KDD Cup [39] which is derived from them. Tavallaee et al. [40]
statistically showed that the original KDD Cup dataset has some
shortcomings. For example, the KDD Cup dataset is heavily imbalanced
to attack examples. Approximately 80% of examples are attacks; but a
typical network contains approximately 0.01% attacks. Thus, the KDD
Cup representation of a real-world scenario has been criticized. In
addition, the KDD Cup dataset contains many duplicate and redundant
records. Tavallaee et al. [40] introduced the NSL-KDD dataset to
overcome the deficiencies of the KDD Cup dataset. The KDD Cup
dataset is the de facto dataset for ML-based IDPS research areas. Thus
we use the NSL, as it is an improved version of the KDD Cup dataset,
to evaluate the performance of the different models. However, the
Fig. 3. Flowchart for building local lear

281
KDD Cup dataset and the datasets derived from it are now more than
15 years old. To evaluate the performance of the proposed model as
well as other ML models on a more recent dataset, we use the Kyoto
2006 þ dataset [41].

The most common and well-accepted statistical methods to evaluate
the performance of a learning model are cross-validation and boot-
strapping. In this paper, we use 10-fold cross-validation to evaluate the
detection performance of the selected detection models as it gives us a
better understanding of how these models perform on new datasets [42].
The dataset used is divided into 10 random subsets, where 9 subsets are
used for training and the remaining 1 subset is used for testing. This
process is repeated iteratively until all subsets are tested. The classifi-
cation errors of every subset are accumulated, following which the mean
absolute error is computed.

Different measures are used to evaluate the performance of each
model, namely classification model Accuracy (Acc), Detection Rate (DR)
(sensitivity), False Alarm Rate (FAR), and Matthew's correlation coeffi-
cient (Mcc). These measures are derived from the confusion matrix
presented in Table 1. In addition, the Time-to-Build Model (TBM) or
training time and Testing Time (TT) are also measured.

Acc reveals a classifier's ability to correctly classify normal and botnet
traffic DR is the number of intrusion traffic detected by the model divided
by the total number of intrusions in the test set, FAR refers to the per-
centage of normal traffic classified as intrusion, and Mcc is a correlation
coefficient between the observed and detected binary classifications. Mcc
has a value between �1 and þ1, where a coefficient of þ1 represents a
perfect detection, 0 implies the detection is no better than random
detection, and �1 indicates total disagreement between detection and
ning models at each layer of SMLC.

Table 2
Features of the NSL dataset [24].

Name Data Type

Basic features 1 duration Continuous
2 protocol_type Symbolic
3 service Symbolic
4 flag Symbolic
5 src_bytes Continuous
6 dst_bytes Continuous
7 land Symbolic
8 wrong_fragment Continuous
9 urgent Continuous
10 hot Continuous

Content features 11 num_failed_logins Continuous
12 logged_in Symbolic
13 num_compromised Continuous
14 root_shell Continuous
15 su_attempted Continuous
16 num_root Continuous
17 num_file_creations Continuous
18 num_shells Continuous
19 num_access_files Continuous
20 num_outbound_cmds Continuous
21 is_hot_login Symbolic
22 is_guest_login Symbolic

Time based traffic features 23 Count Continuous
24 srv_count Continuous
25 serror_rate Continuous
26 srv_error_rate Continuous
27 rerror_rate Continuous
28 srv_rerror_rate Continuous
29 same_srv_rate Continuous
30 diff_srv_rate Continuous
31 srv_diff_host_rate Continuous

Host based traffic features 32 dst_host_count Continuous
33 dst_host_srv_count Continuous
34 dst_host_same_srv_rate Continuous
35 dst_host_diff_srv_rate Continuous
36 dst_host_same_src_port_rate Continuous
37 dst_host_srv_diff_host_rate Continuous
38 dst_host_serror_rate Continuous
39 dst_host_srv_serror_rate Continuous
40 dst_host_rerror_rate Continuous
41 dst_host_srv_rerror_rate Continuous

Table 1
Confusion matrix.

Actual Predicted Attack Predicted Normal

Attack TP FN
Normal FP TN

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
observation. A high absolute value of Mcc implies a more robust detec-
tion model. The above measures can be defined as follows:

Acc ¼ TPþ TN
TPþ TN þ FPþ FN

(11)

DR ¼ TP
TPþ FN

(12)

FAR ¼ FP
TN þ FP

(13)

Mcc ¼ ðTP� TN � FP� FNÞffiðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞp (14)

where True Positive (TP) is the number of correctly classified intrusions,
True Negative (TN) is the number of correctly classified normal traffic,
False Negative (FN) is the number of intrusions incorrectly classified as
normal traffic, and False Positive (FP) is the number of normal traffic
incorrectly classified as intrusions. Recent studies focus on training and
testing time as indicators of the computational efficiency of the prediction
model [43,44,45]. Training and testing time are very important measures
of IDS. With ever-increasing network traffic and evolving novel attacks, it
is important to frequently update the detection model of the IDS in order
to be able to detect novel attacks. As such, a low training time is crucial
since it represents the time required to update the detection model. It is
desirable that we are able to update the detection model as quickly as
possible. Testing time indicates the time required to classify a new
incoming instance. Testing is online and produces an events-per-second
metric that is a major consideration in the IDS industry [46]. Although
the calculation of the absolute training and testing time is platform
dependent, the performances of different detection models on the same
platform are strong indicators of the relative performances of these
models [46]. We aim for high Acc, DR, and Mcc as well as low TBM, FAR,
and TT. In addition to the aforementioned measures, we perform a paired
statistical significance test to compare the performance of the proposed
model with the performance of the tri-training model used in Ref. [47].

We compare the prediction capabilities of the SMLC model with well-
known supervised ensemble models, namely RandomForest (RF) [48],
Bagging [12], and AdaBoostM1 [13], and the semi-supervised learning
model, tri-training [36], used in Ref. [47]. The results of SMLC were
obtained by modifying the Java code of Weka package [49].

4.1. Parameter tuning of SMLC

The performance of the proposed model is constrained by two pa-
rameters: the number of layers (L) and the number of clusters (K). We
have studied the performance of SMLC model while varying L and K and
selected the values of L and K that maximize the detection accuracy of the
SMLC. Note that, in this study, we use the same value of K in all layers for
simplicity. However, it is possible to use different values of K at different
layers. Although the number of clusters is empirically selected, the
Davies-Bouldin Index (DBI) might be used to select the optimal number
of clusters. DBI is a metric to evaluate clustering algorithms [50]. DBI
considers the separation between different clusters and the scatter within
each cluster. It is defined as the ratio of scatter of cluster i and the sep-
aration between cluster i and other clusters. The lower the value of DBI,
the better is the separation between clusters and dense clusters.

The final decision of the proposed SMLC is derived from the indi-
vidual decisions at different layers, aiming to eliminate the uncorrelated
282
errors among base classifiers, which requires that each individual clas-
sifier commits its error independently from other base classifiers [51,52].
The Kohvai-Wolpert (KW) variance [53] has been used in the literature to
compute the diversity, and it represents the correlation among base
classifiers of an ensemble model [54]. The parameter tuning process
might include the determination of the value of K that minimizes DBI and
then find the value of L that maximizes the KW variance.

4.2. Comparative performance analysis

We compare the performance of the proposed SMLC model with that
of the semi-supervised tri-training model used in Srihari and Anitha's
work [47] by varying the Percentage of Labeled Data (PLD) in the
training dataset from 90% to 10%. For example, a PLD value of 90%
means that 90% of the data is labeled and 10% is unlabeled. In each run
of the cross-validation method, we partition the training data randomly
into TLabeled and TUnlabeled with a PLD value, which is the number of in-
stances in TLabeled as a percentage of the number of all training instances.
The PLD value determines how many labeled instances would be used in
the training data. Then, the labels of all instances in TUnlabeled are removed
to generate unlabeled instances while the labels of all instances in TLabled
are kept. We perform the experiment at PLD values of 10%, 30%, 50%,
70%, and 90% for NSL and Kyoto2006 þ. In addition, we evaluate the
performance of AdaBoostM1, Bagging, and RF when both datasets are
fully labeled (i.e., PLD of 100%). The subsequent subsections present the
performance of different models on NSL and Kyoto2006 þ, respectively.

Table 3
Performance of semi-supervised models on the NSL dataset.

PLD% Model Acc% DR FAR Mcc TBM(s) TT(s)

90 SMLC 99.58927 0.99507 0.00335 0.99177 16.88850 0.96825
Tri-training 99.51722 0.99432 0.00404 0.99033 83.63010 0.02111
Statistical Significance *** *** *** *** *** ***

70 SMLC 99.51588 0.99467 0.00439 0.99030 26.37443 0.43307
Tri-training 99.47884 0.99409 0.00457 0.98956 54.02279 0.02025
Statistical Significance *** *** * *** *** ***

50 SMLC 99.45461 0.99409 0.00503 0.98908 7.91235 0.71481
Tri-training 99.39535 0.99352 0.00565 0.98789 27.94686 0.01970
Statistical Significance *** ** ** *** *** ***

30 SMLC 99.36371 0.99289 0.00567 0.98726 4.49946 0.67536
Tri-training 99.19875 0.99214 0.00815 0.98395 12.94706 0.02040
Statistical Significance *** *** *** *** *** ***

10 SMLC 99.02637 0.98910 0.00866 0.98050 1.86190 0.74932
Tri-training 98.93817 0.98876 0.01004 0.97873 3.63206 0.01858
Statistical Significance *** * *** *** *** ***

*** denotes a high significance level (p-value � 0:05), ** denotes a low significance level (0:05 < p-value � 0:15), and * denotes no significant difference (0:15 < p-value).

Fig. 4. Error reduction of detection accuracy using the SMLC at different
values of PLD of the NSL dataset.

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
4.3. Experiment 1: performance of different models on NSL

The NSL dataset is comprised of 41 features, as in the KDD Cup 99
dataset, and a class label (normal/attack). The features of the NSL dataset
are categorized into [40]: (1) basic features including all the features that
can be extracted from a Transmission Control Protocol (TCP)/Internet
Protocol (IP) connection, (2) traffic features including features that can
be computed with respect to a window interval, and (3) content features
that inspect the payload of TCP connections. Table 2 presents de-
scriptions of the features of NSL. The dataset contains 148,517 instances,
of which 71,463 attacks and 77,054 are normal sessions.

Table 3 summarizes the performance of SMLC against the tri-training
model on the NSL dataset. SMLC was given the following parameters
for the corresponding PLD values: L¼ {15,9,11,11,12} and K¼ {10,4,10,
10,10}. The C4.5 (i.e., J48) decision tree was used as a binary classifier in
SMLC and the tri-training model. As can be seen in Table 3, the detection
accuracy of both models improves as PLD increases. From Table 3, it is
evident that SMLC generally outperforms the tri-training model used in
Ref. [47] on the NSL dataset. However, the tri-training model requires
less testing time to classify a test instance because the classification
process of a test instance in the tri-training process involves the decisions
of the three constituent classifiers of the tri-training model. On the other
hand, SMLC incorporates the decisions of all layers (normally more than
3), which requires finding the nearest cluster to the test instance and the
decision of the corresponding classifier at each layer. Majority voting is
then employed to determine the final prediction of the test instance.
Noticeably, SMLC is able to achieve a detection accuracy comparable to
that of the tri-training model by using a lower PLD. For example, SMLC
can achieve a detection accuracy of 99.5159% with a PLD of 70%,
whereas the tri-training model requires a PLD � 90% to achieve a
comparable detection accuracy. Note that the TBM of SMLC does not
include the time required to perform data clustering. This is because data
clustering can be performed online as there is an online version of the
K-Means algorithm. However, the TT of SMLC includes the time required
to find the nearest cluster at each layer, the time required to find the
decision of each corresponding classifier at each layer, and the time
required to determine the final decision through majority voting. To
show the significance of the proposed approach, we compared the per-
centage of error reduction using SMLC with that using the tri-training
model. For example, when the PLD value is 90%, the error of tri-training
(eTri�training) is 100–99.51723 ¼ 0.48277 and the error of SMLC (eSMLC) is
100–99.58927 ¼ 0.41072, error reduction (errorreduction) is calculated as
follows:

errorreduction ¼ eTri�training � eSMLC

eTri�training
(15)

The error reduction at a PLD value of 90% is 14.92329%. Fig. 4 shows
283
the error reduction at different PLD values. As shown in Fig. 4, SMLC
reduced the detection error by more than 20% compared to the tri-
training model by using a PLD value of 30%. Fig. 4 shows that the pro-
posed approach can significantly reduce the detection error compared to
the tri-training model at different PLD values.

In order to compare the performance of SMLC with that of supervised
ensemble models, the performance of the supervised models should be
evaluated. Thus we evaluate the performance of the supervised ensemble
models on the NSL dataset. Table 4 shows the performance of supervised
ensemble models on the NSL dataset. RF has achieved the best detection
accuracy among all models. However, it has a relatively high TBM and TT
of 59.045s and 0.374s, respectively. The performance of AdaBoostM1 is
poor in comparison to that of other models as it achieved a detection
accuracy of 94.20874%. However, AdaBoostM1 requires a lower TBM
and TT than Bagging and RF. Bagging achieved a moderate performance
between the performance of AdaBoostM1 and RF. Tables 3 and 4 show
that it is possible to achieve a performance comparable to that of the
supervised ensemble models using the SMLC with a partially labeled
data. For example, SMLC achieves a detection accuracy of 99.0264%
with training data having a PLD value of 10%, which is higher than
detection accuracy of AdaBoostM1 with fully labeled training data (i.e.,
PLD of 100%).

4.4. Experiment 2: performance of different models on the Kyoto2006þ

The Kyoto 2006 þ dataset contains real network traffic data collected
from Nov 2006 to Aug 2009. It has 93,076,270 sessions, of which
50,033,015 are normal sessions, 42,617,536 are known attack sessions,
and 425,719 are unknown attack sessions.

Table 4
Performance of different models on the NSL dataset when the training dataset is fully labeled (i.e., PLD of 100%).

Model Acc% DR FAR Mcc TBM(s) TT(s)

AdaBoostM1 94.20874 0.914879 0.03268 0.88483 18.54300 0.01600
Bagging 99.55830 0.99514 0.00401 0.99115 27.45000 0.02800
RF 99.62294 0.99545 0.00305 0.99245 59.04500 0.37400

Table 5
Features of the Kyoto 2006 þ dataset.

Name Description

1. Duration The length (seconds) of the connection
2. Service The connection's service type, e.g., http, telnet
3. Source bytes The number of data bytes sent by the source IP address
4. Destination bytes The number of data bytes sent by the destination IP

address
5. Count The number of connections with the same source IP

address and destination IP address as those of the
current connection in the past 2 s

6. Same srv rate % of connections to the same service in Count feature
7. Serror rate % of connections that have SYN errors in Count feature
8. Srv serror rate % of connections that have SYN errors in Srv count (the

number of connections with the same service type as
that of the current connection in the past 2 s) feature

9. Dst host count Among the past 100 connections with the same
destination IP address as that of the current
connection, the number of connections with the same
source IP address as that of the current connection

10. Dst host srv count Among the past 100 connections with the same
destination IP address as that of the current
connection, the number of connections with the same
service type as that of the current connection

11. Dst host same src
port rate

% of connections with the same source port as that of
the current connection in Dst host count feature

12. Dst host serror rate %of connections that have SYN errors in Dst host count
feature

13. Dst host srv serror
rate

% of connections that SYN errors in Dst host srv count
feature

14. Flag The state of the connection at the time the connection
was written

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
Known attack sessions refer to network sessions that triggered IDS
alarms. On the other hand, unknown attack sessions refer to network
sessions that did not trigger an IDS alarm but contained shellcodes. Each
session has 24 attributes, of which 14 attributes are derived from the
attributes of the KDD Cup 99 dataset and represent the most significant
and essential characteristics of a network session. The attributes of
contents are excluded because they are not suitable for a Network
Intrusion Detection System (NIDS) and domain knowledge is required to
extract them. Ten additional attributes, which can be used for further
analysis and evaluation of NIDS and for determining the type of attacks in
Table 6
Performance of semi-supervised models on the Kyoto 2006 þ dataset.

PLD% Model Acc% DR

90 SMLC 99.39144 0.99721
Tri-training 99.38328 0.99712
Statistical Significance *** ***

70 SMLC 99.38099 0.99722
Tri-training 99.36924 0.99695
Statistical Significance *** ***

50 SMLC 99.37711 0.99725
Tri-training 99.36198 0.99693
Statistical Significance *** ***

30 SMLC 99.35561 0.99704
Tri-training 99.33958 0.99669
Statistical Significance *** ***

10 SMLC 99.29250 0.99691
Tri-training 99.27528 0.99681
Statistical Significance *** *

*** denotes a high significance level (p-value � 0:05), ** denotes a low significance level (0:05

284
the network, were extracted and added to the attributes of the dataset. As
our main objective is to detect attacks regardless of their type (known or
unknown attack), we consider the fourteen essential attributes and give
the known and unknown attacks the same label. Table 5 presents de-
scriptions of the attributes of the Kyoto 2006 þ dataset, excluding the
class label. We randomly selected a sample dataset of approximately one
million instances while maintaining the original class distribution of the
Kyoto 2006 þ dataset. The selected sample contains 540,149 normal
sessions and 464,518 attacks. This experiment was conducted using the
selected sample dataset of the Kyoto2006 þ dataset.

Table 6 compares the performance of SMLC with that of the tri-
training model on the sample dataset selected from the Kyoto2006 þ
dataset. SMLC was given the following parameters for the corresponding
PLD values: L¼ {10,10,14,15,7} and K¼ {9,8,9,7,7}. The C4.5 (i.e., J48)
decision tree was used as a binary classifier in SMLC and the tri-training
model. As can be seen in Table 6, generally, the detection accuracy of
both models improves as PLD increases. From Table 6, the statistical
significance test proves that SMLC outperforms the tri-training model
used in Ref. [47]. More precisely, SMLC maintains the same performance
as, or outperforms, the tri-training model in all performance measures
except the testing time, as the tri-training model requires less time to
classify a test instance as either normal or attack regardless of the per-
centage of labeled instances used (i.e., PLD). As mentioned earlier, this is
because the SMLC predicts the class label of the test instance by majority
voting among all individual decisions of all layers. As has been observed
before, SMLC has the ability to achieve higher detection accuracy using a
lower PLD. For example, SMLC can achieve a detection accuracy of
99.37711% with a PLD of 50%, whereas the tri-training model requires
PLD� 70% to achieve the same detection accuracy. This is because SMLC
improves the detection accuracy of the base classifiers by building local
learning models with the resultant clusters of the K-Means algorithm,
leading to a reduction in the errors due to data labeling, and it can
capably infer decision boundaries of overlapping data patterns (i.e.,
non-atomic clusters). In addition, SMLC improves the overall detection
accuracy by identifying easy- and difficult-to-classify instances and
employing majority voting. In principle, it is possible to maintain a high
detection performance while decreasing the cost of data labeling, pro-
moting the deployment of ML-based IDS in real life.

Table 7 presents the performance of supervised ensemble models on
the sample dataset selected from the Kyoto2006þ dataset. As can be seen
FAR Mcc TBM(s) TT(s)

0.00892 0.98779 97.96862 2.25469
0.00899 0.98763 383.78634 0.07562
*** *** *** ***
0.00912 0.98758 75.47582 2.12510
0.00911 0.98734 243.67701 0.07493
* *** *** ***
0.00922 0.98751 49.68831 3.12047
0.00923 0.98719 150.65489 0.07309
* *** *** ***
0.00944 0.98707 26.03816 2.99768
0.00944 0.98675 71.64776 0.07392
* *** *** ***
0.01049 0.98581 11.83715 1.34672
0.01074 0.98547 10.99234 0.06888
*** *** * ***

< p-value � 0:15), and * denotes no significant difference (0:15 < p-value).

Table 7
Performance of different models on the Kyoto 2006 þ dataset when the training dataset is fully labeled (i.e., PLD of 100%).

Model Acc% DR FAR Mcc TBM(s) TT(s)

AdaBoostM1 95.88769 0.97128 0.05179 0.91786 67.44700 0.09300
Bagging 99.39263 0.99710 0.00880 0.98781 205.46500 0.14200
RF 99.37681 0.99667 0.00872 0.98749 535.65500 2.54100

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
in Table 7, Bagging achieves the highest detection accuracy among all the
models. It achieves a detection accuracy of 99.39263%, outperforming
AdaBoostM1 and RF. Rf and AdaBoostM1 achieve detection accuracies of
99.37681% and 95.88769%, respectively. Tables 6 and 7 indicate that it
is possible to achieve a detection accuracy comparable to that of super-
vised ensemble models using SMLC with 70% labeled training data.

With the rapid growth of data volumes, not only the detection accu-
racy but also the efficiency and scalability are important. Although, in
this paper, the implementation of the proposed model was performed on
a single machine, conceptually, SMLC has the potential to efficiently
handle large volumes of data by distributing its computational cost
among multiple devices as it provides scalable infrastructure for pro-
cessing a large amount of data on a distributed computing system con-
sisting of a large number of processing nodes.

5. Conclusion

In this paper, we proposed the SMLC model and evaluated its per-
formance on well-known benchmark datasets, NSL and Kyoto 2006þ.
SMLC generates multiple randomized layers of K-Means algorithm to
improve the diversity among its base classifiers, resulting in more accu-
rate detection. The results of the experiments show that SMLC out-
performs the semi-supervised tri-training model while using a lower
percentage of labeled data denoted by PLD, and achieves a performance
comparable to that of well-known ensemble models. The high detection
capability and the low cost reflected by the low PLD make SMLC pref-
erable for real-world IDPS tasks. This can be seen as a significant
contribution as it bridges the gap between the studies on ML-based IDPS
and its practical deployment. In addition, SMLC has the potential to
efficiently handle large volumes of data by distributing its computational
cost among multiple devices as it provides scalable infrastructure for
processing a large amount of data on a distributed computing system
consisting of a large number of processing nodes. However, SMLC has a
relatively high testing time. Our future works will be to study the scal-
ability of SMLC, automation of its parameter tuning process and reduc-
tion of its testing time.

Acknowledgements

This publication was made possible with the support of the ICT Fund
(Grant #: G00000103). The statements made herein are solely the re-
sponsibility of the authors.

References

[1] O.Y. Al-Jarrah, P.D. Yoo, S. Muhaidat, G.K. Karagiannidis, K. Taha, Efficient
machine learning for big data: a review, Big Data Res. 2 (3) (2015) 87–93 big Data,
Analytics, and High-Performance Computing, https://doi.org/10.1016/j.bdr.2015.
04.001.

[2] S. Abt, H. Baier, A plea for utilising synthetic data when performing machine
learning based cyber-security experiments, in: Proceedings of the 2014 Workshop
on Artificial Intelligent and Security Workshop, ACM, 2014, pp. 37–45.

[3] O.Y. Al-Jarrah, O. Alhussein, P.D. Yoo, S. Muhaidat, K. Taha, K. Kim, Data
randomization and cluster-based partitioning for botnet intrusion detection, IEEE
Trans. Cybern. 46 (8) (2016) 1796–1806.

[4] R. Sommer, V. Paxson, Outside the closed world: on using machine learning for
network intrusion detection, in: IEEE Symposium on Security and Privacy (SP),
IEEE, 2010, pp. 305–316.

[5] T.S. Barhoom, R.A. Matar, Network intrusion detection using semisupervised
learning based on normal behaviour's standard deviation, Int. J. Adv. Res. Comput.
Commun. Eng. 4 (1) (2015) 375–382.

[6] C. Zhang, Y. Ma, Ensemble Machine Learning, Springer, 2012.
285
[7] T. Mitchell, Machine Learning, McGraw-Hill International Editions, McGraw-Hill,
1997. https://books.google.ae/books?id¼EoYBngEACAAJ.

[8] P. Zhang, C. Zhou, P. Wang, B.J. Gao, X. Zhu, L. Guo, E-tree: an efficient indexing
structure for ensemble models on data streams, IEEE Trans. Knowl. Data Eng. 27 (2)
(2015) 461–474.

[9] D. Opitz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif. Intell.
Res. 11 (1999) 169–198.

[10] Z. Yu, L. Li, J. Liu, G. Han, Hybrid adaptive classifier ensemble, IEEE Trans. Cybern.
45 (2) (2015) 177–190.

[11] B. Tang, M.I. Heywood, M. Shepherd, Input partitioning to mixture of experts, in:
Proceedings of the 2002 International Joint Conference on Neural Networks, 2002.
IJCNN’02, vol. 1, IEEE, 2002, pp. 227–232.

[12] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[13] Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and

an application to boosting, in: Computational Learning Theory, Springer, 1995,
pp. 23–37.

[14] O. Chapelle, B. Schlkopf, A. Zien, Semi-supervised Learning, first ed., The MIT
Press, 2010.

[15] F. Breve, L. Zhao, Semi-supervised learning with concept drift using particle
dynamics applied to network intrusion detection data, in: BRICS Congress on
Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence (BRICS-CCI & CBIC), IEEE, 2013, pp. 335–340.

[16] S.K. Wagh, S.R. Kolhe, Effective intrusion detection system using semi-supervised
learning, in: International Conference on Data Mining and Intelligent Computing
(ICDMIC), IEEE, 2014, pp. 1–5.

[17] C. Chen, Y. Gong, Y. Tian, Semi-supervised learning methods for network intrusion
detection, in: IEEE International Conference on Systems, Man and Cybernetics,
2008. SMC 2008, IEEE, 2008, pp. 2603–2608.

[18] Y. Li, Z. Li, R. Wang, Intrusion detection algorithm based on semi-supervised
learning, in: 2011 International Conference on Information Technology, Computer
Engineering and Management Sciences (ICM), vol. 2, IEEE, 2011, pp. 153–156.

[19] C.-Y. Chiu, Y.-J. Lee, C.-C. Chang, W.-Y. Luo, H.-C. Huang, Semi-supervised learning
for false alarm reduction, in: Advances in Data Mining. Applications and Theoretical
Aspects, Springer, 2010, pp. 595–605.

[20] Y. Meng, et al., Intrusion detection using disagreement-based semi-supervised
learning: detection enhancement and false alarm reduction, in: Cyberspace Safety
and Security, Springer, 2012, pp. 483–497.

[21] X. Zhu, Semi-supervised Learning Literature Survey.
[22] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in:

Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
ACM, 1998, pp. 92–100.

[23] S. Fitriani, S. Mandala, M.A. Murti, Review of semi-supervised method for intrusion
detection system, in: 2016 Asia Pacific Conference on Multimedia and Broadcasting
(APMediaCast), 2016, pp. 36–41, https://doi.org/10.1109/
APMediaCast.2016.7878168.

[24] R.A.R. Ashfaq, X.-Z. Wang, J.Z. Huang, H. Abbas, Y.-L. He, Fuzziness based semi-
supervised learning approach for intrusion detection system, Inf. Sci. 378 (2017)
484–497.

[25] Q.-S. Zhu, Q. Fang, A semi-supervised intrusion detection algorithm based on
natural neighbor, in: Information System and Artificial Intelligence (ISAI), 2016
International Conference on, IEEE, 2016, pp. 423–426.

[26] Z. Xiang, Z. Xiao, D. Wang, H.M. Georges, Incremental semi-supervised kernel
construction with self-organizing incremental neural network and application in
intrusion detection, J. Intell. Fuzzy Syst. 31 (2) (2016) 815–823.

[27] N.H. Duong, H.D. Hai, A semi-supervised model for network traffic anomaly
detection, in: Advanced Communication Technology (ICACT), 2015 17th
International Conference on, IEEE, 2015, pp. 70–75.

[28] A. Mousavi, S.S. Ghidary, Z. Karimi, Semi-supervised intrusion detection via online
laplacian twin support vector machine, in: Signal Processing and Intelligent Systems
Conference (SPIS), 2015, IEEE, 2015, pp. 138–142.

[29] C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen, S.-Y. Huang, Semi-supervised co-training
and active learning based approach for multi-view intrusion detection, in:
Proceedings of the 2009 ACM Symposium on Applied Computing, ACM, 2009,
pp. 2042–2048.

[30] A. Rahman, B. Verma, Novel layered clustering-based approach for generating
ensemble of classifiers, IEEE Trans. Neural Netw. 22 (5) (2011) 781–792.

[31] I. Melnykov, V. Melnykov, On k-means algorithm with the use of mahalanobis
distances, Stat. Probab. Lett. 84 (2014) 88–95.

[32] A.A. Ghorbani, I.-V. Onut, Y-means: an autonomous clustering algorithm, in: Hybrid
Artificial Intelligence Systems, Springer, 2010, pp. 1–13.

[33] P.-N. Tan, M. Steinbach, V. Kumar, et al., Introduction to Data Mining, vol. 1,
Pearson Addison Wesley Boston, 2006.

[34] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.
[35] J.R. Quinlan, C4. 5: Programs for Machine Learning, Elsevier, 2014.
[36] Z.-H. Zhou, M. Li, Tri-training: exploiting unlabeled data using three classifiers,

IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1529–1541.

https://doi.org/10.1016/j.bdr.2015.04.001
https://doi.org/10.1016/j.bdr.2015.04.001
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref2
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref2
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref2
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref2
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref3
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref3
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref3
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref3
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref4
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref4
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref4
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref4
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref5
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref5
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref5
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref5
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref6
https://books.google.ae/books?id=EoYBngEACAAJ
https://books.google.ae/books?id=EoYBngEACAAJ
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref8
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref8
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref8
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref8
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref9
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref9
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref9
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref10
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref10
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref10
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref11
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref11
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref11
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref11
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref12
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref12
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref13
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref13
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref13
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref13
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref14
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref14
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref15
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref16
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref16
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref16
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref16
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref17
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref17
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref17
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref17
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref18
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref18
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref18
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref18
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref19
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref19
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref19
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref19
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref20
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref20
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref20
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref20
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref22
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref22
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref22
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref22
https://doi.org/10.1109/APMediaCast.2016.7878168
https://doi.org/10.1109/APMediaCast.2016.7878168
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref24
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref24
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref24
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref24
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref25
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref25
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref25
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref25
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref26
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref26
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref26
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref26
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref27
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref27
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref27
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref27
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref28
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref28
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref28
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref28
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref29
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref29
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref29
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref29
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref29
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref30
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref30
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref30
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref31
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref31
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref31
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref32
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref32
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref32
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref33
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref33
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref34
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref34
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref35
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref36
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref36
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref36

O.Y. Al-Jarrah et al. Digital Communications and Networks 4 (2018) 277–286
[37] R. Lippmann, R.K. Cunningham, D.J. Fried, I. Graf, K.R. Kendall, S.E. Webster,
M.A. Zissman, Results of the darpa 1998 offline intrusion detection evaluation, in:
Recent Advances in Intrusion Detection, vol. 99, 1999, pp. 829–835.

[38] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, K. Das, The 1999 darpa off-line
intrusion detection evaluation, Comput. Netw. 34 (4) (2000) 579–595.

[39] Kdd cup dataset. URL http://kdd.ics.uci.edu/databases/kddcup99.
[40] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the kdd cup

99 data set, in: Computational Intelligence for Security and Defense Applications,
2009. CISDA 2009. IEEE Symposium on, IEEE, 2009, pp. 1–6.

[41] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, K. Nakao, Statistical analysis of
honeypot data and building of kyoto 2006þ dataset for nids evaluation, in:
Proceedings of the First Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, ACM, 2011, pp. 29–36.

[42] R. Kohavi, et al., A Study of Cross-validation and Bootstrap for Accuracy Estimation
and Model Selection, in: Ijcai, vol. 14, 1995, pp. 1137–1145.

[43] W.-C. Lin, S.-W. Ke, C.-F. Tsai, Cann: an intrusion detection system based on combining
cluster centers and nearest neighbors, Knowledge-Based Syst. 78 (2015) 13–21.

[44] G. Kim, S. Lee, S. Kim, A novel hybrid intrusion detection method integrating
anomaly detection with misuse detection, Expert Syst. Appl. 41 (4) (2014)
1690–1700.

[45] G. Nadiammai, M. Hemalatha, Effective approach toward intrusion detection
system using data mining techniques, Egypt. Inf. J. 15 (1) (2014) 37–50.
286
[46] C.A. Peters, Intrusion and Fraud Detection Using Multiple Machine Learning
Algorithms, Ph.D. thesis, The University of Manitoba, 2013.

[47] V. Srihari, R. Anitha, Ddos detection system using wavelet features and semi-
supervised learning, in: International Symposium on Security in Computing and
Communication, Springer, 2014, pp. 291–303.

[48] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[49] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The

weka data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1) (2009)
10–18.

[50] S. Petrovic, A comparison between the silhouette index and the davies-bouldin
index in labelling ids clusters, in: Proceedings of the 11th Nordic Workshop of
Secure IT Systems, 2006, pp. 53–64.

[51] T. L€ofstr€om, Utilizing Diversity and Performance Measures for Ensemble Creation.
[52] K. Tumer, J. Ghosh, Error correlation and error reduction in ensemble classifiers,

Connect. Sci. 8 (3–4) (1996) 385–404.
[53] R. Kohavi, D.H. Wolpert, et al., in: Bias Plus Variance Decomposition for Zero-one

Loss Functions, vol. 96, ICML, 1996, pp. 275–283.
[54] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy, Mach. Learn. 51 (2) (2003) 181–207.
[55] D.K. Bhattacharyya, J.K. Kalita, Network Anomaly Detection: a Machine Learning

Perspective, CRC Press, 2013.

http://refhub.elsevier.com/S2352-8648(17)30291-2/sref37
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref37
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref37
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref37
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref38
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref38
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref38
http://kdd.ics.uci.edu/databases/kddcup99
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref40
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref40
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref40
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref40
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref41
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref42
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref42
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref42
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref43
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref43
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref43
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref44
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref44
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref44
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref44
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref45
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref45
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref45
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref46
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref46
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref47
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref47
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref47
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref47
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref48
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref48
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref49
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref49
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref49
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref49
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref50
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref50
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref50
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref50
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref52
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref52
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref52
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref52
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref53
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref53
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref53
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref54
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref54
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref54
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref55
http://refhub.elsevier.com/S2352-8648(17)30291-2/sref55

	Semi-supervised multi-layered clustering model for intrusion detection
	1. Introduction
	2. Related work
	3. Proposed semi-supervised multi-layered clustering model
	3.1. Data clustering and weighted euclidean distance
	3.2. Training process of SMLC
	3.3. Testing process of SMLC

	4. Evaluation and analysis
	4.1. Parameter tuning of SMLC
	4.2. Comparative performance analysis
	4.3. Experiment 1: performance of different models on NSL
	4.4. Experiment 2: performance of different models on the Kyoto2006+

	5. Conclusion
	Acknowledgements
	References

