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Abstract:
This paper proposes a flight array system and an integrated approach to cope with its operational
issues raised in mission-planning level (i.e., task allocation) and control level (i.e., control
allocation). The proposed flight array system consists of multiple ducted-fan UAVs that can
assemble with each other to fly together as well as disassemble themselves to fly individually
for accomplishing a given mission. To address the task allocation problem, a game-theoretical
framework is developed. This framework enables agents to converge into an agreed task
allocation in a decentralised and scalable manner, while guaranteeing a certain level of global
optimality. In addition, this paper suggests a cooperative control scheme based on sliding mode
control and weighted pseudo-inverse techniques so that the system’s non-linearity and control
allocation issue are effectively handled. As a proof-of-concept, a prototype simulation program is
developed and validated in a cooperative jamming mission. The numerical simulations manifest
the feasibility of effectiveness the proposed approach.

Keywords: Cooperative systems, Coordination of multiple vehicle systems, Multi-agent
systems, Flying robots, Task allocation, Nonlinear cooperative control

1. INTRODUCTION

Multiple-agent systems consisting of a large number of
small-sized vehicles, thanks to technological advances
making them more intelligent, miniaturised, and afford-
able, have been attracting many interests from various
domains (Sahin (2005)). From the perspective of aerial
robotics, however, one of significant challenges is to make
them fly in the presence of external disturbances, e.g.,
winds or gusts (Habib et al. (2011); Samad et al. (2007)),
which will be likely omnipresent in many practical mission
environments. Owing to the small sizes of these UAVs
(denoted by micro UAVs), they are very sensitive to the
unfavourable wind conditions, which could call into ques-
tion the success of their operations. This issue could be
exacerbated in complex environments such as an urban
environment.

A potential remedy to this issue is the concept of a flight
array, which consists of multiple UAVs that can physically
assemble with each other and fly together. As more agents
are assembled into a flight array, the whole system pos-
sesses higher control power, overcoming the external dis-
turbances. A flight array of micro UAVs, due to their low
cost and expendability, can be an appropriate candidate
for cooperative jamming or communication relay missions,
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where precision control of each UAV would not be as vital
as in other missions.

In operation of such a system, there are decision-making
issues raised in mission-planning level and control level.
In order to cooperatively and efficiently accomplish given
tasks, the system needs to determine which agent has to
be assigned to which task, i.e., task allocation problem, and
this decision-making responsibility should reside within
each vehicle. Furthermore, when the system flies as a
flight array, due to its over-actuation from the actuators
of multiple agents being assembled, the issue of how to
distribute a desired control power amongst the actuators,
i.e., control allocation problem, has to be addressed.

This paper proposes our flight array system and presents
an approach to deal with the aforementioned issues for
the system. For the task allocation problem, a game-
theoretical decision-making framework is utilised that not
only enables agents to converge into an agreed assignment
in a decentralised and scalable manner but also provides a
certain level of guaranteed global optimality. For control of
the flight array system, we suggest a control scheme based
on sliding mode control and weighted pseudo-inverse ma-
trix technique, because of its computational efficiency and
inherent simplicity, to address the system’s nonlinearity
and control allocation issues.

As one of possible applications, a cooperative stand-in
jamming mission is formulated, where a number of micro
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UAVs penetrate into enemy territory and cooperatively
use their jamming resources for their allies not to be
tracked by adversary radars. A prototype simulation pro-
gram is implemented for this mission in order to investigate
the feasibility and effectiveness of our proposed approach.

2. FLIGHT ARRAY SYSTEM DESIGN

The basic concept of a flight array system was initially
presented by Oung and D’Andrea (2011), in which indi-
vidual agents are able to autonomously assemble with each
other on the ground, and then fly together in a coordinated
fashion. Although each agent can produce sufficient thrust
to lift itself into the air, however, on its own it is too unsta-
ble to fly because it has just a single propeller without any
additional controller. The system may not be suitable for
some missions that require its agents to fly individually,
being separated from a flight array.

Our proposed flight array system consists of multiple
ducted-fan UAV that can also individually fly and hover.
The duct of each UAV is equipped with six electromagnets,
by which the UAV can physically assemble with other
UAVs, as shown in Figure 1. The flight array system can
be reconfigured by connecting to or separating from a
single vehicle or another flight array, thereby enhancing
its payload capacity and controllability. Thanks to the
reconfigurability, the flight array system can be utilised
for various missions such as communication relay, radar
jamming, reconnaissance, and wide area surveillance, as
shown in Figure 2 (Jeong et al. (2016)).

A single vehicle is mainly composed of a fuselage, a
propulsion system, a duct, a stator, and control flaps
(Jeong et al. (2015)). The fuselage is separately located
on the top and bottom of the vehicle, being equipped
with necessary avionics and batteries. For the propulsion
system, an electric motor is used for minimising vibration,
which enables the UAV to construct a flight array even
during flight. The stator reduces the anti-torque effect
caused by the rotor of the propulsion system. For the
attitude control of the vehicle, four control flaps are used:
pitching or rolling motion can be generated by using either
of two oppositely-positioned flap pairs; and yawing motion
can be generated by deflecting all the flaps to the same
rotational direction.

3. COOPERATIVE STAND-IN RADAR JAMMING

As one of possible applications that exploit the proposed
flight array system, this paper particularly considers a
cooperative stand-in radar jamming mission. This mission
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Fig. 1. Configuration design of the individual UAV (Left:
side view, Right: cross-section view)

Fig. 2. The concept of our flight array system and its
possible applications

can be categorised as “escort jamming”, in which multiple
agents have ECM (Electro Counter Measure) transmitters
and provide jamming to protect their allies from adversary
radars. One of key differences from existing stand-off
jamming missions is that agents for stand-in jamming
penetrate into enemy territory and neutralise targets while
being located nearby.

For such a stand-in radar jamming mission, micro UAVs
can be an appropriate candidate. This is because the
UAVs can take advantage of proximity effect by being
close enough to the adversary radars, thanks to their
small RCS (Radar Cross Section) as well as fault tolerance
as a multi-agent system. Although each of the UAVs
has limited jamming resources, they can cooperatively
exhibit enough jamming effectiveness by superimposing
their signal strengths.

For now, we give a brief description of our prototype
mission scenario, which was also used in the simulation
experiment in Section 6. In this scenario, a set of micro
UAVs (agents) are deployed to cooperatively jam a set
of adversary radars (tasks). Initially, the agents fly as a
flight array (in the flight-array mode) to a certain position
in order to overcome winds or gusts. When reaching the
position, they begin a decision-making process for task
allocation in a decentralised manner. Then, according to
the allocation result, the agents are disassembled into
subgroups and the subgroups proceed to their assigned
tasks. After the agents succeed in jamming the radars,
the allies, which are armed with Air-to-Ground Missiles
(AGMs) and loitering until that moment, directly fly to
and attack the radars. Note that the agents are assumed
to have small RCSs due to their small sizes, thus not being
tracked by the radars.

The cooperative jamming effectiveness by a set of n agents
toward the j-th radar is a function of the Jamming to
Signal ratio as follows (Kim and Hespanha (2004)):

(J/S)j =

∑n
i=1 Ji,j
Sj

. (1)

Here, Sj is the backscattered signal strength from one ally,
which has the largest RCS than others, to the j-th radar:

Sj = kRj · σ(θa,j)/d
4
a,j (2)

where kRj is the radar-dependent coefficient, which varies
with the radar’s characteristics such as its transmitted
power, wavelength, and antenna gains; da,j is the distance
between the ally and the j-th radar; and σ is the RCS of
the ally, which depends on its attitude with respect to the
j-th radar, denoted by θa,j .



The individual jamming signal strength of the i-th agent
toward the j-th radar is defined by

Ji,j = kAi ·GRi,j/d2
i,j (3)

where kAi is the jamming-agent-dependent coefficient; di,j
is the distance between the i-th agent and the j-th radar
when the agent performs jamming; and GRi,j is the radar
antenna gain, which relies on whether or not the position
of the i-th jamming agent is aligned with the j-th radar’s
main-lobe.

The cooperative jamming for the j-th radar is effective
if (J/S)j exceeds a certain level of burn-through value
(J/S)burnj . Note that (J/S)burnj is determined by the
radar’s characteristics and signal processing method.

4. DECENTRALISED TASK ALLOCATION

4.1 A Game-theoretical Framework

In the cooperative jamming mission described in Section
3, one of the issues is how to form proper subgroups and
assign the subgroups to given tasks, while optimising an
objective value. This is one of the problems called multi-
robot task allocation.

A framework to deal with this problem should be decen-
tralised and scalable, particularly with consideration of the
large cardinality of a multiple agent system. Furthermore,
an agreed solution obtained by the framework is desirable
to provide a certain level of guaranteed global optimality.
However, there is in fact a trade-off between scalability
and optimality because the problem is NP-hard (Gerkey
and Matarić (2004)).

In our previous work (Jang et al. (2016)), a decentralised
game-theoretical framework called GRAPE was proposed.
This framework is based on anonymous hedonic games
(Ballester (2004)). A hedonic game models a conflict sit-
uation between selfish agents who want to form their
preferred coalitions according to their preferences with
regard to other agents. With anonymous preferences, every
agent is concerned with not the identities but instead the
total number of agents in the same coalition. The objective
of this framework is to find a Nash stable partition, from
which every agent does not deviate (i.e., an agreed task
assignment). The framework guarantees the existence of
an Nash stable partition, and provides some advantages
regarding scalability and global optimality under the fol-
lowing condition: the preference of every agent with re-
spect to every task is based on a monotonically-decreasing
function in terms of the number of members in the same
coalition. Note that, in the previous work, this condition
is called SPAO (single-peaked-at-one), and this term will
be used in the rest of this paper.

The advantages given by the framework are described
as the following theorems; please refer to (Jang et al.
(2016)) for their proofs and more details. Before that, let
us briefly explain the key definitions and notations that are
used in the theorems as well as in the rest of this paper:
(1) An instance of GRAPE is a tuple (A, T ,P), where
A = {a1, ..., an} is a set of agents, T = {t0, t1, ..., tm}
is a set of tasks (t0 means “not work any task”), and
P = (P1, ...,Pn) is n-tuple of the preferences of the agents.

Pi indicates the preference of agent ai over every task-
coalition pairs (tj , p) ∈ T × {1, 2, ..., n}, which can be
interpreted as “to execute task tj with p members”; (2)
Π = {S0,S1, ...,Sm} is a (disjoint) partition such that
∪mj=0Sj = A and Sj ∩ Sk = ∅ for j 6= k, where Sj is the
coalition dedicated to execute task tj ; (3) Given a partition
Π, Π(i) is the index of the task assigned to agent ai, for
example, SΠ(i) is the coalition that agent ai belongs to;
(4) An instance of GRAPE can be said to be SPAO if
the preference of every agent with respect to every task is
SPAO.

Theorem 1. (Existence). If (A, T ,P) is an instance of
GRAPE that is SPAO, then a Nash stable partition always
exists.

Agents in an instance of GRAPE that is SPAO can
converge to a Nash stable partition by utilising merge-and-
split algorithm (Apt and Witzel (2009)) in a decentralised
manner. Let round represent an iterative step where an
arbitrary agent evaluates all the available task-coalition
pairs given the current partition, and then determines
which coalition to join. Note that every agent is assumed
to be able to inform its status to all the other agents at
every round.

Theorem 2. (Convergence). If (A, T ,P) is an instance of
GRAPE that is SPAO, then the number of rounds to
determine a Nash stable partition is at most |A|(|A|+1)/2.

Let Ui(tj , p) denote the utility of agent ai executing task
tj with p ∈ {1, 2, ..., |A|} of other team members including
herself. The objective of a task allocation problem is to
find a partition Π that maximises the aggregated utility
(global utility) of all given agents, as follows:

J =
∑
∀ai∈A

Ui(tΠ(i), |SΠ(i)|) (4)

In fact, a Nash stable partition obtained by this framework
is not necessarily the optimal result. Instead, the Nash
stable partition’s optimality (the ratio between the objec-
tive values obtained by the Nash stable partition and by
the optimal partition) can be guaranteed by the following
theorem.

Theorem 3. (Global Optimality). The global optimality
provided by a Nash stable partition Π in an instance
of GRAPE, denoted by MOPT := JGRAPE/JOPT , is
bounded as:

MOPT ≥ JGRAPE/(JGRAPE + λ) (5)

where

λ :=
∑
∀Sj∈Π

max
ai∈A,p≤|A|

{p · [Ui(tj , p)− Ui(tj , |Sj ∪ {ai}|)]}

4.2 Implementation to Cooperative Radar Jamming

Consider that the agents for the cooperative jamming
mission in Section 3 are desired to be distributed in
proportion to the required workloads of given tasks, while
reducing unnecessary costs (e.g., traveling costs). Note
that we assume that the agents are homogeneous and have
the same jamming resources, thus they consider only the
number of other agents during a task allocation process.



In order to accommodate this desire, the objective function
of this problem is (4), and the utility of agent ai is defined
as:

Ui(tj , p) =
R(i, j, p)1−α

C(i, j, p)α
. (6)

R(i, j, p) is agent ai’s reward, which is set to be the same
as the agent’s contribution to task tj when the required
workload is equally shared with p members. The reward
is bounded by the agent’s maximum possible contribution
(i.e., maximum jamming capacity).

R(i, j, p) =


Ji,j if Sj · (J/S)burnj /p > Ji,j

Sj · (J/S)burnj /p otherwise.
(7)

C(i, j, p) is a cost function basically based on the distance
from agent ai to task tj . The cost increases as the number
of members in a coalition, i.e., p, increases, which reflects
that the more member may induce the higher maintenance
costs such as communications between them.

C(i, j, p) = β · di,j · pγ (8)

where α, β, and γ are weight factors.

In a nutshell, the utility function in (6) is monotonically
decreasing in terms of the number of members. When
this problem is modelled as an instance of GRAPE, every
agent’s preference holds SPAO. Hence, one can benefit
from the theorems in Section 4.1 with regard to scalability
(i.e., polynomial-time convergence) and guaranteed global
optimality.

5. CONTROL SYSTEM

The proposed flight array system is differently controlled
depending on which flight mode that the system uses,
i.e., the individual-flight mode and flight-array mode. For
the former, a controller based on a full-state feedback
LQR (linear quadratic regulator) and one based on a PID
(proportional-integral-derivative) are respectively utilised
to control the velocity and position of a single UAV.
For the latter, a SMC (sliding mode control) method is
adopted for the attitude controller of the array system,
dealing with the system’s nonlinearity caused by its com-
plicated configuration. PID control techniques are also
used for the velocity and position control of the array
system. The following subsections particularly describe the
LQR and SMC control methods.

5.1 Control of the Individual Vehicle

The dynamic model of a single vehicle can be derived from
the forces and moments based on a body-fixed coordinate

Table 1. Specifications of a single vehicle

Properties Parameter Value

Mass m 4.8 (kg)
Height h 0.8 (m)

Radius of duct rduct 0.3 (m)
Chord of duct cduct 0.18 (m)

Moment of inertia Jxx 0.9070 (kg ·m2)
Jyy 0.9070 (kg ·m2)
Jzz 0.1395 (kg ·m2)

system (Jeong et al. (2016)). The individual vehicle has
the geometric and inertial properties presented in Table
1. Note that the cross-terms of the moment of inertia are
neglected since they are too small to affect the dynamics.
The dynamic model is linearised at a hovering flight
condition as follows:

ẋ1 = Ax1 +Bu1 (9)

where

x1 = [u, v, w, p, q, r, φ, θ, ψ]
T
,

u1 =[δRPM , δail, δele, δrud]
T ,

A =


−2.08 0 0 0 0 0 0 −9.81 0

0 −2.08 0 0 0 0 9.81 0 0

0 0 0 0 0 0 −0.005 −0.005 0

0 0.93 0 0 −0.009 0 0 0 0

−0.93 0 0 0.009 0 0 0 0 0

0 0 0.096 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

,

B =


0 0 5.69 0

0 −5.69 0 0

−0.0052 0 0 0

0 10.74 0 0

0 0 10.74 0

−0.002 0 0 70.49

0 0 0 0

0 0 0 0

0 0 0 0

 .
The state vector (x1) consists of velocities (u, v, w), angu-
lar rates (p, q, r), and Euler angles (φ, θ, ψ) on each body
axis. The input vector (u1) is composed of the difference
of RPM (δRPM ) and the differences of deflections of each
flap combination (δail, δele, δrud) from the trim values at
the hovering flight condition. Note that δail, δele, and δrud
represent control flap combinations for generating rolling,
pitching, and yawing moments, respectively (see Section
2).

In order to design a LQR controller for the velocity of
the vehicle, the dynamic model in (9) is rewritten with
augmented states, as follows:

ẋaug = Aaugxaug +Baugu1 (10)

where

Aaug =

[
A 09×4

Aadd 04×4

]
, Baug =

[
B

04×4

]
,

Aadd =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 .

Noting that the state vector (x1) is divided into two
groups, i.e., tracking (xt = [u, v, w, ψ]T ) and regulating
states (xr = [p, q, r, φ, θ]T ), we define the augmented state
vector as

xaug =

[
xTt (1 : 3), xTr , xt(4),

∫
xt
T

]T
. (11)

The LQR controller is designed by using the following
quadratic performance index:

J =
1

2

∫ ∞
0

{
xTaugQxaug + uT1 Ru1)

}
dt (12)

where the weighted matrices Q ∈ R13×13
+ and R ∈ R4×4

+
are diagonal, and heuristically chosen such that:

diag{Q} ={(1/0.6)2, (1/0.6)2, (1/0.01)2, 1, 1, 1, 1, 1,
(1/0.1)2, (1/0.8)2, (1/0.8)2, (1/0.008)2, (1/0.4)2},

diag{R} ={(1/10)2, (1/0.1)2, (1/0.1)2, (1/0.1)2}.
(13)



The LQR control law is designed as

u1 = −K1

(
xaug − xaug,r

)
(14)

where

xaug,r =[xTt,r(1 : 3),01×5, xt,r(4),

∫
xTt,r]

T

K1 =[Kt(:, 1 : 3),Kr,Kt(:, 4),Ki].

Note that xt,r is the reference for xt. The control gain

matrix (K1 ∈ R4×13) is calculated by the Matlab function
care. Figure 3 shows the block diagram of the LQR
controller.
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Fig. 3. The velocity controller of the individual vehicle

5.2 Control of the Flight Array

The dynamic model of a flight array includes multiple
single-vehicle dynamics and its geometric effects, which
vary depending on the number of individual vehicles being
assembled and the resulted system configuration. The
coordinate system of the array is defined as Figure 4
(Jeong et al. (2016)), where the origin is the centre of
gravity of the assembled configuration. Noting that the
mass change of each vehicle during a mission can be
negligible, we assume that the vehicle can recognise the
entire configuration and obtain its centre of gravity and
moment of inertia.

For the attitude controller of the flight array system, a
SMC method is utilised for the system’s angular rates
(p, q, r) since these states exhibit fast dynamics with much
complex nonlinear characteristics. The system’s Euler an-
gles (φ, θ, ψ) are controlled by a PID method. The block
diagram of the attitude control system is described in
Figure 5.

x 

y 

z 

i-th UAV 

lxi 

lyi 

O 

Fig. 4. Coordinate system of the flight array

To apply the nonlinear control method, an affine system
of the fast dynamics is derived as follows:

ẋ2 = f(x) + g(x)u2 (15)

where the state vector (x2) is [p, q, r]
T

, and x consists of
velocities (u, v, w), angular rates (p, q, r), and attitudes

PID SMC Dynamics

x

φ, θ, ψ

−
+

[
pr
qr
rr

][
φr
θr
ψr

]

Fig. 5. The attitude controller of the flight array

(φ, θ, ψ) of the flight array. The input vector (u2 ∈
R4N×1) is [δ1, ..., δi, ..., δN ]T , where N is the number of
the vehicles being assembled for the flight array, and δi =
[δRPMi

, δaili , δelei , δrudi ] is the vector of control surface
deflections of the i-th vehicle. Each term of the dynamics
is arranged as follows:

f(x) =

[ {qr (Jo,yy − Jo,zz) + La}/Jo,xx
{pr (Jo,zz − Jo,xx) +Ma}/Jo,yy
{pq (Jo,xx − Jo,yy) +Na}/Jo,zz

]
(16)

where La =
N∑
i=1

(
Mfuse,xi +Mduct,xi +Mgyro,xi + lyiZai

)
,

Ma =
N∑
i=1

(
Mfuse,yi +Mduct,yi +Mgyro,yi − lxiZai

)
,

Na =
N∑
i=1

(−lyiXai + lxiYai ),

Xai = Ffuse,xi + Fduct,xi + Fgrav,xi ,

Yai = Ffuse,yi + Fduct,yi + Fgrav,yi ,

Zai = Ffuse,zi + Fduct,zi + Fgrav,zi ; and

g (x)u2 = [Lb/Jo,xx,Mb/Jo,yy, Nb/Jo,zz]
T (17)

where

Lb =
N∑
i=1

(
Mflap,xi + lyiFrotor,zi

)
,

Mb =
N∑
i=1

(
Mflap,yi − lxiFrotor,zi

)
,

Nb =
N∑
i=1

(
Mflap,zi +Mrotor,zi − lyiFflap,xi + lxiFflap,yi

)
.

From (17), g(x) ∈ R3×4N is derived as follows:

g(x) =

[
g(1, 1) g(1, 2) 0 0 · · ·
g(2, 1) 0 g(2, 3) 0 · · ·
g(3, 1) g(3, 2) g(3, 3) g(3, 4) · · ·

]
(18)

where
g(1, 4(i− 1) + 1) = lyicthr/Jo,xx,

g(1, 4(i− 1) + 2) = sgn(vind − w)qfCLδf Saillail/Jo,xx,

g(2, 4(i− 1) + 1) = −lxicthr/Jo,yy ,
g(2, 4(i− 1) + 3) = sgn(vind − w)qfCLδf Selelele/Jo,yy ,

g(3, 4(i− 1) + 1) = ctor/Jo,zz ,

g(3, 4(i− 1) + 2) = −lxisgn(vind − w)qfCLδf Sail/Jo,zz ,

g(3, 4(i− 1) + 3) = −lyisgn(vind − w)qfCLδf Sele/Jo,zz ,

g(3, 4(i− 1) + 4) = sgn(vind − w)qfCLδf Srudlrud/Jo,zz .

cthr and ctor are constant coefficients of the thrust and
torque, respectively, for a trim condition when the flight
array system hovers. S{·} and l{·} indicate the area and
moment arm of each flap combination. CLδf is the lift coef-
ficient of the flap, and vind is the induced velocity through
the rotor. And, qf represents the dynamic pressure at the
aerodynamic centre of the flap.

For the SMC, a sliding surface is defined with an integral
term as

S = e+K2

∫ t

0

e dt (19)



where e = x2 − x2,r is the error vector, i.e., the difference
between the current state x2 and its reference x2,r; and
K2 indicates a control gain matrix.

In order to deign a control law that satisfies the Lyapunov
stability, a typical Lyapunov candidate function is used,
i.e., V = 1/2 · STS. The time derivative of the candidate
function is

V̇ = ST Ṡ

= ST (f + gu2 − ẋ2,r +K2e).
(20)

From this, a control law of the SMC can be designed as

u2 = −g−1
[
f − ẋ2,r +K2e+ c1S + c2 sgn(S)

]
(21)

where c1 is positive definite diagonal matrix, and c2 is
a positive-semidefinite diagonal matrix. Substituting the
control law into (20) yields

V̇ = ST (−c1S − c2 sgn(S))

= −ST c1S − c2‖S‖ ≤ 0.
(22)

The sign function in (22) is replaced with a saturation
function, by which a chattering problem can be avoided.
Since the g matrix is not square, the weighted pseudo-
inverse g+ is adopted to calculate the control inputs. Thus,
the final control law of the SMC is

u2 = −g+
[
f − ẋ2,r +K2e+ c1S + c2 sat(S)

]
(23)

where
g+ = W−1gT

(
gW−1gT

)−1

and W represents a weighted matrix.

6. NUMERICAL SIMULATION RESULTS

6.1 Used Parameters and Conditions

This section presents simulation results obtained by our
prototype simulation program, which was implemented for
a cooperative stand-in jamming mission, as a proof-of-
concept for the proposed approach. The realistic values
shown in Table 2 (Kim and Hespanha (2004)) were used,
which are originally from (DARPA/IXO Program ”Mixed
Initiative Control for Automa-teams” (2003)). Note that
kA of micro-sized UAV is assumed from consideration of
other UAV types’ values.

Consider that there are a set of jamming micro UAVs, two
allies, and two adversary radars. da,j is selected based on
the distance between one ally’s expected position to attack
the j-th radar and the position of the radar, after the
success of the cooperative jamming. We set that the ally
moves straight toward and attacks the radar 20 km ahead.
As the ally has been heading to the radar, θa,j is assumed
to be fixed, and thus its RCS is also fixed. Particularly,

Table 2. Parameters of Jamming UAVs and
Adversary Radars (Kim and Hespanha (2004))

UAV size kA Radar type kR

micro 0.005 short-range 2 · 107
small 0.25 med.-range 2 · 108
large 1 long-range 2 · 109

(J/S)burn GR main-lobe GR side-lobe

1 1 0.001
1 1 0.001
1 1 0.001

each ally is considered as F-16, the RCS of which is known
as 5 m2. We assume that kAi is the same for all the UAVs
due to their homogeneity. Note that weight factors α, β
and γ are set as 0.25, 1, and 0.5, respectively.

6.2 Results: Task Allocation

A Monte Carlo simulation was conducted with 100 runs
to validate the scalability and the guaranteed global opti-
mality of our proposed framework with regard to the task
allocation problem. Consider that 400 of micro UAVs and
two long-range adversary radars are given, and the UAVs
are supposed to neutralise their assigned radars at least
in the side lobe of and within a range of 100 m from the
radars. At each run, the positions of radars and agents are
randomly located, and the agents initially gather before
starting the task allocation process. Scalability was eval-
uated by the number of required rounds for the agents to
converge into an agreed solution.

The upper figure in Figure 6 presents that the number
of the required rounds is averagely 510 and at most 564,
which confirms Theorem 2. Furthermore, it has been em-
pirically observed through additional experiments that,
in general, the number of required rounds is less than
two times of the number of given agents. On the other
hand, the lower figure shows the guaranteed global opti-
mality calculated by Theorem 3. Averagely, the solutions
provided by our framework guarantee 75% of the global
optimality.
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Fig. 6. Scalability (upper) and guaranteed global optimal-
ity (lower) at each scenario
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Fig. 7. An example of the visualised task allocation results
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Fig. 8. Position tracking error of the single UAV

Figure 7 portrays the visualised task allocation result at
one instance of the Monte Carlo simulation conducted. The
asterisks and the circles indicate the positions of agents
and tasks, respectively. The coloured agents are assigned
to the same coloured task. This shows that agents are
partitioned into two subgroups based on their current
positions with respect to the positions of given tasks,
because the distances between an agent and tasks were
considered as a cost in the utility function of the agent

6.3 Results: Control

This subsection shows numerical simulations to investigate
the performance of the control systems derived in Section 5
under wind disturbance. The wind disturbance, generated
by the Dryden wind turbulence model, was set to be blown
randomly along the x-, y-, and z-axes, and its maximum
strength was approximately at most 2 m/s for each axis.

Figure 8 and 9 present position tracking results of the
single UAV and those of the flight array system consisting
of 10 UAVs, respectively. Note that the configuration of
the flight array is hexagonal as shown in Figure 10(a).
The black bold line represents a position reference. The
blue dashed line shows the tracking results with the wind
disturbance, and the red dash-dot line indicates the results
without the disturbance.

The simulation results show that the both designed control
systems, the controller for a single vehicle and one for
the array, exhibit proper performance under windless
condition. However, under the wind disturbance, the single
UAV has higher root-mean-square(RMS) errors (about
0.40 m) in comparison with the flight array (about 0.20 m)
on x- and y- axes, because the UAV has not enough control
power to overcome the disturbance.

6.4 Demonstration of Our Prototype Integrated Simulation

Our prototype simulation program for a cooperative jam-
ming mission provides the feasibility of the proposed flight
array system and coordination approach. Due to the lack of
the computational resources for visualisation, the number
of agents was set to be only 10. Since it is not practically
possible for such a small number of micro UAVs to neu-
tralise a radar, we suppose that each agent has a higher
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Fig. 9. Position tracking error of the flight array

jamming coefficient, i.e., kAi = 0.05, and the adversary
radars are short-range-type. Note that one radar was set
to require more jamming resource than the other one,
i.e., (kR1 = 3.33 · 107, kR2 = 2 · 107), and the agents are
assumed to jam the radars 500 m ahead of the radars. In
this experiment, a steady wind (1.5 m/s), which is strong
enough to make a single UAV drift despite its control
power, was set to be blown along the x-axis from (−) to
(+).

Figure 10(a) to 10(d) present four key scenes during
the mission in chronological order. Two adversary radars
are represented by the red (task 1) and blue (task 2)
cylinders, and the size of each cylinder indicates the
required jamming resources for the associated radar to
be jammed. Initially, the agents are deployed and fly as
a flight array, and then proceed to the enemy territory
up to a certain position (Figure 10(a) and 10(b)). The
position is where the flight array will be disassembled,
and was set to be (850, 1700) m because each agent, when
flying individually, was expected to drift by the wind. At
that position, they assign themselves to proper adversary
radars (Figure 10(c)), and individually continue to move
forward to the assigned radars (Figure 10(d)). Note that
there must be the time required for the task allocation
process, but it is not counted in the time frame of this
visualisation result.

The task allocation result is sensible because more agents
are assigned to the higher demanded task, while reducing
the costs (i.e., the distances to the radars). The global
optimality of the result obtained is guaranteed by 78.9%
from Theorem 3, and in fact exhibits 99.6% compared with
the optimal result from a brute-force search. In addition,
the number of rounds required for the agents to converge
the result is just 10.

Figure 11 presents the position tracking results of the flight
array system from the time associated with Figure 10.(a)
to one with 10.(b). It is shown that the array properly
reached to the disassembling position despite the wind
disturbance. Figure 12 shows the position tracking error
of one of the UAVs (i.e., the first one, which is marked in
Figure 10.(c)) after being disassembled. Although the UAV
attempted to fly to and stay around its assigned target, it
is presented that its tracking error with regard to x-axis
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Fig. 10. Visualisation result obtained by our prototype
simulation program under wind disturbances
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Fig. 11. Position tracking error of the flight array in the
integrated simulation

steadily increased due to the strong wind. Thus, the UAVs
should be landed on proper locations to accomplish the
jamming mission.

7. CONCLUSIONS AND FUTURE WORKS

This paper presented a new flight array concept of micro
UAVs and our approaches to coordinate them in terms of
mission planning level as well as control level. As a possible
application, we suggested a cooperative stand-in jamming
mission and implemented our proposed approach into a
prototype simulation program as a proof-of-concept.

In the future, we plan to extend our work to include het-
erogeneity of agents. Although agents are manufactured
homogeneously, they may have different resources after
they finish flying as a flight array. For the task allocation,
it is necessary to additionally consider individual agents’
remaining resources, unless the resource for flying and
one for jamming are mutually independent. Furthermore,
the control allocation problem will be further studied
with consideration of workload balance amongst individual
agents of a flight array system.
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Fig. 12. Position tracking error of the first UAV after being
disassembled in the integrated simulation
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