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Abstract: This paper proposes a composite Bayesian filtering approach for unmanned aerial
vehicle trajectory estimation in cluttered environments. More specifically, a complete model
for the measurement likelihood function of all measurements, including target-generated
observation and false alarms, is derived based on the random finite set theory. To accommodate
several different manoeuvre modes and system state constraints, a recursive multiple model
Bayesian filtering algorithm and its corresponding Sequential Monte Carlo implementation
are established. Compared with classical approaches, the proposed method addresses the
problem of measurement uncertainty without any data associations. Numerical simulations
for estimating an unmanned aerial vehicle trajectory generated by generalized proportional
navigation guidance law clearly demonstrate the effectiveness of the proposed formulation.
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1. INTRODUCTION

The large scale of Unmanned Aerial Vehicle (UAV) appli-
cations has proliferated vastly within the last few years.
The operational experience of UAVs has proven that their
technology can bring a profound impact to the civilian and
military arenas. This includes obtaining real-time, relevant
situational awareness information before making contact;
helping operators to lead appropriate decision making; and
reducing risk to the mission and operation. The poten-
tial applications are wide, e.g surveillance, border patrol,
search and rescue, convoy protection Grocholsky et al.
(2006).

Despite of these advantages, UAV operations might pose
serious risks: insertion of them to the non-segregated
airspace could pose the risk of collision with other objects
and hostile UAVs could raise a serious security concern.
One of key technologies in reducing such a risk is the target
tracking technology. The issue is that these UAVs could
be operated in complex environments such as an urban
environment.

Target tracking, in complex and or clustered environ-
ments is challenging since the sensor received measure-
ments may include target-generated observation, clutters
as well as spurious targets (decoys). Traditional way to
address such measurement uncertainty is the well-known
data association, such as nearest neighbour filter (NNF)
Singer et al. (1974), probability data association (PDA)
Bar-Shalom and Tse (1975), joint PDA Fortmann et al.
(1983), multiple hypothesis tracking (MHT) Reid (1979).
Unlike data association technique, the recently proposed
random finite set (RFS) theory Mahler (2007); Vo et al.

(2005); Ristic et al. (2016) results in elegant and rigorous
mathematical formulation to solve this issue and provides
a different view on filtering without data association. RFS-
based algorithms, where system states and measurements
are represented by RFSs, are joint decision and estimation
approaches.

In the absence of measurement-origin uncertainty, UAV
trajectory estimation faces another two interrelated issues:
UAV manoeuvre mode uncertainty and system nonlin-
earity. The mainstream approach for target tracking un-
der motion uncertainty is multiple model filtering Mazor
et al. (1998); Li and Jilkov (2005). At each filtering cycle,
multiple model approach runs a bank of nonlinear filters
corresponding to each mode with the same measurement
and fuses the output of these filters to find an overall
estimate.

By combining the interacting multiple model approach and
RFS theory, this paper proposes a new recursive Bayesian
filtering algorithm for UAV trajectory estimation. Since
the key of nonlinear filtering is to obtain the measurement
likelihood function for the set-valued case, a simple but
complete model is derived using RFS theory, where the
target-generated observation and false alarms are repre-
sented by two different RFSs. Using the proposed mea-
surement likelihood function obtained, a rigorous recursive
multiple model Bayesian filtering is presented. Instead of
generic Bayesian framework, system state constraints are
also considered due to the existence of physical limits.
Since analytic closed-form solution for such Bayesian fil-
ter is intractable due to nonlinearity, a Sequential Monte
Carlo (SMC) implementation is presented to approximate
the posterior density function. Simulation results show
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that the estimation accuracy can be significantly improved
compared with a classical PDA filter for highly cluttered
environments

The remainder of this paper is organized as follows.
Some backgrounds and preliminaries are presented in Sec.
2. In Sec. 3, the proposed constrained multiple model
Bayesian filtering algorithm is derived in detail, followed
by Sequential Monte Carlo implementation introduced in
Sec. 4. Finally, a case study and some conclusions are
offered.

2. BACKGROUNDS AND PRELIMINARIES

2.1 Bayesian Filtering

Suppose that the state vector xk ∈ Rn provides the
complete information of the system state of a target at
time tk, and let zk ∈ Rm be the measured information.
Typically, only partial system state can be observed, that
is, m < n. Then, the general target dynamics can be
formulated as

xk = fk−1 (xk−1) + vk−1

zk = hk (xk) + wk
(1)

where fk−1 is a nonlinear transition function governing
the temporal evolution of first-order Markov target state,
vk−1 the independent identically distributed (IID) process
noise. Function hk is used to define the relationship be-
tween system state and sensor measurement and wk is the
IID measurement noise. The term IID means that each
variable that belongs to a collection of random variables
has the same probability distribution as the others and all
variables are mutually independent.

In the formulation of Bayesian filtering, two different
probability density functions need to be specified, e.g.
the transitional density function π (xk |xk−1 ) and the
measurement likelihood function g (zk |xk ). Under these
conditions, Bayesian filter propagates the posterior density
p (xk |z1:k ) according to

p (xk |z1:k−1 ) =

∫
π (xk |x ) p (x |z1:k−1 ) dx

p (xk |z1:k ) =
g (zk |xk ) p (xk |z1:k−1 )∫
g (zk |x ) p (x |z1:k−1 ) dx

(2)

where z1:k = [z1, z2, . . . , zk] stands for the measurement
sequence.

2.2 Random Finite Set Probability Density

Recursion procedure (2) is formulated based on the as-
sumption that at most one measurement can be generated
at each time step. Typically, sensor detection is imperfect,
leading to the fact that the target may not be observed
at some time. Moreover, complex cases, such as elec-
tronic counter measures, multi-path effect, may generate
unknown spurious measurements or decoys. In addition
to decoys, clutters are also needed to be considered in
severe conditions. Since each sensor measurement at any
given time step has no physical importance, the unordered
measurements at time tk can be modelled by a RFS on Z,
e.g. Zk ∈ Ξ (Z) with Ξ (Z) being the set of finite subsets of
Z. Obviously, the key to implement Bayesian recursion (2)

is to extend the measurement likelihood function g (zk |xk )
to set-valued multiple measurement case. To make this pa-
per self-contained, some preliminaries of RFS probability
density are reviewed in this subsection.

A RFS is defined as that a random set that takes values
as unordered finite sets, which means that both the num-
ber of elements and the individual state values of each
element in Z are both random. To fully characterize the
probability density of a RFS variable, it is necessary to
define the discrete cardinality (the number of elements)
distribution and a group of joint distributions conditioned
on the cardinality. The cardinality distribution ρ (nz) =
Pr {|Zk| = nz} specifies the cardinality of the RFS, while
the joint probability distributions pnz (zk,1, zk,2, . . . , zk,nz )
model the distribution of the elements. Naturally, the
value of pnz (zk,1, zk,2, . . . , zk,nz ) remains unchanged for
all n! possible element permutations due to the unordered
property of a RFS. With these two definitions, the rigorous
mathematical representation of the probability density
function of a RFS can be derived as Ristic et al. (2016)

f ({zk,1, zk,2, . . . , zk,nz}) = ρ (nz)
×pnz (zk,1, zk,2, . . . , zk,nz )nz!

(3)

3. CONSTRAINED MULTIPLE MODEL FILTERING
IN A CLUTTERED ENVIRONMENT

This section details the proposed estimation algorithm
in two parts: set-valued measurement likelihood function
derivation, constrained multiple model Bayesian recursion.

3.1 Multiple Measurements Likelihood Function

To distinguish the target-generated observation and false
alarms, the measurement set Zk is represented as

Zk = Θk ∪ Ωk (4)

where Θk denotes the target-generated measurement, and
Ωk stands for the false measurements, including decoys
and clutters.

Since sensor measurement is usually imperfect, we model
Θk as a Bernoulli RFS Ristic et al. (2016), which can
either be empty or has target-generated measurement.
Let pD,k(xk) be the probability of target detection, then,
the probability of miss detection is 1 − pD,k(xk), and in
contrast, supposed that there exists a target-generated
observation in the measurement set, the probability of
obtaining such a measurement is pD,k (xk) gk (zk |xk ). In
conclusion, the probability density function of Θk can be
obtained as

f1 (Θk) =

{
1− pD,k (xk) , Θk = ∅

pD,k (xk) · gk
(
ztk |xk

)
, Θk =

{
ztk
} (5)

where ztk denotes the target-generated observation.

Suppose that each element of Ωk is independent of one
another and is identically distributed according to prob-
ability density function ck (zk |xk ), then the false alarm
measurement Ωk in complex environments can be mod-
elled as a Poisson RFS and the cardinality distribution
ρ (|Ωk|) is Poisson with parameter λ, that is

ρ (|Ωk|) =
e−λ

|Ωk|!
λ|Ωk| (6)



Then, the probability density function of Ωk can be derived
from (3) as

f2 (Ωk) = e−λ
∏

zk∈Ωk

λck (zk |xk ) (7)

For each time step k, consider the following events. D1:
target-generated observation detection and D2: target-
generated observation miss detection. Then, according to
the law of total probability, the measurement likelihood
function g (Zk |xk ) for the set-valued multiple measure-
ment case can be obtained as

g (Zk |xk ) =

2∑
i=1

g (Zk |xk, Di )P (Di |xk )

=
[
1− pD,k (xk)

]
f2 (Zk) +

∑
zk,j∈Zk

pD,k (xk)

×g (zk,j |xk ) f2 (Zk\ {zk,j})
=
[
1− pD,k (xk)

]
e−λ

∏
zk∈Zk

λck (zk |xk )

+pD,k (xk) e−λ
∑

zk,j∈Zk

g (zk,j |xk )

×
∏

zk∈Zk\{zk,j}

λck (zk |xk )

(8)

3.2 Constrained Multiple Model Filtering

For realistic scenarios, UAVs may have different manoeu-
vre modes and system states may also subject to some
constraints. For instance, suppose that the UAV applies
proportional navigation (PN) guidance law for trajectory
tracking Yamasaki et al. (2007), the navigation gain usu-
ally has its lower and upper bounds due to physical limita-
tions. To handle such cases, target model (1) is extended
to

xk = fk−1 (xk−1,mk, Ck) + vk−1

zk = hk (xk) + wk
(9)

where mk denotes the manoeuvring mode at time k and
Ck stands for the state constraints.

Invoking the fact that the nonlinearity and non-Gaussian
distribution of UAV tracking system, a general recur-
sive Bayesian filtering algorithm is required to propagate
the posterior probability density function. More specifi-
cally, to improve the estimation performance, the con-
cept of general multiple model filtering for hybrid sys-
tems Blom and Bloem (2007) is used in this paper.
Each cycle of updating the posterior probability density
from p (xk−1,mk−1 |Zk−1, Ck−1 ) at time step k − 1 to
p (xk,mk |Zk, Ck ) at time step k consists of four main
steps: mode switching, interaction, prediction and correc-
tion.

The model switching process characterizes the way that
the conditional model probability evolves from time step
k − 1 to k. Based on the law of total probability and
the assumption that the mode transition probability is
independent of measurement Blom and Bloem (2007), we
have

p (mk |Zk−1, Ck−1 ) =

∫
p (xk−1,mk |Zk−1, Ck−1 ) dxk−1

=

∫ ∑
mk−1∈M

p (xk−1,mk,mk−1 |Zk−1, Ck−1 ) dxk−1

=
∑

mk−1∈M

∫
p (mk |mk−1, xk−1 )

×p (xk−1,mk−1 |Zk−1, Ck−1 ) dxk−1

(10)

where M represents the set of possible UAV manoeuvre
modes.

The effect of model switching on the evolution of con-
ditional state density is characterized by the interaction
process. Again, it follows from the law of total probability
such that

p (xk−1 |mk, Zk−1, Ck−1 ) =
p (xk−1,mk |Zk−1, Ck−1 )

p (mk |Zk−1, Ck−1 )

=

∑
mk−1∈M

p (mk |mk−1, xk−1 ) p (xk−1,mk−1 |Zk−1, Ck−1 )

p (mk |Zk−1, Ck−1 )

(11)

The prediction step propagates the mode conditioned state
density from time step k − 1 to k. Given the interacted
mode conditioned density in (11), one can obtain that

p (xk |mk, Zk−1, Ck ) =

∫
p (xk−1 |mk, Zk−1, Ck−1 )

× p (xk |xk−1,mk, Zk−1, Ck ) dxk−1

(12)

where the constrained state transition probability density
function p (xk |xk−1,mk, Zk−1, Ck ) is obtained from the
concept of constrained likelihood Simon (2010) as

p (xk |xk−1,mk, Zk−1, Ck ) ={
πmk

(xk |xk−1 ) , xk ∈ Ck
0, otherwise

(13)

where πmk
(xk |xk−1 ) denotes the transitional density

function of mode mk.

Finally, the correction step is used to update the posterior
joint probability density by Bayesian rule as

p (xk,mk |Zk, Ck ) = αg (Zk |xk ) p (xk,mk |Zk−1, Ck )
= αg (Zk |xk ) p (xk |mk, Zk−1, Ck ) p (mk |Zk−1, Ck )

(14)

where α is a normalizing scale factor. The multiple model
Bayesian filtering cycle is now completed. Next, in order to
extract state estimations, one needs to calculate the mode
probability and the mode conditioned state probability as

p (mk |Zk, Ck ) =

∫
p (xk,mk |Zk, Ck ) dxk

p (xk |mk, Zk, Ck ) =
p (xk,mk |Zk, Ck )

p (mk |Zk, Ck )

(15)

The mode with largest likelihood is regarded as the current
UAV manoeuvre mode and the system states can be
estimated via the well-known expected a posterior (EAP)
or maximum a posterior (MAP) approaches from the mode
conditioned state probability density p (xk |mk, Zk, Ck ).

4. SEQUENTIAL MONTE CARLO
IMPLEMENTATION

Due to the nonlinearity and non-Gaussian distribution of
UAV tracking system, closed-form solution of the pro-
posed constrained multiple model Bayesian filtering is



intractable. To this end, a SMC implementation of (10)-
(15) is presented in this section.

Suppose at time step k − 1 the posterior joint probability
density of each mode ϑ ∈ M is represented by a set of N

weighted particles
{
wϑ,ik−1, x

ϑ,i
k−1

}
as

p (xk−1,mk−1 = ϑ |Zk−1, Ck−1 ) =
N∑
i=1

wϑ,ik−1δ
(
xk−1 − xϑ,ik−1

)
(16)

where δ (·) denotes the Dirac delta function.

Then, the predicted mode probability p (mk = γ |Zk−1, Ck−1 )
can then be approximated by

p (mk = γ |Zk−1, Ck−1 ) =∑
ϑ∈M

N∑
i=1

p
(
mk = γ

∣∣∣mk−1 = ϑ, xϑ,ik−1

)
wϑ,ik−1

(17)

Next, substituting (17) into (11) gives

p (xk−1 |mk = γ, Zk−1, Ck−1 )

=
∑
ϑ∈M

N∑
i=1

p
(
mk = γ

∣∣∣mk−1 = ϑ, xϑ,ik−1

)
×
wϑ,ik−1δ

(
xk−1 − xϑ,ik−1

)
p (mk = γ |Zk−1, Ck−1 )

(18)

Suppose the number of UAV manoeuvre modes is M ,
then it follows from (17) and (18) that the number of
particles increases to M × N from N to approximate
each model conditioned state probability density, which
means that the total number of particles increases in an
exponential manner as time goes. To address this problem,
a resampling is performed on (18) to generate N new

weighted particles
{
w̄γ,ik−1, x̄

γ,i
k−1

}
as

x̄γ,ik−1 =

{
xγ,ik−1, p (mk = γ |Zk−1, Ck−1 ) = 0
∼ p (xk−1 |mk = γ, Zk−1, Ck−1 ) , otherwise

(19)

After resampling, the predicted particle states xγ,ik−1 are

obtained by passing x̄γ,ik−1 through the constrained transi-
tion probability density given in (13). Then, the prediction
of mode conditioned state density can be approximated as

p (xk |mk = γ, Zk−1, Ck ) =

N∑
i=1

w̄γ,ik−1δ
(
xk−1 − xγ,ik−1

)
(20)

Finally, given the measurement likelihood function g (Zk |xk )
for the set-valued multiple measurement case shown in
(refeq:8), the particle filter approximates the posterior
joint probability density function as

p (xk,mk = γ |Zk, Ck ) =

N∑
i=1

wγ,ik−1δ
(
xk−1 − xγ,ik−1

)
(21)

where wγ,ik−1 ∝ g (Zk |xk ) p (mk = γ |Zk−1, Ck−1 ) and is

normalized to satisfy
∑
γ∈M

N∑
i=1

wγ,ik−1 = 1.

UAV

Target

u

u

Fig. 1. Relative motion geometry

Based on the posterior joint probability density function,
the mode probability can be obtained by the summation
of the mode-related weights as

p (mk = γ |Zk, Ck ) =

N∑
i=1

wγ,ik−1 (22)

And the model conditioned state probability is calculated
as

p (xk |mk = γ, Zk, Ck ) =

N∑
i=1

wγ,ik−1δ
(
xk−1 − xγ,ik−1

)
p (mk = γ |Zk, Ck )

(23)

Then, the target state estimation at time step k can be
extracted from p (xk |mk = γ, Zk, Ck ) using either EAP or
the MAP estimation approaches.

5. CASE STUDY

This section presents a case study for UAV trajectory
prediction with unknown number of decoys in a cluttered
environment using the proposed method.

5.1 System Model

This work assumes a fixed-wing UAV equipped with a
high-performance low-level flight control system that pro-
vides roll, pitch and yaw stability of the UAV as well as
velocity (or acceleration) tracking, heading and altitude
hold functions. Under this assumption, the UAV kinemat-
ics in a two-dimensional plane can be represented by the
following differential equations

ẋu = Vu cosψu
ẏu = Vu sinψu
ψ̇u = ωu

(24)

where (xu, yu) denotes the inertial position of the UAV,
Vu the airspeed of the UAV, ψu the heading angle of the
UAV, and ωu UAV turning rate (also the control input)
that guides the UAV to a pre-designated target.

Using the above command structure, the system model
representing the guidance layer is a relative kinematic
model between the UAV and the target position as shown
in Fig.1, where θ denotes the line-of-sight (LOS) angle rel-
ative to the inertial frame; r denotes the relative distance
between the UAV and the target position.

According to Fig.1, the differential equations, describing
the relative kinematics, is formulated as

ṙ = Vu cos (ψu − θ)
rθ̇ = Vu sin (ψu − θ)

(25)



PN guidance law is a well-known guidance method and has
been traditionally used in missile guidance during the last
few decades due to its easy implementation and effective-
ness against non-manoeuvrable or weakly manoeuvrable
targets. The idea behind this benchmark guidance ap-
proach lies in that it issues a latax command proportional
to the LOS rate to guide an interceptor to approach a
collision triangle. Moreover, PN guidance law with navi-
gation ratio three was proved to be an optimal law in the
sense of minimization of both terminal miss distance as
well as control effort. Recently, Lee et al. (2013) proposed a
generalized weighted optimal PN guidance law that greatly
extends the usage of PN law to different applications. In
this study, we also assume that the UAV is performing PN
guidance law, that is

ωu = Nθ̇ (26)

where N is the navigation ratio, which can be time-varying
or time-invariant.

Since one cannot know the exact type of the navigation
ratio that the UAV is using, we regard it as a constant to

construct the state transition model. Let x = [r, θ,N ]
T

, a
complete system model can be obtained as

ẋ = f (x) + v =

[
Vu cos (ψu − θ)
Vu sin (ψu − θ) /r

0

]
+ v (27)

where v denotes the process noise.

5.2 Observation Model

In the considered scenario, it is assumed that the radar
measures the bearing angle and the relative range. Suppose
that the observer position is (xo, yo), then, the target-
generated measurement model can be derived as

z = h (x) + w =

 tan−1

(
xu − xo
yu − yo

)
√

(xu − xo)2
+ (yu − yo)2

+ w (28)

where w denotes the measurement noise.

5.3 Simulation Setup

To compensate for the loss of manoeuvrability of UAVs,
an exponential type weighting function Lee et al. (2013)
is used to generate the following time-varying navigation
ratio as

N =
3
(
µ3eµ + bµ3

)
3eµ (µ2 − 2µ+ 2)− 6 + bµ3

(29)

where µ = a (tf − t) with tf being the total flight time
to reach to the target, which can be approximated by
tf ≈ t+ r/Vu, a, b are two design constants. In this study,
a = 0.1, b = −1, which are suggested by Lee et al. (2013),
are used for the simulation purpose. Generally, since the
UAV is a mechanical system, subject to Newtons second
law, its control input is always bounded. With this in mind,
we impose a hard constraint on the navigation ratio as
0 < N < 18. To accommodate the time-varying navigation
ratio, a set of three models with constant navigation gains
are used, that is, N1 = 4, N2 = 8 and N3 = 12.

To evaluate the performance of the proposed algorithm,
two different decoys are considered in the study. The extra-
neous decoy measurements are modelled as Poisson RFSs
and each measurement of these two decoys is assumed to
be IID according to

ck,d1 (z |x ) = N

(
z;

[
tan

−1

(
xu − xo

yu − yo

)
1.5

√
(xu − xo)2 + (yu − yo)2

]
, Rk

)
(30)

ck,d2 (z |x ) = N

z;
 2 tan−1

(
xu − xo

yu − yo

)
√

(xu − xo)
2 + (yu − yo)

2

 , Rk
 (31)

The birth time of decoy 1 is 0s while the birth time of
decoy 2 is 8s.

As for the clutter measurement, it is assumed that the
clutters are modelled as a RFS and each clutter measure-
ment is uniformly IID over the observation region with the
average λ = 20 clutter returns at one scan.

The probability of detection is assumed to be constant as
PD,k = 0.98. The process noise covariance Qk is modelled
by Qk = diag

([
σ2
r , σ

2
θ , σ

2
N

])
, where σr = 30m, σθ =

2π/180rad, σN = 0.5. The measurement noise covariance
Rk is modelled as Rk = diag

([
σ2
θ̄
, σ2
r̄

])
, where σθ̄ =

2π/180rad, σr̄ = 10m. The initial system state distribu-
tion for initialization is x0 ∼ N (x; x̄0, P0), where the mean

is x̄0 = [4901m,−0.0383rad, 10]
T

, and the covariance

matrix is P0 = diag
([

1002m2, (2π/180)
2
rad2, 4

])
.The

maximum number of particles for one mode is upper lim-
ited by 1000. The UAV velocity is constant as Vu = 80m/s.

5.4 Results and Discussions

Figure 2 presents the UAV trajectory prediction perfor-
mance in the presence of two decoys in x − y plane.
It follows from this figure that the proposed algorithm
accurately identifies the target and tracks its ground truth
trajectories. Figure 3 shows the response curves of the
ground truth navigation gain and its estimated value.
By using multiple constant navigation gain models, the
estimated signal rapidly and precisely converges to the
truth time-varying navigation gain. The position estimates
in inertial frame are provided in Fig. 4, where the grey
stars are measurements. From this figure, it is clear that
the proposed algorithm is suitable for target identification
and tracking even in a highly cluttered environment. The
reason for this is quite obvious, since all measurements,
including target-generated observation, clutters as well as
decoy measurements, are all modelled in the measure-
ment likelihood function and a mathematically rigorous
Bayesian filtering is synthesized based on this probability
model.

To further demonstrate the effectiveness, the performance
of the proposed method is compared with that of tradi-
tional interactive multiple model PDA (IMM-PDA) fil-
ter. For the fair comparison, the IMM-PDA filter is also
performed through SMC implementation. Table 1 sum-
marizes the root-mean-squared (RMS) range estimation
errors during different time durations of 50 runs Monte
Carlo simulations for different average clutter returns at
one scan. From the table, it is clear that the performance



Fig. 2. Trajectory estimation performance

Fig. 3. Time-varying navigation gain estimation perfor-
mance

Fig. 4. UAV position estimation performance

of the proposed algorithm for different clutter rates is
almost comparable while IMM-PDA filter is quite sensi-
tive to clutter rates in terms of estimation performance.
Its because all measurement information is used in the
proposed formulation while IMM-PDA filter only used
validated measurements by gating and therefore is prone
to lost target in a highly cluttered environment.

Table 1. RMS range errors

Time window Filter
Average clutter returns at one scan
λ = 10 λ = 20 λ = 30

0 < t < 8s
Proposed 51.78m 53.01m 60.54m
IMM-PDA 67.17m 87.65m 128.77m

8s < t < 17.1s
Proposed 15.11m 15.98m 17.34m
IMM-PDA 23.81m 29.33m 45.74m

6. CONCLUSIONS

This paper proposes a constrained multiple model Bayesian
filtering algorithm for UAV trajectory prediction. The
proposed algorithm is derived using the random finite

set theory and interactive multiple model filter approach,
where the random finite set theory is adopted to obtain
a rigorous measurement likelihood function. Compared
with traditional approaches, the current work can accu-
rately identify the target UAV and estimate its trajectory
without any data associations, which makes the proposed
algorithm less sensitive to the clutter rate. A case study
of estimating the position of a manoeuvring UAV with
time-varying proportional navigation guidance confirms
the validity of the proposed algorithm.
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