Open Comput. Sci. 2015; 5:22-40

DE GRUYTER OPEN

Research Article

Open Access

Hongmei He*, Ana Salagean, Erkki Mdkinen, and Imrich Vrt’o
Various heuristic algorithms to minimise the two-page crossing

numbers of graphs

DOI 10.1515/comp-2015-0004

Received March 16, 2012; accepted July 16, 2015

Abstract: We propose several new heuristics for the two-
page book crossing problem, which are based on recent
algorithms for the corresponding one-page problem. Es-
pecially, the neural network model for edge allocation is
combined for the first time with various one-page algo-
rithms. We investigate the performance of the new heuris-
tics by testing them on various benchmark test suites. It
is found out that the new heuristics outperform the pre-
viously known heuristics and produce good approxima-
tions of the planar crossing number for several well-known
graph families. We conjecture that the optimal two-page
drawing of a graph represents the planar drawing of the
graph.

Keywords: heuristic algorithm; two-page book crossing
number; one-page book crossing number; Hamiltonian cy-
cle; planar drawing

1 Introduction

The simplest graph drawing method is that of putting the
vertices of a graph on a line and drawing the edges as half-
circles in x half planes (called pages). Such drawings are
called x-page book drawings, and they are used in the lin-
ear VLSI design. The minimal number of edge crossings
over all k-page book drawings of a graph is called the k-
page book crossing number [1].

*Corresponding Author: Hongmei He: Cranfield University, Man-
ufacturing Informatics Centre, Cranfield, MK43 OAL, UK, E-mail:
h.he@cranfield.ac.uk

Ana Salagean: Loughborough University, Department of
Computer Science, Loughborough, LE11 3TU, UK, E-mail:
a.m.salagean@lboro.ac.uk

Erkki Mékinen: Third institution, School of Information Sci-
ences, University of Tampere, Tampere, FIN-33014, Finland, E-mail:
em@sis.uta.fi

Imrich Vrt’o: Slovak Academy of Sciences, Department of Informat-
ics, Institute of Mathematics, Bratislava, Slovak Republic, E-mail:
imrich.vrto@savba.sk

The one-page [1] book crossing number corresponds
to outerplanar [2] (also called convex [3], or circular [4])
crossing number, which is the minimal number of edge
crossings in a drawing where one places the vertices of a
graph G along a circle, and the edges are drawn as straight
lines. Therefore, the one-page book crossing problem is
equivalent to finding the order of the vertices on the circle
which minimises the number of edge crossings. We denote
the one-page book crossing number as v1 (G), following the
notation in [1]. The problem to determine v (G) for a given
graph G is NP-hard [5].

The two-page book crossing problem can be formu-
lated analogously: one places the vertices of a graph G
along a circle and each edge is drawn in one of two
colours. The two-page book crossing number v,(G) of G is
the smallest number of crossings of edges with the same
colour. Naturally, this problem is also NP-hard [6]. Sim-
ilarly, a k-page drawing of a graph is equivalent to a k-
colour circular drawing of the graph.

For a graph G with n vertices labeled 0,1,...,n-1
and m edges, we denote by g_adj the usual adjacency ma-
trix. A vector order will be defined such that order[u] de-
notes the position of vertex u on the circle in the current
drawing (positions being denoted 0, 1, ..., n — 1). The al-
location of edges between the two pages is stored in a ma-
trix d_adj. Matrix entry (i, j) indicates the page (colour) of
the edge between vertices at positions i and j, with O mean-
ing that no edge exists between these vertices. If (i, j) and
(k, 1) are edges on the same page, and i < k < j < I, then
they produce a crossing. So we can calculate the number
of crossings in a x-page drawing of G with the following
formula:

[u

n-4 n-2 j-1 n-

4
vk(G) = Z Z
0

i= k=i+1

d_adj(i,j) (-) d_adj(k, D, (1)

=j+1

j=i+

N

-,

where

1, ifd_adj(i, k)
= d_adj(j,1) 7 0;
0, otherwise.

d_adj(i,j) (-) d_adj(k, 1) =

)
The crossing minimisation problem is of outmost impor-
tance in the field of graph drawings. The aesthetical prop-
erties and readability of graphs (such as diagrams or

() TETETM| © 2015 H. He et al., licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
The article is published with open access at www.degruyter.com.

DE GRUYTER OPEN

maps) are heavily dependent on the number of crossings
in a drawing. Crossing minimisation is also one of the most
important goals in VLSI circuit design [7, 8] and Quantum-
dot Cellular Automata (QCA) [9, 10], where a smaller cross-
ing number means lower implementation cost. From the
theoretical point of view, the one-page and two-page cross-
ing number of a graph provide an upper bound of the gen-
eral crossing number of the graph. Naturally, the two-page
book crossing number of a graph provides a closer upper
bound for the general crossing number of the graph than
the corresponding one-page crossing number.

Several heuristic algorithms are designed for the one-
page book crossing problem, e.g., the algorithm of Maki-
nen [11], the CIRCULAR algorithm [4], the algorithm of
Baur and Brandes [12], and AVSDF [13]. The two-page book
crossing number as an approximation to the conjectured
planar crossing number was first studied in [14, 15], but no
thorough testing was done there. An important paper in
this area is that by Cimikowski [16], where first an order of
vertices for some structural graphs is given by a Hamilto-
nian cycle, and then eight different heuristic algorithms to
find a good allocation of edges between the two pages were
designed and tested. Winterbach [17] proposed heuristics
for the two-page crossing numbers and applied them to es-
timate the planar crossing number of some small complete
multipartite graphs. de Klerk and and Pasechnik [18] have
recently obtained new lower bounds of two-page crossing
number for km,n and K,. We have studied the two-page
book crossing number problem using simulated annealing
[19], genetic algorithm [20], and neural network [21]. How-
ever, these methods require long running time. Hence, we
also investigated the parallelisation of genetic algorithms
for the two-page crossing number problem [22, 23].

In this paper, we further study heuristic algorithms
that combine the latest one-page drawing algorithms (BB
and AVSDF) [12, 13] and four edge allocation algorithms,
such as SLOPE, LEN, CRS and the neural network (NN)
model [21], for the two-page crossing number problem,
and compare the performance of edge allocation algo-
rithms. Especially the NN as an edge allocation algorithm
is combined for the first time with heuristic one-page al-
gorithms. The experiments are carried out on the bench-
mark test suites Rome Graphs [24] and Random Connected
Graphs (RCGs) [13]. In order to further examine the perfor-
mance of edge allocation algorithms, we apply the edge al-
location algorithms based on a fixed vertex order, which is
either the optimal or a Hamiltonian order for the one-page
drawing of some typical structural graphs.

This paper is organised as follows. In Sections 2 and
3 we introduce two known heuristic one-page algorithms
and four new two-page algorithms. In Section 4, we exam-

Various heuristic algorithms to minimise the two-page crossing numbers of graphs =——— 23

Figure 1: Incident edges of v cross with open edges.

ine two-page algorithms in different ways, compare the re-
sults for some circulant graphs with Cimikowski’s results
[16], and provide exact results for some structural graphs.
In Section 5, we conclude our findings.

2 One-page drawing algorithms

2.1 The algorithm of Baur and Brandes (BB+)

The best algorithm of Baur and Brandes [12] consists of two
phases: greedy and sifting.

2.1.1 Greedy

The vertices are placed one by one on the circle as fol-
lows: at each step a vertex v with the largest number of
already placed neighbours is selected, where ties are bro-
ken in favour of vertices with fewer unplaced neighbours.
This node is placed to the end that yields fewer crossings
between the open edges and the edges that become closed
by placing v, where an open edge refers to an edge which
has one endpoint unplaced. Crossings with closed edges
not incident to the currently inserted vertex do not need to
be considered because they are the same for both sides. In
Figure 1, there are eight such crossings for the left end and
only five for the right end. The running time of this phase
of the algorithm is O((n + m) log n).

2.1.2 Sifting

Each vertex is moved along the circle and the number of
crossings is computed, while the other vertices stay in their
current order. The vertex is then placed in its (locally) op-
timal position. The running time for one round is O(nm).
We use BB to denote the greedy phase, and BB+ to denote
the combination of the two phases.

2.2 Algorithm AVSDF+

Algorithm AVSDF+ [13] consists of two phases too: greedy
and adjusting.

24 =—— H.Heetal

2.2.1 Greedy

AVSDF is a variation of CIRCULAR algorithm [4], but it is
implemented in a depth-first manner. First, one places the
vertex with the smallest degree, and then visits the adja-
cencies of the current vertex, which have not been visited
yet, such that the smallest degree vertex has the highest
priority for visiting. The vertices are placed on the circle in
the order they are visited. AVSDF runs in time O(m).

2.2.2 Adjusting

In each round of the adjusting phase, the vertices are
sorted in non-increasing order of the number of crossings
created by their incident edges. The vertices are then con-
sidered, in this order, and for each vertex the best posi-
tion among the current one and the ones immediately af-
ter each of its adjacent vertices is found and the vertex is
moved to that position. The round is repeated until no im-
provements are obtained.

For each vertex v, only deg(v) positions are consid-
ered during a round of the adjusting phase, while sifting
considers all n positions. So, for the n vertices, the adjust-
ing algorithm tries different positions) ., deg(v) = 2m
times compared to n? times by sifting. Since the vertices
causing larger number of crossings have higher priority to
be adjusted, the crossing number is reduced quickly. In the
experiments it was observed that the number of iterations
is much lower than the vertex number n. Analogically to
BB, we denote the basic phase as AVSDF, and the one aug-
mented with adjusting phase as AVSDF+.

3 Two-page drawing algorithms

The goal of one-page algorithms is to order the vertices of a
given graph to minimise the one-page book crossing num-
ber. Two-page algorithms have the additional task to divide
the edges into two pages. Our new two-page algorithms
start with an order produced by a one-page algorithm, and
divide the edges into two pages with small crossings as
possible.

3.1 Slope algorithm (SLOPE)

In a circular drawing, each edge has a slope to the horizon-
tal line. SLOPE divides the edges into the pages according
to their slopes. If an edge is horizontal or has a negative

DE GRUYTER OPEN

Figure 2: SLOPE divides the edges based on their slopes.

slope (the angle between the edge and the horizontal axis
is larger than 90°), the edge is put on page 2 (solid edges
in Figure 2). Otherwise, the edge is put on page 1 (dashed
edges in Figure 2). Note that SLOPE is not invariant to ro-
tations of the drawing.

The vertex positions are numbered clockwise around
the circle, with 0 being at the top. If an edge has the ver-
tices in positions i and j, it is not hard to see that it is hor-
izontal, if (i + j) mod n = 0, and vertical, if (i + j)) mod n =
n/2.An edge has a negative slopeif O < (i+j) mod n < n/2,
and a positive slope, if (i + j) mod n > n/2. Hence, SLOPE
puts an edge in page 2, if (i + j) mod n < n/2, and in page
1, if (i +j) mod n = n/2. SLOPE computes the matrix d_adj
in time O(n?).

3.2 Descending length order (LEN)

The length of an edge between positions i and j in a cir-
cular drawing is defined as min{|i - j|,n - |i — j|}. Intu-
itively, the longer the edge, the larger the probability to
cross with other edges. Edges of length one create no cross-
ings. Therefore, we sort the edges of length two or more
in non-increasing order by length, where ties are broken
lexicographically. Initially all edges are placed in page 1,
and then each edge is either left in page one or moved to
page two depending on the number of edge crossings pro-
duced. The process is iterated until either no improvement
happens or five iterations are carried out (the number of it-
erations was found experimentally). LEN is similar to the
algorithm E-len by Cimikowski [16]. The difference is that
LEN starts with all edges in page one and moves some of
the edges to page two, while E-len adds edges one by one
to one of the two pages. The running time for one round is
0(m) excluding the calculation of crossings.

3.3 Descending crossing order (CRS)

The algorithm of edge allocation according to descending
number of crossings is based on an initial fixed order of

DE GRUYTER OPEN

edges in page one. CRS sorts the edges in non-increasing
order of the number of crossings they produce, then it finds
the first edge e in the list which would create fewer cross-
ings on the other page, and moves it. CRS recalculates the
number of crossings for all other edges, and re-sorts the
list of edges. Note that the new number of crossings of any
edge except e will differ by at most 1 from the old one. So,
re-sorting the list can be done in linear time. Hence, the
time complexity of a round is O(m) excluding the compu-
tation of the number of crossings. CRS repeats this process
(starting again at the top of the list) until no improvements
are possible or the iteration number arrives m. Our prelim-
inary experiments show that the number of iterations is
much smaller than m.

CRS maintains two lists of m elements, eplist and
crlist. Each element eplist(i) stores the positions of the
two endpoints of an edge, eplist(i).u and eplist(i).v,
and the page allocation eplist(i).page of the edge. In
the list crlist each element consists of two components,
crlist(i).post and crlist(i).cr, which are the index number
of an edge in the eplist and the crossing number created
by the edge, respectively. CRS is presented as Algorithm 1.

Create an edge list with page attribute, eplist;
Create a sorted crossing list with edge index, crlist;
Calculate current crossings, currCr;
i=0; lastCr=currCr;
while (i < m or lastCr > currCr) do
lastCr = currCr;
s = crlist(i).post; u = eplist(s).u;
v = eplist(s).v;
if (crlist(i).cr=0) then
i=i+l;
else
eplist(s).page = eplist(s).page mod 2+1;
cr = calEdgeCr(eplist, i);
if (cr = crlist(i).cr) then
eplist(s).page = eplist(s).page mod 2+1;
i=i+;
else
currCr = currCr - crlist(i).cr + cr;
crlist(i).cr = cr;
modilist(eplist,crlist,i);
i=0;
end if
end if
end while

return currCr;
Algorithm 1: CRS

Various heuristic algorithms to minimise the two-page crossing numbers of graphs = 25

3.4 The neural network algorithm (NN)

A Hopfield network is a fully connected recurrent single
layer and unsupervised network. Cimikowski and Shope
[25] used a Hopfield neural network to model a two-page
drawing of a graph with n vertices and m edges. In the
model, each edge is associated with an “up” and a “down”
neuron, representing an embedding of the edge in the up-
per or lower half-plane. Hence, the neurons Vup;; and
Vdown;; represent the upper and lower connections be-
tween vertices i and j, respectively. Therefore, the number
of neurons is 2m.

In the improved neural network [21], we used a model
of binary neurons [26], each of which associated to an
edge. The fired neurons indicate that the edges are in the
upper side of the spine, and the unfired neurons indicate
that the edges are in the down side of the spine. Hence, the
model uses only m neurons.

A function A(x, y, z, w) to express the relationship of
two edges in one page is defined as:

AX,y,z,w) = L Fl N W)V (z<x<w<y),
0, otherwise.
€)
The energy function is defined as
-1 m-1
E=A Alx, y, z, w)(Vivj + Viv)). (4)
i=0 j=0,j7
The motion function is written as
m-1
Au; = -A Z Alx,y,z,w)(2v; - 1). 5)
j=0,j#

We suppose that an order of vertices 7 = 0, 1, ..., n—1, has
been obtained by a heuristic one-page algorithm. More-
over, we suppose that an ordered edge list ey, e, ..., €m-1
is created. At the startup, the network is randomly given
an initial input u; € (-1, 1). Correspondingly, the neuron
states of the network are randomly initialized with O or 1.

According to the value of the motion Equation (5) in
each iteration, the state of each neuron is updated, and
consequently, the edge corresponding to the updated neu-
ron is moved between upper and lower half planes, i.e.,
between page one and two. When the neural network ar-
rives a stable state, the two-page book crossing number is
calculated. The learning procedure is repeated with differ-
ent initial states of the neurons for several times, and the
best embedding is output. This algorithm is much faster
than the Cimikowski and Shope algorithm. According to
the motion function of the new model, the calculation in

26 =—— H.Heetal.

each neuron takes time O(m) in the worst case. Therefore,
a sequential traversal of all m neurons takes time O(m?).
Full details of the heuristic are given in [21].

3.5 Hybrid of one-page algorithm and edge
pre-allocation (AVSDF_EP)

In addition to the methods based on a fixed linear ver-
tex order or on a one-page drawing of the graph, we can
synthetically consider vertex order and edge division di-
rectly for a two-page drawing. A hybrid heuristic algorithm
AVSDF_EP is based on AVSDF. At edge division phase,
it places an edge incident to the currently placed vertex
based on the smallest crossings produced by the edge and
already placed edges (see Algorithm 2). The time complex-
ity is O(m) excluding the computation of the number of
crossings.

4 Experiments

Our main idea is to combine the order of vertices fixed by a
one-page algorithm and edge division between pages. We
also examine the effect of fixed order of vertices. After that
we test different combinations of two-page algorithms. In
Section 4.2 we investigate how edge density affect the per-
formance of our heuristics. Finally, in Section 4.3 we test
our heuristics on some typical graph families.

The experiments were done for a variety of graphs,
which included two subsets in the benchmark test suites
Rome Graphs (GDToolKit) [24]:

— RND BUP: A set of biconnected, undirected and pla-
nar graphs generated randomly, of which, 200 graphs
were tested.

— ALF CU: A set of connected and undirected graphs, of
which, 380 graphs were tested.

The experiments were also carried out for some sets of
graphs in the graph library we created, including Ran-
dom Connected Graphs (RCGs), regular degree 3 random
connected graphs (3-d RCGs), and some typical graphs,
such as Circulant graphs (Cn(1, ay, ..., ay), Cin(1, n)),
Halin graphs, mesh graphs (P, x Py), Cartesian produc-
tion graphs (Cm x Cn), complete p-partite graphs (K»(p)),
and complete graphs (Kp).

In the experiments of two page algorithms based on
the optimal vertex order (e.g., a Hamiltonian cycle) or on
the vertex order obtained with a one-page algorithm, the
edges of the tested graphs were initially set in one page for

DE GRUYTER OPEN

SLOPE, LEN and CRS, while they are randomly assigned in
two pages for NN.

The experiments were run on a laptop with dual-core
CPU 3.0GHZ and 2GB memory.

4.1 Tests of two page algorithms
4.1.1 Tests based on one-page algorithms

We compared pairs of algorithm combinations formed by
two heuristics for one-page drawings (AVSDF+ and BB+)
and four two-page algorithms (SLOPE, LEN, CRS and NN),
and AVSDF_EP as well. The experiments were run on
RND_BUP, ALF_CU, RCGs, 3-d RCGs, Cm x Cn, P x P,
Halin, Cn(1, a1, ..., ay), and Cy,(1, n) graphs.

Table 1 lists the numbers of times when each algo-
rithm combination got the best results in all test data,
with the highest values shown in bold face. The number
in parentheses in the first column represents the num-
ber of graphs of that type used in the experiments. No
matter which one-page algorithm is used to find the op-
timal order of vertices for all types of tested graphs, NN
dominates the performance in all two-page algorithms,
and BB+_NN performs better than AVSDF+_NN for all
graphs except on circulant graphs Cn(1, a;...a;), and
Cartesian products, for which, BB+_NN ties AVSDF+_NN.
We use X < Y to express that algorithm Y obtains the
best results more times than algorithm X. From Table 1,
for most types of graphs there exists the relationship:
SLOPE < LEN < CRS < NN when they are combined
with AVSDF+ or BB+, while AVSDF_EP is slightly better
than AVSDF+_SLOPE and BB+_SLOPE, but worse than
AVSDF+_ LEN and BB+_LEN. The last row of Table 1 shows
the sum of numbers of times when an algorithm obtained
the best results for all types of tested graphs. Therefore,
we have the integrated performance of all algorithms on
all types of tested graphs: BB+_SLOPE< AVSDF+_SLOPE<
AVSDF_EP< AVSDF+_LEN< BB+_LEN< AVSDF+_CRS<
BB+_CRS~< AVSDF+_NN~< BB+_NN.

4.1.2 Tests based on a fixed order of vertices

The experiments of Cimikowski [16] were done based on a
fixed Hamiltonian cycle for some typical structural graphs.
However, not every Hamiltonian cycle corresponds to an
optimal vertex order for a two-page drawing, and an op-
timal two-page drawing might not correspond to a Hamil-
tonian cycle. Moreover, for an arbitrary graph, a Hamilto-

DE GRUYTER OPEN Various heuristic algorithms to minimise the two-page crossing numbers of graphs ==

1: Create an adjacency list, each vertex with a linked list sorted in descending degree order
2: Define a list L, and a stack S;

3: Get the vertex with the smallest degree from the given graph, and push it into S;

4: while (S is not empty) do

5: Pop avertex v from S;

6: if (visnotin L) then
7: Append the vertex v into L;
8: for (each vertex u adjacent to v, in decreasing order of deg(u)) do
9: if (uis notin L) then
10: push u into S;
11: else
12: place the edge (u, v) to the page where fewer new crossings are created by adding the edge;
13: end if
14: end for
15: end if

16: end while
Algorithm 2: AVSDF_EP

Table 1: The numbers of times when best results were obtained on each type of graphs with the hybrid algorithm and all two-page algo-
rithms based on one-page algorithms avsdf+ and bb+.

27

Graphs AVSDF+ AVSDF+ AVSDF+ AVSDF+ AVSDF BB+ BB+ BB+ BB+
(number) _SLOPE _LEN _CRS _NN _EP _SLOPE _LEN _CRS _NN
ALF_CU(380) 47 113 124 189 87 47 132 147 247
RND_BUP(200) 45 82 88 91 57 46 90 91 93
RCGs(360) 36 62 80 142 46 17 85 102 179
3-d RCGs(46) 2 6 8 22 1 1 7 8 30
Crm % Cn(49) 1 8 13 28 2 10 9 28
P x Pn(49) 0 19 19 19 1 2 15 22 40
Halin(400) 12 139 229 284 26 7 91 173 300
Co(l,ar...a)(34) 0 7 7 19 3 0 5 13 16
Cin(1, n)(68) 17 20 18 32 4 7 31 26 40
Total: 160 456 586 826 225 129 466 591 973

28 —— H.Heetal

nian cycle might not exist, or even if it exists, we might not
be able to find it efficiently.

We tested some structural graphs, such as
Cn(ay, .., ay), Cxn(1, 1), Cm x Cn, Pm x Py, Kn(p), and K,
with the method used in [16] - first find an optimal order
of vertices for a one-page drawing, and then apply an al-
gorithm for the edge division. Circular graphs are regular
Hamiltonian graphs. Therefore, the vertices of circulant
graphs were placed along the node line in Hamiltonian or-
der for the testing. The vertices of Cartesian graphs Cpm x Cp
were placed in Hamiltonian cycles or paths. For 3-row and
4-row mesh graphs, vertices were placed in the optimal
orders as described in [27], but for other meshes, the nat-
ural orders in rows were Kept as they were produced. For
complete p-partite graphs, the vertices were placed in the
optimal order [28] (see Section 4.3.3).

Table 2 shows the numbers of times when each two-
page algorithm achieves the best results on each type of
graphs in all tests. It can be seen that NN achieves the
best results for all types of structural graphs. It is also
shown that certain algorithms have different performance
for different structural graphs. For example, SLOPE is the
best for complete graphs, but for circulants Cn(ay, ..., ay),
Cartesian graphs Ci x C,, and mesh graphs Py, x Py, SLOPE
performs worst. LEN has the worst performance for com-
plete graphs K, and complete p-partite graphs K, (p). This
might be because the edges of a complete graph or a com-
plete p-partite graph have the same lengths, and thus the
lengths of edges do not make sense for edge division.

4.1.3 Tests based on different two-page preprocessings

We investigated the effect of using AVSDF_EP and
AVSDF+_SLOPE as a two-page preprocessing steps, fol-
lowed by LEN, CRS or NN. Figure 3 (a) and (b) show the
two-page book crossing numbers of 60 different graphs
with vertex numbers 80, 90, 100 in RND_BUP of Roman
Graphs by using the algorithm combinations above.

As shown in Figure 3 (a) and (b), CRS achieved
greater improvement to the results of the preprocessing
algorithms AVSDF_EP and AVSDF+_SLOPE than LEN and
NN. It can be seen that NN did not improve any re-
sults of AVSDF_EP, and occasionally improved results of
AVSDF+_SLOPE. This might be because in the experiments
the initial states of neurons correspond to the initial edge
division obtained by the two preprocessing algorithms,
respectively, and the initial two-page drawings obtained
could be local optimums for NN. Thus, NN cannot im-
prove the drawings any further. Note that for the experi-
ments of the combinations of NN and one-page algorithms,

DE GRUYTER OPEN

the initial states of neurons were set randomly, which left
a large search space for NN. Figure 3 (c) shows the re-
sults of the two best combinations AVSDF_EP_CRS and
AVSDF+_SLOPE_CRS. Obviously, the later is better than
the former.

We also observed the effect of different first stage al-
gorithms on a two-page algorithm. The experiments were
done on the same graph set as in the experiments above.
From Figure 4 (a),(b) and (c), we can conclude that BB+
is the best preprocessing algorithm for LEN, CRS and NN
in the experiment on RND_BUP of Roman Graphs. Figure
4 (d) shows that BB+_NN achieved the best results most
times in the three best combinations BB+_LEN, BB+_CRS
and BB+_NN.

4.2 Test on RCGs with different edge
densities

We compared the eight combinations of one-page algo-
rithms (AVSDF+, BB+) and two-page algorithms (SLOPE,
LEN, CRS, NN) on RCGs with edge densities 1%, 2%, and
5%, where the density is defined as the ratio of the num-
ber of edges to the maximum possible number of edges.
The maximal possible number of edges of a graph with n
vertices is n(n-1)/2, thus the density can be written in the
form of

_ _2|E]|
“nn-1)°

(6)

Trees are the sparsest connected graphs with n - 1 edges,
given a specific vertex number n. Therefore, a connected
graph with edge density 1% has at least 200 vertices, with
edge density 2% has at least 100 vertices, and with edge
density 5% has at least 40 vertices. To create a RCG, we first
created a random tree, and then add rest edges between
any-pair of vertices picked randomly.

Twelve groups of graphs with vertex numbers from
200, 100, 40 were created for densities 1%, 2% and 5%,
respectively. For the twelve groups of graphs, vertex num-
bers are changed with step 5, and every group includes 10
different graphs, for which the average crossing number is
calculated.

Tables 3, 4 and 5 show that BB+_NN achieved the dom-
inating results for all densities of graphs, the second best
combination was AVSDF+_NN for the RCGs. In the three ta-
bles, the best results are shown in bold face. AVSDF+_NN
achieved the best results for the density 1% of graphs with
lower vertex numbers, while BB+_NN achieved the best re-
sults for the density 1% of graphs with larger vertex num-

DE GRUYTER OPEN

Various heuristic algorithms to minimise the two-page crossing numbers of graphs = 29

Table 2: The numbers of times when best results were obtained for each two-page algorithm based on a fixed order for some structural

graphs.

Graphs SLOPE LEN CRS NN
Cnlay, ..., ay)(34) 0 14 14 30
[16]

Cn(1, n)(68) 34 45 21 68
Kn(p)(28) 23 11 16 27
Kn(26) 26 17 22 26
Cm % Cn(49) 9 19 34 49
Pm x Py (49) 1 14 17 48

35 7
30 A
25 A
20
15

10

—+— AVSDF_EP

—m—AVSDF_EP_LEN
AVSDF_EP_CRS

—<—AVSDF_EP_NN

1 4 7 1013161922 3528 3134374043 4649525558

a) AVSEDF_EP as a preprocessing

60
50 |
40
30
20 -

10]

—4+— AVSDF+_5LOPE 1
—@—AV5DF+_SLOPE_LEN

AVSDF+_SLOPE_CRS
—+—AVSDF+_SLOPE_NN

1 4 7 10131619 22 252831 34 374043 4649525558

b) AVSDF+_SLOPE as a preprocessing

35 7

30 A

25

20

15

10

—4— AVSDF_EP_CRS
—8— AVSDF+_SLOPE_CRS

1 4 710131619 222528 31 34374043 464952555861

¢) Two best combinations

Figure 3: A two-page preprocessing following with different two-
page algorithms.

bers. For densities 2% and 5% of graphs, BB+_NN achieved
the best results most times in all combinations.

We also observed the running times of one-page al-
gorithms (AVSDF+ and BB+) and two-page algorithms
(SLOPE, LEN, CRS, NN) on RCGs with densities 1%, 2%
and 5%. The running time of a two-page algorithm was
recorded when the combination of the two-page algorithm
and AVSDF+ was applied. The running time of a two-page
algorithm based on BB+ was similar to that when it was
based on AVSDF+, although they were different due to dif-
ferent orders obtained by different one-page algorithms.
Tables 6, 7 and 8 list the running times (ms) of one-page
algorithms and two-page algorithms for the three densities
of graphs RCGs.

From Tables 6, 7 and 8, it can be seen that the one-page
algorithm BB+ took much longer time than AVSDF+. The
running times of SLOPE and CRS were basically less than
10 ms. For all densities of graphs, LEN took longer time
than NN when vertex number went larger for all densities
of graphs. This indicates that the running time of LEN in-
creased as the rise of vertex number faster than that of
NN. However, the running time of BB+ was much longer
than that of all two-page algorithms. Therefore, we can
conclude that BB+_NN achieved dominating results with
high time cost due to BB+’s time complexity. Hence, more
efficient one-page algorithms are needed.

4.3 Tests on some typical graphs

We tested some circulant graphs used by Cimikowski [16]
and some Halin graphs with two-page algorithms based on
one-page algorithms. For some typical classes of graphs
such as complete p-partite graphs, 3-row meshes, 4-row
meshes and Cartesian graphs, the optimal one-page draw-
ings were first constructed, and then a two-page algorithm
was applied.

30 = H.Heetal DE GRUYTER OPEN

Table 3: Two-page book crossing numbers obtained by algorithm combinations on the graphs with density of 1%, where V; is the number of
vertices.

Vn AVSDF+ AVSDF+ AVSDF+ AVSDF+ BB+ BB+ BB+ BB+
_SLOPE _LEN _CRS _NN _SLOPE _LEN _CRS _NN
200 0 0 0 3 0 0 0
205 5 1 1 1 12 2 2 2
210 14 7 6 5 26 8 9 8
215 26 16 15 14 45 22 22 19
220 48 36 33 29 69 36 35 30
225 77 58 58 53 103 59 58 57
230 109 91 88 82 141 82 83 84
235 137 110 110 106 185 117 115 103
240 191 155 147 145 222 147 141 141
245 223 200 194 191 286 203 194 176
250 289 253 246 241 358 250 236 228
255 336 302 295 289 392 278 270 276

Table 4: Two-page book crossing numbers obtained by algorithm combinations on the graphs with density of 2%, where Vj is the number
of vertices.

Vi AVSDF+ AVSDF+ AVSDF+ AVSDF+ BB+ BB+ BB+ BB+
_SLOPE _LEN _CRS _NN _SLOPE _LEN _CRS _NN
100 O 0 0 0 0 0 0 0
105 2 1 1 1 6 1 1 1
110 9 6 5 4 14 5 4 4
115 25 17 19 16 34 15 16 14
120 41 29 26 24 53 31 28 22
125 78 60 58 54 93 60 57 55
130 95 77 78 74 115 75 71 75
135 139 113 116 107 158 106 106 110
140 195 161 157 155 229 158 159 147
145 272 226 220 217 288 217 208 197
150 349 310 307 304 374 285 282 262

155 427 388 369 365 463 373 359 342

DE GRUYTER OPEN Various heuristic algorithms to minimise the two-page crossing numbers of graphs = 31

Table 5: Two-page book crossing numbers obtained by algorithm combinations on the graphs with density of 5%, where V}, is the number
of vertices.

Vn AVSDF+ AVSDF+ AVSDF+ AVSDF+ BB+ BB+ BB+ BB+
_SLOPE _LEN _CRS _NN _SLOPE _LEN _CRS _NN
40 0 0 0 0 0 0 0 0
45 2 0 0 0 0 0 0
50 10 5 6 5 12 6 5 4
55 22 17 17 14 26 14 15 15
60 44 39 33 30 51 35 32 30
65 89 68 65 64 95 68 66 56
70 140 118 115 111 155 113 109 109
75 221 187 182 177 223 172 173 160
80 328 274 273 265 329 265 264 256
85 429 363 355 347 463 376 371 349
90 605 522 517 502 620 536 525 504
95 828 711 699 690 826 696 689 672

Table 6: Running times of one-page algorithms and two-page algorithms based on AVSDF+ for density of 1%, where V}, is the number of
vertices, and time unit is ms.

Vn AVSDF+ BB+ SLOPE LEN CRS NN
200 703 20759 1 46 3 155
205 822 26434 1 151 0 195
210 1065 34922 1 238 3 223
215 1661 42273 0 315 1 268
220 2296 57579 3 444 3 332
225 3202 87395 0 639 3 383
230 3681 87037 1 937 6 439
235 4898 104079 1 1028 1 480
240 5572 138003 1 1443 3 528
245 6882 158404 4 1421 4 620
250 9172 191772 1 1928 4 647
255 11247 211673 7 2092 6 733

Table 7: Running times of one-page algorithms and two-page algorithms based on AVSDF+ for density of 2%, where V; is the number of
vertices, and time unit is ms.

Vi AVSDF+ BB+ SLOPE LEN CRS NN
100 132 1120 1 4 0 43
105 118 1530 0 15 0 45
110 182 2377 0 28 0 59
115 321 3672 0 48 0 73
120 426 4835 0 70 0 90
125 648 6960 1 109 0 118
130 974 9099 0 140 0 143
135 1158 11555 0 181 3 177
140 1427 16086 3 310 1 229
145 2213 20025 1 430 3 277
150 3004 27459 0 601 4 316
155 3117 33719 3 731 1 380

32 — H.Heetal

DE GRUYTER OPEN

Table 8: Running times of one-page algorithms and two-page algorithms based on AVSDF+ for density of 5%, where V}, is the number of

vertices, and time unit is ms.

Vn AVSDF+ BB+ SLOPE LEN CRS NN
40 15 28 0 0 0 12
45 11 51 0 1 0 11
50 23 98 0 1 0 14
55 53 177 0 4 0 22
60 96 333 0 14 0 34
65 135 575 0 23 1 54
70 249 943 0 46 0 72
75 474 1346 0 84 0 106
80 722 2160 1 146 1 143
85 1092 3232 0 224 4 208
90 1480 4631 1 349 1 262
95 2262 6506 0 575 12 365

4.3.1 Circulant graph test

Circulant graphs of the form Cn(a1, aa, ..., a;), where 0 <
a, < a; < ... < ag < (n+ 1)/2, are regular Hamiltonian
graphs with n vertices, and with vertices i + a;(mod n),
j=1,..., k, adjacent to each i [30].

Some circulant graphs had been tested based on a
fixed Hamiltonian cycle by Cimikowski [16]. We tested
these circulant graphs as well, but first applied a heuris-
tic algorithm to find a good one-page drawing, and then
applied a two-page algorithm.

In Table 9, the middle eight columns list the crossing
numbers of all tested circulants obtained with eight algo-
rithm combinations. The third rightmost column contains
either the optimal values related to the fixed order of ver-
tices based on Hamiltonian cycles [16], or theoretical lower
and upper bounds from [16] (written as a : b with a the
lower and b the upper bound), if the branch-and-bound
algorithm of Cimikowski [16] was not applicable. The sec-
ond rightmost column contains the best results obtained
with Cimikowski’s eight heuristic algorithms based on the
Hamiltonian cycle of each circulant graph [16]. The right-
most column lists the best results obtained with genetic
algorithms that we previously developed [20].

In Table 9, the best results of our eight heuristic algo-
rithms for all circulant graphs are shown in bold face. Al-
most all best results are the same as or better than the best
results obtained with Cimikowski’s eight heuristic algo-
rithms [16]. For some circulant graphs such as C»4(1, 3, 5),
Cze(l, 3), C38(1, 7), C40(1, 5), C42(1, 4), and C46(1, 4), the
best results are better than the optimal values that can
be obtained from branch-and-bound algorithm based on
a fixed order of vertices [16]. This is because our algo-

rithms, unlike [16], are not restricted to the fixed order. Al-
though the fixed Hamiltonian order is usually viewed as
a favorable order for two-page drawings [16], it restricts
the search space. For example, Figure 5 presents the best
known two-page drawing for C4,(1, 4) (which we found
using AVSDF+_NN). It has 38 crossings on a fixed Hamil-
tonian order of vertices, while the optimal solution based
on the same order had 42 crossings [16]. However, the best
two-page crossing number for C4,(1, 4) is 23 [19].

However, comparing with the best results achieved
with the genetic algorithms, which are listed in the right-
most column in Table 9, the best results of our eight heuris-
tic algorithm combinations are worse. This might be be-
cause genetic algorithms search a larger space of vertex
order and edge division synchronously.

4.3.2 Halin graph tests

A Halin graph H is a planar graph H = T U C, where T is
a tree with no vertex of degree two and at least one vertex
of degree three or more. T is embedded in the plane and
C is a cycle connecting the leaves of T in the cyclic order
determined by the embedding of T. The edges in T will be
called t-edges and the ones in C will be called c-edges.
The two-page book crossing number of a subhamilto-
nian planar graph is zero [31, 32]. A Halin graph is a sub-
hamiltonian planar graph, and thus the two-page book
crossing number of Halin graphs is zero [27]. We have pre-
sented an algorithm to obtain planar two-page drawing of
a Halin graph based on an optimal Hamiltonian order [27].
We tested 400 Halin graphs with the hybrid algo-
rithm AVSDF_EP and the four two-page algorithms based

33

Various heuristic algorithms to minimise the two-page crossing numbers of graphs

DE GRUYTER OPEN

97T 96T 0L0T:9 1/t 192 06T 6.1% 18¢ 08¢ 68¢ 125 (8°6°1)%D
6¢ 9% 9% 7% €9 €9 T/ e/ VA 9% 801 (7 ‘1)°"D
167 TE9 06C7:09 1€9 7€9 1€9 0z8 179 679 6£9 7601 (0T ‘L% ‘1)"D
66 08I 7681:9 .01 €t Z4" 8T¢ G991 1/1 891 1ey (S 7 1)""D
891 0IC 906¢:8% 841 791 791 0S¢ (1) 4 8¢€T 8T 865 (94 °‘CT))
90T 8ST TT/I9 I STIT 81T 6SC 161 791 91 8¢c¢g (9‘c ‘1))
7 4/ 4/ oY 1§ 8% 06 8¢ oY 4/ 96 (7 ‘1)%D
6C 8¢ 99 86 PAS 6% 8 8y 19 86 80T (‘1)%"D
671 06T 90%1:9 /81 9/1 061 L€€ /81 /81 12t 79¢ (L7 °1)8¢)
9¢ 98 78 S/ €S 8¢ 8 79 L/ 9/ 711 (L°1)%D
10€ 8TE T98T:LYy (343 9¢¢ 149 159 (43 Teg (343 %99 (L9€‘1)%%D
9¢ 9¢ 0919 9¢ 9¢ 9¢ 09 9¢ 2 9¢ A" (7 C°1)%%D
98T ¥/S 0SS9TZ:0% 96¢ zo¢ 60¢€ 1/¢€ 196 079 196 879 (TT ‘8% ‘1)"ED
96 90T CTTIT9 /0T 01T 911 16T 701 S0t 8T1 e (Se‘T)"8D
72T 09T 9STT:8€ 091 9Z1 8C1 90C 091 61 091 807 (9% ‘T 1))
oE T6E 0%S€:99 26¢ 1% vis 11/ 76€ 26¢€ ()87 87/ (LS9 T°1)%€)
97T T0E 0861:9¢ 96¢ V743 61¢ 99 96C V743 61€ 99%7 (8°G‘E€°‘T)9E)
€3 96 0/8:9 06 96 /01 80¢ 06 16 901 zot (6 ‘1))
805 095 080£:79 €€9 98¢ 209 167 19 195 199 %52 (6°L°G € T)8%)
16 86 TT/IWE 86 86 9Z1 6T 001 86 9C1 6t (FeTn)D
S/ 98 96/:9 98 88 z6 881 98 /8 70T z81 (s€°1)8)
It 91 w1 61 61 61 44 Y1 61 8T 4/ (€°1T)89)
06C ¥9¢ T8WIiCE 9¢c¢ 1153 6¢€¢€ €Ce 81¢ 81¢ 0ze 1413 (6°L4°1)%)
€9 zs8 0699 €8 08 76 091 zs8 €8 96 791 (S°€°1)%9
o1 71 71 a 61 81T 9¢ 71 A" 91 8¢ (€°1)%%
€61 9TT 09CI:0€ €CT LET 08¢ 60€ 91¢ YA X4 It 81 (LS‘€1)"™D
09 9/ z/ €/ 0. 98 ovT €/ €/ 88 wt (s€‘1)"
6 4} 4! Sl 71 w1 w1 a QT 71 VA9 (€°1)"
991 00T 9S01:8C LT Y44 1€C 8¢t 102 £0¢ 91¢ 997 (Ls‘€ 1))
0t 7z 7z 74 YT YT 4] 74 YT 174 8 (€‘T1)%
0 0 0 0 0 0 8T z 0 0 81 (z‘1)%
89 0/ 0/8:9C !/ 0. 78 081 0. 0. 78 081 (# € T1)o)
8T 44 e {4 7z rad !/ ¢4 7z a4 . (£‘T°1)09)
0 0 0 0 0 0 91 0 0 0 91 (z1)9%)
V9~ bl ol NN~ Sy~ NI1~ 3dO1S” NN~ Sy~ NI1T~ 3dO1S”
1s9q 1s9q "1do +dg +49 +d9 +99 +4QSAV +4ASAV +4ASAV +4ASAY sydein

‘[02] YO 71599 Se pajouap swyiLioS|e 21319uaS Yy}Im paule}qo s} nsal 1saq ayl pue [91] D71s9q Se pajouap swyiLos|e d13sunay ysie
S DSMOY1WID Y}M paulelqo s)nsal 1saq ‘[9T] D7 °1dQ Se pajouap J9pJo paxy uo sanjeA jew ido 1o saSuel ‘suoljeurquod wyiios)e 3ysis syl yIM pauielqo SJueIndIld 10) S)NSal 1S3 :6 d)qeL

34 =—— H.Heetal.

it —— AVSDF+_LEN
—8—BB4+_LEN
35 —— AVSDF_EP_LEN

—r— AVSDF+_SLOPE_LEN

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

a) LEN based on different preprocessings

20 —+— AVSDF+_CRS
—8—BB+_CRS
35 AVSDF_EP_CRS

—=— AVSDFE_SLOPE_CRS

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

b) CRS based on different preprocessings

—+— AVSDF+_NN
~8—B34_NN

AVSDF_EP_NN A
50 —se AVSDF+_SLOPE_NN

60

40

30

20

10 4

0 N v bt

-147 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

¢) NN based on different preprocessings

35
—+—BB+_LEN

——BB+_CRS

i BB+_NN

’ ,'ll\l 7I

30

25

20

15

10

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

d) Comparison of the best combinations

Figure 4: Effect of different preprocessings on two-page algorithms.

Figure 5: The best known solution for C4>(1, 4).

DE GRUYTER OPEN

Figure 6: Optimal order of K5(3).

on one-page algorithms. We use X > Y to express that
algorithm X obtains O crossings more times than algo-
rithm Y. We have: BB+_NN(278) -~ AVSDF_NN(259) >
AVSDF+_CRS(213) - BB+_CRS(162) ~ AVSDF+_LEN(132)
> BB+_LEN(88) - AVSDF_EP(26) >~ AVSDF+_SLOPE(11) >~
BB+_SLOPE(7), with the numbers in brackets denoting the
number of times the algorithm obtained a planar drawing.

4.3.3 Complete p-partite graph and complete graph
tests

We denote a complete p-partite graph with equal size (n)
of the partite sets as

Kn(p) =Kn,n,...,n.
——
p

For a complete p-partite graph with n vertices in each par-
tite set, the one-page book crossing number is v{ (Kx(p)) =
n* (2)+3n*(n-1)2n-1)(5)+n(3) () [28]. We know the op-
timal one-page drawing solution for K(p) [28]. All vertices
of the partite sets are evenly placed around a cycle, i.e., the
vertices of every partite set form a regular n-gon (Figure 6).
It is easy to get the optimal order for a complete p-partite
graph in linear time. The test was done based on the opti-
mal orders of 28 complete p-partite graphs (see Table 10).
NN got the best results for all complete p-partite graphs
tested except for K5(4), for which SLOPE obtained the best
result (86 two-page crossings). SLOPE also achieved the
best results in most cases (23/28), but the results of LEN
and CRS were not far behind.

For complete graphs, we directly applied the two-page
algorithms on the natural order 0,1,...,n-1 (see Table 11).
NN and SLOPE achieved optimal or conjectured optimal
results every time, while the results of LEN and CRS were
close to or the same as the conjectured optimal ones. The
values for the complete graphs from Ks to K;3 were pre-
sented by Cimikowski [16] as well. Data in bold face match

DE GRUYTER OPEN Various heuristic algorithms to minimise the two-page crossing numbers of graphs = 35

Table 10: Test results on Kn(p) by the four two-page algorithms based on optimal one-page drawings.

Graphs Opt.(vy) SLOPE LEN CRS NN

K52) 3 1 1 1 1
Ki2) 16 4 6 4

Ks(2) 50 16 16 16 16
Ke(2) 120 36 36 36 36
K;(2) 245 81 81 81 81
Ks(2) 448 144 160 144 144
Ks(2) 756 256 256 256 256
K;(3) 54 16 16 16 16
K.(3) 216 68 80 68 66
Ks(3) 600 196 198 196 196
K¢(3) 1350 450 452 454 450
K,(3) 2646 900 900 900 900
Ks(3) 4704 1616 1620 1616 1616
Ks(3) 7776 2704 2704 2704 2704
Ks(4) 279 86 90 87 87
Ki(4) 1024 336 338 344 336
Ks(4) 2725 916 916 916 916
Ke(4) 5976 2052 2056 2056 2052
K;(4) 11515 4002 4002 4002 4002
Ks(4) 20224 7104 7110 7108 7104
Ko(4) 33129 11720 11721 11720 11720
Ks(5) 885 291 299 291 289
K4(5) 3120 1056 1064 1064 1056
Ks(5) 8125 2813 2813 2813 2811
Ke¢(5) 17580 6156 6156 6156 6156

K7(5) 33565 11887 11887 11887 11885
Ks(5) 58560 20864 20902 20868 20864
Ko(5) 95445 34233 34233 34233 34231

36 =—— H.Heetal.

(a) P3xP6

(b) P3xP5

Figure 7: Optimal order for one-page drawing of 3-row meshes [28].

the (conjectured) optimal values, as they are the same as
the upper bounds from Guy’s conjecture for general planar
crossing numbers of complete graphs [29].

We define an approximate degree 7 of a test result to
the optimum value as

n=vy/cra. @

The closer to 1 the approximate degree 1) is, the closer to the
optimal two-page crossing number is the result. We calcu-
lated the average approximate degree of each two-page al-
gorithm for the tested complete graphs from K, to K»9. The
approximate degrees of SLOPE, LEN, CRS and NN were 1,
0.985894787, 0.995485922 and 1, respectively.

Actually, we have tested complete graphs from K, to
K500 with NN, and all the results of the tested complete
graphs are the same as the upper bound of the general pla-
nar crossing numbers [21]. Here, we also tested K, to K»go
with SLOPE, and the results are the same as those obtained
by NN.

4.3.4 3- or 4-row mesh tests

For 3-row meshes, P3; x Py, we know the optimal one-page
book crossing number [28], for any odd n > 3: v{(P3 x Py)
=2n - 3, and for any even n > 4: v{(P5 x Py) = 2n - 4. For
4-row meshes with n columns, P4 x P, we have v, (P3 x Pp)
=4n -8 [27].

For a 3- or 4-row mesh, it is easy to construct a Hamil-
tonian cycle to get the optimal one-page drawing in linear
time [27] (Figure 7 (a) (b) and Figure 8 (a)(b)). The one-
page drawing of each mesh is obtained by placing the ver-
tices on a circle in the order given by the Hamiltonian cycle
drawn with solid lines.

Clearly, 3-row and 4-row meshes are subhamiltonian
graphs, and thus the two-page book crossing numbers of
all 3-row and 4-row meshes are zeros [27]. Exact solutions
for two-page drawings of 4-row meshes were presented in
[27]. We tested 3- or 4-row meshes with the four two-page
algorithms based on these Hamiltonian cycles (paths). Ta-

DE GRUYTER OPEN

—9 ‘o 0 ‘oo ‘%%
1‘ 3‘_‘)‘ 13._17. 21. 1. 5,_9. 13. 17
? ‘o9 % P oo 14[;
3._7. 11._15. 19._23. 3._7‘ 1 15 19

(a) P4xP6 (b) P4xP5

Figure 8: Optimal order for one-page drawing of 4-row meshes [27].

(b) CaxCs

(a) CaxCa

Figure 9: A drawing of C, x C4 and C4 x Cs.

ble 12 shows the results. LEN, CRS and NN produced planar
drawings for every 3-row or 4-row mesh tested.

4.3.5 Cartesian product Cn x Cy, tests

There is a lot of research about Cartesian product graphs
Cm x Cn [33-35]. A natural planar drawing of Cp, x C, hav-
ing (m - 2)n crossings, where m < n, is as the following:
draw P, x C, with no crossings (the cycles are taken to be
concentric) and then to each path add one edge, crossing
m - 2 of the concentric cycles [33]. Figure 9 and Figure 10
present these drawings for C4 x C4, C4 x Cs and Cs x Cs.

(a) Another drawing of C4xCs

(b) CsxCs

Figure 10: A drawing of C4 x C5 and Cs x Cs.

DE GRUYTER OPEN Various heuristic algorithms to minimise the two-page crossing numbers of graphs = 37

Table 11: Test results on K, by the four two-page algorithms.

Graphs SLOPE LEN CRS NN | Graphs SLOPE LEN CRS NN

K, 0 0 0 0 K17 784 786 784 784

Ks 1 1 1 1 Kis 1008 1008 1018 1008
Ks 3 3 3 3 K9 1296 1296 1296 1296
K7 9 9 9 9 Ko 1620 1620 1620 1620
Ks 18 20 19 18 K> 2025 2025 2025 2025
Ko 36 38 36 36 K> 2475 2475 2475 2475
Kio 60 65 62 60 K>3 3025 3025 3025 3025

K11 100 100 100 100 Koy 3630 3630 3630 3630
K1, 150 155 154 150 K>s 4356 4356 4356 4356
K3 225 227 225 225 K 5148 5148 5148 5148
K4 315 315 315 315 K>7 6084 6084 6084 6084
K5 441 473 441 441 Ks 7098 7126 7098 7098
K¢ 588 606 588 588 Ko 8281 8281 8281 8281

Table 12: Two-page book crossing number of 3- or 4-row meshes by the four two-page algorithms based on (conjectured) optimal one-page
drawings.

=

Graphs SLOPE LEN CRS
P3 XP4
P3 XP5
P3 XP6
P3 ><P7
P3 x Pg
P3 x Py
P4 XP4
P4 XP5
P4 XP6
P4 ><P7
P4 XPg
P4 ><P9

ANV ONN PN

[
N O

-
N
O O O O O O O O O O O oOo|=2

O O O O OO O oo o oo
O O O O OO O oo o oo

-
oo

38 —— H.Heetal

Table 13: Two-page book crossing number of Cyy xCr by the four two-
page algorithms based on the fixed Hamiltonian cycles (paths); the
data in bold face indicate the results are equal to the conjectured
optimal values.

Graphs SLOPE LEN CRS nn
C3xC3 4 3 3 3

C3 X C4 4 4 4 4

C3 X C5 5 5 5 5

C3xCq 8 6 6 6

C3xCy 10 7 7 7

C3 X Cg 12 8 8 8

C3xCq 16 9 9 9

C4 X C4 8 8 8 8

Cy x Cs 26 10 14 10
C4 x Cq 16 12 12 12
CyxCy 42 18 18 14
C4 X Cg 24 16 16 16
Cy xCo 58 22 22 18
Cs x Cs 22 23 23 15
Cs x Cq 44 24 18 18
Cs xCy 63 31 34 21
Cs xCg 76 32 24 24
Cs x Co 100 39 40 27
Ce x Cg 62 36 24 24
C6 X C7 86 41 30 28
C(, X Cg 108 48 32 32
Ce x Co 137 53 38 36
C7xCy 112 41 63 35
C;xCs 144 64 40 40
C7 x Co 179 51 73 45
Cg X Cg 184 48 48 48
Cs x Cy 224 57 56 54
C9 X C9 274 69 63 63

In Figure 9 and Figure 10, the solid edges form a Hamil-
tonian cycle or path. For a Cartesian graph Cn x Cn with
m < n, when n is even, we can construct a Hamiltonian cy-
cle as in Figure 9 (a). When n is odd and m is odd, we can
construct a Hamiltonian cycle as in Figure 10 (b). When n
is odd but m is even, we can construct the Hamiltonian cy-
cle as in Figure 10 (a), but it is not optimal for our purpose
of two-page drawings. In this case, we can also construct
a Hamiltonian path as in Figure 9 (b). Hence, we tested
Cartesian products Cm x Cr based on these Hamiltonian cy-
cles (paths) of each graph. Table 13 shows the results, and
the data in bold face indicate that the results are equal to
the planar crossing numbers (m - 2)n. It can be seen that
NN achieved the best results, and all results are equal to
the planar crossing numbers.

DE GRUYTER OPEN

We know the exact crossing numbers or upper bounds
of all tested graphs except the tested circulant graphs.
From the experimental results, we can see that the best re-
sults obtained by our edge allocation algorithms show ex-
cellent performance in approximation to the planar cross-
ing number, as they are always equal to either the exact
crossing numbers (e.g., for Halin graphs, mesh graphs,
complete p-partite graphs and Cartesian products), or the
(conjectured) upper bounds of the tested graphs (e.g.,
complete graphs). This indicates that we can completely
use the two-page crossing number to approximate the pla-
nar crossing number of a graph, and the optimal two-page
drawing provides an easy approach to a planar drawing.
Actually, according to the experimental results, we may
have the following conjecture:

The optimal two page drawing of a graph represents
the planar drawing of the graph.

5 Conclusion

We designed several heuristics for the two-page book
crossing problem by combining two of one-page drawing
algorithms (BB+[12] and our AVSDF+ [13]) with four two-
page algorithms (SLOPE, LEN, CRS, and NN). We also pro-
posed a hybrid algorithm (AVSDF_EP), which directly as-
sign edges into pages while placing the vertices on the cir-
cle in the AVSDF algorithm.

We investigated the performance of our algorithms
by testing them on benchmark test suites: Rome graphs
(RND_BUP and ALF_CU), Random Connected Graphs
(RCGs) and some typical graphs. For all types of graphs
tested, BB+_NN achieved dominating results, but it took
much time due to BB+’s time complexity. AVSDF+_NN is
the second best combination for all graphs.

We investigated the effect of one-page algorithms on a
two-page algorithm. The experiments show that BB+ is the
best preprocessing algorithm for all two-page algorithms.

We also investigated the effect of using AVSDF_EP
or AVSDF+_SLOPE as a preprocessing step, followed
by the LEN, CRS, or NN. Starting with AVSDF_EP, LEN
achieved much greater improvement to the results than
CRS for RND_BUP graphs. In contrast, starting from
AVSDF+_SLOPE, CRS achieved greater improvements than
LEN on the same RND_BUP graphs. For LEN, the best
preprocessing is AVSDF_EP, while for CRS, the best pre-
processing is the AVSDF+. However, when starting with
an initial two-page distribution provided by AVSDF_EP or
AVSDF+_SLOPE, NN was in the shadow of other two-page
algorithms.

DE GRUYTER OPEN

For all densities of RCGs, BB+_NN achieved the best
results for most cases in all algorithm combinations. We
examined the running times of one-page and two-page al-
gorithms. It is shown that BB+ took much longer time than
AVSDF+ for all densities of RCGs. LEN took longer time
than NN when the vertex number of a graph increased for
all densities of RCGs.

Based on the optimal order of vertices for one-page
drawing, we tested several typical structured graphs. NN
almost achieved the optimal results for all tested struc-
tured graphs. For complete graphs and complete p-partite
graphs, SLOPE obtained excellent results as well, espe-
cially for complete graphs, SLOPE achieved the same re-
sults as NN, and the results are equal to the planar crossing
numbers for complete graphs. NN also achieved the planar
crossing numbers for Cartesian products graphs. LEN, CRS
and NN achieved planar drawings for all tested 3-row and
4-row mesh graphs.

With our two-page algorithms based on a one-page al-
gorithm, the best results of some circulant graphs are bet-
ter than the optimal values based on fixed orders of ver-
tices obtained by Cimikowski [16]. A possible reason is that
a fixed order of the vertices constrains the search space of
solutions. However, the best results are worse than those
obtained with genetic algorithms that we previously de-
veloped. It might be because genetic algorithms search
a larger space of vertex order and edge distribution syn-
chronously. In other words, the constraints of vertex or-
der could lead to the limitation of finding a good two-page
drawing.

The experimental results of these typical graphs, es-
pecially complete graphs, strongly support that two-page
book crossing number presents an excellent upper bound
for general crossing number of graphs, and the fact that
the two-page book crossing numbers of 3-row and 4-row
meshes and Halin graphs are zero further highlights this
point, as these graphs are planar graphs. Further more, we
may conjecture that the optimal two-page crossing num-
ber of a graph is the planar crossing number of the graph.

Acknowledgement: This work is based on the research
when the first author was supported by the EPSRC grant
GR/S76694/01 and by VEGA grant No. 2/3164/23 in the De-
partment of Computer Science, Loughborough University.

References

[1] F. Shahrokhi, O. Sykora, L.A. Székely, I. Vrt’o, The book crossing
number of a graph, J. Graph Theory 21, 413-424, 1996

[2]

E]

5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Various heuristic algorithms to minimise the two-page crossing numbers of graphs =—— 39

P.C. Kainen, The book thickness of a graph Il, Congressus Nu-
merantium 71, 121-132, 1990

F. Shahrokhi, O. Sykora, L.A. Székely, I. Vrt’o, The gap between
crossing numbers and the convex crossing numbers, Towards
a Theory of Geometric Graphs, In: J. Pach (Ed.), Contempo-
rary Mathematics, 342, American Mathematical Society, Prov-
idence, RI USA, 2004, 249-258

J.M. Six, I.G. Tollis, Circular drawings of biconnected graphs,
Proc. of ALENEX’99, LNCS 1619, 57-73, 1999 pp. 57-73.

M. Masuda, T. Kashiwabara, K. Nakajima, T. Fujisawa, On the
NP-completeness of a computer network layout problem, Proc.
of IEEE Intl. Symposium on Circuits and Systems 1987, IEEE Com-
puter Society Press, Los Alamitos, 1987, 292-295

S. Masuda, T. Kashiwabara, K. Nakajima, T. Fujisawa, Crossing
minimization in linear embeddings of graphs, IEEE Trans. Com-
put. 39, 124-127, 1990

F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Diogenes: a
methodology for designing fault-tolerant VLSI processor arrays,
Proc. the 13th Annu. Symp. Fault-Tolerant Comput, June 1983 Mi-
lan, Italy, 26-32

F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Embedding graphs
in books: a layout problem with applications to VLSI design,
SIAM). Algebra. Discr. 8(1), 33-58, 1987

W.). Chung, B.S. Smith, S.K. Lim, QCA Physical Design With
Crossing Minimization, Proc. IEEE Conference on Nanotechnol-
ogy, 11-15 July 2005, Nagoya Congress Center Nagoya, Japan,
2005, 262-265

B.S. Smith, S.K. Lim, QCA Channel Routing With Wire Crossing
Minimization, Proc. of The 15th ACM Great Lakes symposium on
VLSI, Chicago, Illinois, USA., 2005, 217-220

E. Mdkinen, On circular layouts, Int. J. Comput. Math. 24, 29-37,
1988

M. Baur, U. Brandes, Crossing Reduction in Circular Lay-
outs, Proc. 30th Intl. Workshop Graph-Theoretic Concepts in
Computer-Science (WG ’04), LNCS 3353, 332-343, 2004

H. He, O. Sykora, New Circular Drawing Algorihtms, Proc.
ITAT’04, 15-19 Sept. 2004, High Tatras, Slovakia, 2004

A.N. Melikov, V.M. Koreicik, V.A. Tis€enko, Minimization of the
number of intersections of edges of a graph (Russian), Vycisl.
Sistemy Vyp. 47, 32-40, 1971

T.A.). Nicholson, Permutation procedure for minimazing the
number of crossings in a network, Proc. Inst. Elec. Engnrs. 115,
21-26,1968

R. Cimikowski, Algorithms for the fixed linear crossing number
problem, Discrete App. Math. 122, 93-115, 2002

W. Winterbach, The crossing number of a graph in the plane,
Master’s Thesis, Dept. Appl. Math., University of Stellenbosch,
SA, 2005

E. de Klerk, D.V. Pasechnik, Improved lower bounds for the 2-
page crossing numbers of Ky,» and K, via semidefinite pro-
gramming, http://arxiv.org/abs/1110.4824v1, October 2011.

T. Poranen, E. Mdkinen, H. He, A simulated annealing algorithm
for the 2-page crossing number problem, Proc. of the Interna-
tional Network Optimization Conference, 22-25 Apr. 2007, Spa,
Belgium, 2007

H. He, O. Sykora, E. Mdkinen, Genetic algorithms for the 2-page
drawing problem of graphs, J. Heuristics 13(1), 77-93, 2007

H. He, O. Sykora, E. Mé&kinen, An Improved Neural Network
Model for the 2-page Crossing Number Problem, IEEE Trans.
Neural Netw. 17(6), 1642-1646, 2006

40

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

= H.Heetal

H. He, O. Sykora, A. Salagean, Various Island-based Parallel
Genetic Algorithms for the 2-page Drawing Problem, Proc. of
IASTED International Conference on Parallel and Distributed
Computing and Networks, 14-16 February 2006, Innsbruck, Aus-
tria (PDCN2006), 2006, 316-323

H. He, O. Sykora, A. Salagean, E. Mdkinen, Parallelization of Ge-
netic Algorithm for the 2-page Crossing Number Problem, J. Par-
all. Distr. Com. 67(2), 229-241, 2007

GDToolkit: http://www.dia.uniroma3.it/~b:24/

R. Cimikowski, P. Shope, A neural network algorithm for a graph
layout problem, IEEE Trans. Neural Netw. 7(2), 341-346, 1996
W.S. McCulloch, W. Pitts, A logical calculus of the ideas imma-
nent in nervous activity, B. Math. Biophys. 5, 115-133, 1943

H. He, A. Salagean, E. Mdkinen, One- and two-page crossing
numbers for some types of graphs, International). Computer
Mathematics 87(8), 1667-1679, 2010

R. Fulek, H. He, O. Sykora, I. Vrt’o, Outerplanar Crossing Num-
bers of 3-Row Meshes, Halin Graphs and Complete p-Partite
Graphs, Proc. SOFSEM’05, LNCS 3381, 376-379, 2005

R.K. Guy, Crossing number of graphs, In Y. Alavi, D.R. Lick, A.T.

[30]

[31]

[32]

[33]

[34]

[35]

DE GRUYTER OPEN

White (Eds), Graph Theory and Applications: Proc. of the Con-
ference at Western Michigan University, Kalamazoo, Mich.,
Springer-Verlag, New York, 1972, 111-124

F.Boesch, R. Tindell,Circulants and their connectivities,). Graph
Theory 8, 487-499, 1984

F. Bernhart, P. Kainen,The book thickness of a graph, J. Combin.
Theory Ser. B. 27, 320-331, 1979

M. Yannakakis, Four page are neccessary and suffcient for pla-
nar graphs (extended abstract), Proc. of the Eighteenth Annual
ACM Symposium on Theory of Computing, Berkeley, California,
United States, 1986, 104-108

J. Adamson, B.R. Richter, Arrangements, circular arrangements
and the crossing number of C7 xCp, J. Combin. Theory Ser. B 90,
21-39, 2004

L.Y. Glebsky, G. Salazar, The conjecture cr(CpmxCn) = (m-2)nis
true for all but finitely n, for each m,). Graph Theory 47, 53-72,
2004

F. Shahrokhi, O. Sykora, L.A. Székely, I. Vrt’o, Intersection of
Curves and Crossing Number of Ciy x Cy on Surfaces, Descrete
Comput. Geom. 19(2), 237-247, 1998

	1 Introduction
	2 One-page drawing algorithms
	2.1 The algorithm of Baur and Brandes (BB+)
	2.1.1 Greedy
	2.1.2 Sifting

	2.2 Algorithm AVSDF+
	2.2.1 Greedy
	2.2.2 Adjusting

	3 Two-page drawing algorithms
	3.1 Slope algorithm (SLOPE)
	3.2 Descending length order (LEN)
	3.3 Descending crossing order (CRS)
	3.4 The neural network algorithm (NN)
	3.5 Hybrid of one-page algorithm and edge pre-allocation (AVSDF_EP)

	4 Experiments
	4.1 Tests of two page algorithms
	4.1.1 Tests based on one-page algorithms
	4.1.2 Tests based on a fixed order of vertices
	4.1.3 Tests based on different two-page preprocessings

	4.2 Test on RCGs with different edge densities
	4.3 Tests on some typical graphs
	4.3.1 Circulant graph test
	4.3.2 Halin graph tests
	4.3.3 Complete p-partite graph and complete graph tests
	4.3.4 3- or 4-row mesh tests
	4.3.5 Cartesian product Cm Cn tests

	5 Conclusion

