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Graphene-based nanolaminates as ultra-high permeation
barriers
Abhay A. Sagade 1,6, Adrianus I. Aria 1,2, Steven Edge3, Paolo Melgari3, Bjoern Gieseking4, Bernhard C. Bayer5, Jannik C. Meyer5,
David Bird3, Paul Brewer4 and Stephan Hofmann 1

Permeation barrier films are critical to a wide range of applications. In particular, for organic electronics and photovoltaics not only
ultra-low permeation values are required but also optical transparency. A laminate structure thereby allows synergistic effects
between different materials. Here, we report on a combination of chemical vapor deposition (CVD) and atomic layer deposition
(ALD) to create in scalable fashion few-layer graphene/aluminium oxide-based nanolaminates. The resulting ~10 nm contiguous,
flexible graphene-based films are >90% optically transparent and show water vapor transmission rates below 7 × 10−3 g/m2/day
measured over areas of 5 × 5 cm2. We deploy these films to provide effective encapsulation for organic light-emitting diodes
(OLEDs) with measured half-life times of 880 h in ambient.
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INTRODUCTION
Gas and water permeation barrier films play a vital part in
applications ranging from food and pharmaceutical packaging to
electronic devices.1 Many organic or electrode materials are highly
sensitive to moisture and oxygen, hence, e.g., practically all
organic optoelectronic applications such as organic light-emitting
diodes (OLEDs) require efficient encapsulation.2,3 The maximum
allowable permeation rates depend on the required lifetimes for
each particular application and hence these rates are constantly
under debate.1,4–6 For example, organic optoelectronic devices
generally have the most stringent requirements, and hence are
often used as benchmark application for ultra-barrier films.3,4 A
common encapsulation for organic devices is a glass or metal foil
which, however, is not suitable for an increasing range of
applications where large-area, bendability or transparency is
required. Atomic layer deposited (ALD) films such as alumina
(AlOx) are reasonably good barrier layers. Depending on the
precursors used and post-deposition processing, they show water
vapor transfer rates (WVTR) <10−5 g/m2/day 7–9 and with
considerable reliability in flexibility.10 Measuring WVTR <10−5 g/
m2/day and its quantification for commercial large area samples is
a challenging task on its own to be addressed.5,11 State-of-the-art
flexible thin film barrier layers are typically based on metal oxides
or nitrides combinations in conjunction with polymer intermedi-
ates, with overall an thickness from hundreds of nanometers to
few microns.12

2D materials, like graphene, are highly promising as ultra-high
barrier materials, and their atomic thinness, mechanical and
optical transparency properties offers many new possibilities and
device form factors. Micron-sized single crystal graphene has been
shown to be impermeable to most gases,13–15 however, over large

areas (>10 cm2) which most applications require the scenario is
completely different. While continuous and large-area mono-layer
or few-layer graphene films can now be fabricated by chemical
vapor deposition (CVD),16–18 such atomic films are practically
prone to have defects including grain-boundaries when produced
at high throughput. Recent literature on such CVD graphene films
highlights that permeation through defects can be mitigated by
using more layers. Yet, layer-by-layer transferred few-layer
graphene stacks show WVTRs in the order of 10−1 g/m2/day,19–23

which is at least two orders of magnitude too high to be suitable
for organic devices. Barrier membranes based on (exfoliated)
graphene or graphene oxide flakes inevitably have to be much
thicker to compensate for the many possible permeation path-
ways,24,25 which negates at least part of the advantages that 2D
materials can offer. It remains unclear if high-quality few-layer
graphene films grown directly by CVD would show significantly
lower WVTRs. The alternative is to decorate and block the defects
in graphene with polymers and metal oxides.26–28 These process
steps are non-trivial considering that graphene is hard to coat/wet
in particular once it has been exposed to ambient air.29

Here, we combine catalytic CVD and ALD to create in scalable
fashion few-layer graphene/aluminium oxide-based nanolami-
nates. The resulting ~10 nm contiguous and bendable
graphene-based films show water vapor transmission rates below
7 × 10−3 g/m2/day measured over areas of 5 × 5 cm2 while
maintaining > 90% optical transparency. The growth of these
layers is confirmed and characterized by scanning electron
microscopy (SEM), transmission electron microscopy (TEM) and
Raman spectroscopy mapping. We systematically benchmark the
barrier performance of these graphene-based nanolaminates with
existing state-of-the-art commercial multi-stacked barriers and
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thin ALD aluminium oxide (AlOx) films. It is found that these
nanolaminates show not only lower WVTRs but also more reliable,
reproducible performance over large areas compared to simple
sequential layering of (transferred) graphene and ALD AlOx. We
demonstrate that these laminates encapsulate OLEDs reasonably
well with measured half-life times of 880 h in ambient.

RESULTS
While WVTRs and barrier performance can be characterized by a
range of techniques1,4 including MOCON, electrical and optical Ca
tests, etc. for each of them sample compatibility and preparation
can be a challenge. In particular, for novel material systems like
graphene, reliability and accuracy of the measurements is non-
trivial. For meaningful measurements of low WVTRs, here we use
two independent techniques with low detection limits, namely
optical monitoring of Ca film thickness (Fig. 1a) and traceability
measurements based on cavity ring down spectroscopy (Supple-
mentary Fig. 1), as described in the methods section. All results
refer to a barrier film size of 5 × 5 cm2, handled and transferred in
air unless otherwise stated. As reference, we measure WVTRs of
AlOx films of various thicknesses grown by ALD (see methods) on
a polyethylene naphthalate (PEN) substrate. The ALD recipe is
optimized to obtain a highly uniform, good quality film with a
refractive index of 1.65, indicative of high density alumina
required for barrier applications.8 These alumina films are used
without further post-treatments such as annealing or O2 plasma.
We measure WVTRs for 10 and 40 nm AlOx/PEN films to be 0.1 and
8.7 × 10−4 g/m2/day, respectively, at 22 °C/50% RH (relative
humidity). Lower WVTR values have been reported for AlOx, but
only for the alumina layer directly deposited on Ca by in situ
glovebox production lines without exposing to ambient.8 Figure
1b provides an overview of WVTR values in the context of barrier
film thickness for various application requirements and measured
in this study (see Supplementary Table 1 for details on all
samples).
Figure 2a is a schematic overview of the process flow used for

nanolaminate fabrication. Continuous monolayer graphene is
grown by CVD (see methods) and transferred via a typical wet
chemical process with PMMA. In the following we refer to this as
standard process (Fig. 2a). The growth parameters are optimized
to obtain a large average graphene grain size of 100–200 µm,
which (to our knowledge) is larger than any graphene barrier

sample reported previously (see Supplementary Table 1). WVTR of
such monolayer graphene (G/PEN) is measured to be 0.1 g/m2/
day. While this value is comparable to previous reports,20,22 it
should be noted that here our samples (25 cm2) are more than 6
times larger in area (4 cm2). Our results show that monolayer
graphene and 10 nm of ALD alumina have similar WVTRs.
Regarding further relevant reference samples, we find that neither
a 40 nm ALD alumina coating on monolayer G/PEN nor a
monolayer graphene layer transferred onto a 40 nm AlOx/PEN
sample lead to any significant barrier performance improvement
relative to the plain 40 nm AlOx/PEN reference. We relate this to
defects in the graphene films being not sufficiently decorated/
blocked as well as to the well-known challenge of reliably
interfacing with graphene. A similar observation has been made
recently by Nam et al.30 Also, we find that the results delicately
depend on process (e.g., growth and transfer) details and hence
we found it difficult to develop a reliable process based on this
standard route.
We therefore establish here a modified growth process as

highlighted in Fig. 2a. After the initial graphene CVD, we deposit a
10 nm AlOx film while the graphene is still on the Cu growth
substrate (G/Cu). We then form a nanolaminate structure by
carrying out another graphene CVD run onto the AlOx/G/Cu stack.
The latter we refer to as second (2nd) growth and the resulting
structure as re-grown AlOx/graphene (RGA), see Supplementary
Fig. 2. In order to assure the initial ALD AlOx coating to be as
uniform as possible, we use here a ALD process with 10 water pre-
pulses,28,31 which assists the nucleation of AlOx. Figure 3a, b shows
SEM images of the as-deposited 10 nm AlOx film on G/Cu. The
AlOx layer is seen to form continuously all over and not selectively
at grain boundaries or defects.27,28 Figure 3c shows cross-sectional
high-resolution TEM (HRTEM) analysis of the RGA structure. The
2nd growth leads to additional graphene layer formation beneath
the AlOx at the existing G/Cu interface, while the AlOx film appears
to maintain its thickness. The thickness of the resulting graphene
film is ~1 nm, indicating 3–4 layers of graphene. Plan-view TEM
and selected area electron diffraction (SAED) measurements of
suspended nanolaminates reveal that during the 2nd CVD step
the initially amorphous ALD AlOx layer transforms into a
nanocrystalline film (Fig. 3d and Supplementary Fig. 3). Interest-
ingly, the SAED pattern of this nanocrystalline film is not indicative
of a crystalline Al2O3 phase but best matched to the rarely
reported32,33 Al-oxycarbide Al2OC. This suggests structural

Fig. 1 WVTR measurement. a Optical Ca-test set up utilized for the WVTR measurements. The inset shows a cross-section of the final device
stack. b Overview of WVTR values in context of barrier film thickness for various application requirements. The numbers next to square data
points are from reported literature references, while star data points are for present study. The dashed line indicates the base value measured
for comparative glass barriers fabricated in this investigation along with each batch of graphene-based barriers
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changes in the AlOx film upon the 2nd growth step, i.e. Al-
oxycarbide formation, hence here-after we refer to the nanocrys-
talline phase in the RGA film as ‘AlOx-based film’. We emphasize
that carrying out a second growth step without the alumina, i.e.
just on the G/Cu, does not lead to the repair of graphene defects,
rather at the given CVD conditions destroys the first graphene
layer during the H2/Ar annealing step or during growth. Hence,
the process order is important to achieve synergistic effects
between the different materials (See Supplementary Figs. 4 and 5).
In the given sequence, the process promotes active bonding/
interaction between the graphene and AlOx-based film (Fig. 3d). In
our modified process the 10 nm AlOx layer serves multiple
purposes: (i) it acts as protecting layer to the monolayer graphene
during the second growth, (ii) it (initially being amorphous and
not too thick) allows permeation of carbonaceous species for the
subsequent second graphene growth at high temperature, (iii)
after the second growth it acts as part of an effective
nanolaminate structure, and iv) it also acts as mechanical support
in the handling of large-area graphene. Figure 2b shows optical
images of such ~10 nm thin RGA layer of 7 × 7 cm2 in size,
transferred with PMMA on a PEN substrate. The sample is >90%
optically transparent (see Supplementary Fig. 6) and easily
bendable (Supplementary Video 1).
The 1st and 2nd growth samples are further probed by Raman

spectroscopy after transfer onto 300 nm SiO2/Si substrates (Fig. 4).
For the 1st growth, the Raman spectra show an intensity ratio I2D/G
of ∼2–3.7 with a small D peak (ID/G < 0.15) (see Supplementary Fig.
7) indicative of good quality monolayer graphene. The uniformity
of the growth is highlighted by the I2D/G map in Fig. 4b. On the
other hand, RGA samples show an I2D/G ratio of ∼0.74-1.8 and ID/G
< 0.1, consistent with the formation of 2–3 layers of graphene
without additional damage. This is further evidence that the re-
growth process results in few layers of graphene underneath the
AlOx film on the parent catalytic Cu.34–36 As we here focus on the
barrier layer application, a detailed study of the growth

mechanisms of such buried interface graphene is beyond the
scope of this work.
As a simple initial test of the permeation properties of the RGA

films, we heated them on a hot plate at 200 °C in ambient while
still on the Cu support along with only monolayer G/Cu and bare
Cu foil (Supplementary Fig. 8). The level of Cu oxidation will then
directly reflect the barrier properties of the films. While for Cu and
G/Cu samples a reddish color is observed within 15–20 s and
30–35 s, respectively, indicative of a rapid Cu oxidation, the RGA/
Cu samples do not show any sign of oxidation even after 30 min of
heating. This is an immediate and positive indication that the RGA
nanolaminate is uniform and pin-hole free and can act as high-
quality moisture barrier.
In contrast to previous reports on graphene barrier films which

aimed at clean graphene layers with minimal polymer contamina-
tion,19,20 here for WVTR measurement study we do not remove
the PMMA layer and utilize it as: (a) protection during Ca oxidation
since Ca is known to form micron scale protrusions which can
penetrate through the barrier film and damage it,37,38 (b)
insulating layer when used as encapsulation coating for electronic
devices separating the conductive graphene, and (c) ease of
sample handling. We note that the WVTR of 0.3-µm thick PMMA is
several orders higher, hence it will not affect on the measured
values of graphene-based laminates. In WVTR measurement via
the optical Ca test (see Fig. 1a), the spot size of used laser is large
enough to cover cm2 area of sample rather a small spot around
the defects. Hence, the WVTR values correspond to a practical
average over the nanolaminate samples. The surface topography
of these nanolaminate samples is smooth with a measured rms
roughness <10 nm (Supplementary Fig. 9). The RGA sample of
~10 nm thickness showed a WVTR of 7 × 10−3 g/m2/day at 22 °C/
50% RH. This value is two orders better than the monolayer and
other graphene-based moisture barriers reported in literature for
large sample sizes (see Fig. 1b and Supplementary Table 1). While
the simple addition of monolayer graphene did not improve the

Fig. 2 Nanolaminate process. a Schematic of the process flow used for graphene and laminate samples. b Optical photographs of large area
7 × 7 cm2 RGA film on PEN substrate highlighting transparency and bendability

Graphene-based nanolaminates
AA Sagade et al.

3

Published in partnership with FCT NOVA with the support of E-MRS npj 2D Materials and Applications (2017)  35 



barrier properties of the AlOx (see above),30 the transfer of one
PMMA/RGA layer on 40 nm AlOx/PEN showed ~ 3 times improved
performance with a measured WVTR of 2.5 × 10−4 g/m2/day (see
Supplementary Fig. 10 and Table1).
To explore the possibility of multi-stack laminates consisting of

RGA and AlOx, we focus on a 20 nm AlOx/RGA/20 nm AlOx/PEN
structure. Further, we compare the Ca test WVTR values to
measurements in the traceability set up based on cavity ring down
spectroscopy. This sandwiched laminate showed a WVTR of 4.4 ×
10−3 g/m2/day at 38 °C/90% RH in the Ca test. In comparison, the
traceability measurement for such sample gave a value of 6.02 ×

10−4 g/m2/day. The difference might be partly related to the
distinct sample handling during preparation. This traceability
result is similar to results for 125-µm thick commercial barrier films
which we used as benchmark (multi-stacked layers with few
microns of mechanical protections; see Fig. 1b and Supplementary
Table 1). In principle, the key mechanism of WVTR improvement in
the laminates is blocking the moisture paths, therefore sandwich-
ing one RGA layer between two AlOx layers (AlOx/RGA/AlOx) is
expected to show improved barrier properties.
In order to validate the adaptability of the introduced RGA

barrier films, we use them here to encapsulate standard OLED

Fig. 3 Mircoscopy of graphene barrier films. a SEM image of continuous growth of 10 nm AlOx on a single graphene grain (dotted area) on Cu
foil after 1st growth and a representative magnified area in (b). The cross-sectional HRTEM image in c shows the presence of few layer
graphene below the AlOx-based layer after the 2nd growth, as illustrated in the inset. d Bright field TEM image of a suspended RGA film in
plan-view, showing the nanocrystalline nature of the AlOx-based phase after the 2nd growth step. The inset shows the corresponding SAED
pattern, which consists of sets of hexagonally arranged spots assigned to few layer graphene and a ring pattern corresponding to a
nanocrystalline phase of the Al-oxycarbide Al2OC, as described in Supplementary Fig. 3. e Schematic highlighting the nanolaminate structure
and coverage of graphene defects by AlOx-based layer. The scale bar in a is 10 μm, b is 0.5 μm, c is 5 nm, and d is 100 nm
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devices. The OLED stack (see methods) was made on glass
substrate and subsequently a PMMA/RGA/PEN barrier was
laminated onto it without using any additional mechanical
protection layers, as depicted in Fig. 5a–c and d show optical
images of a 1 × 1 cm2 glowing OLED in ambient, as-fabricated and
after 1 week, respectively. For comparison, we also measured two
more samples with 40 nm AlOx/PEN and a commercial barrier of
125 µm (as studied previously). The OLEDs were lit at 3000 cd/m2

with 12 V bias and the luminescence measured over time to
extrapolate the half-life time. The observed half-life times of the
40 nm AlOx and commercial barrier of 125 µm are 925 h and 1400
h, respectively, while it is 880 h for ~10 nm RGA, demonstrating
the successful integration of the transparent RGA structure as
effective moisture barrier layer.

DISCUSSION
Here, we introduce a nanolaminate structure to improve on the
shortcomings and challenges of effective large-area barrier
formation via regular sequential layering of (transferred) graphene
reported previously. These reports have highlighted the chal-
lenges of controlled “layering” of transferred graphene including
the deleterious effect of polymer contamination.19,20 A number of
different processes to improve the performance of polymer-based
barrier layers via the addition of graphene have been reported,39

while O’Hern et al.26 have used polymer and ALD oxide deposition
to “seal” practically unavoidable defects in larger-area monolayer
graphene for nanofiltration applications. However, for barrier
applications, in order to achieve low WVTRs the defects/pinholes
in graphene cannot be effectively patched by polymers that show
inherent high WVTRs. Hence, a number of reports have looked at
the potential of ALD oxides, particularly AlOx, to decorate grain
boundaries and defects in graphene.27,30 Nevertheless, effective

“sealing” of larger holes in graphene with a simple ALD coverage
is challenging. In line with this previous literature, we show that
neither an ALD alumina coating onto graphene nor graphene
transferred onto a AlOx film are reliable and effective means to
straightforwardly achieve synergistic effects to significantly
enhance barrier performance over practically required large areas.
This is due to a range of reasons, including damage of the ALD
oxide layer during subsequent transfer and poor adhesion of ALD
oxide layers on the graphene.
Our new route of forming a nanolaminate structure by carrying

out another graphene CVD run (2nd growth, Fig. 2a) onto an AlOx/
G/Cu structure effectively leads to further graphene layer growth
fed by precursor permeation through the existing film. We
speculate that important thereby are not only the additional
graphene layers but also the “self-formation” of a compact and
contiguous structure combining the graphene and AlOx-based
film. This is also indicated by the suggested phase transformation
of the initially amorphous AlOx layer towards a nanocrystalline
AlOx-based oxycarbide upon the 2nd CVD step (Supplementary
Fig. 3). Such RGA layers show WVTRs of 7 × 10−3 g/m2/day with
optical transparency of >90% while being only ~10 nm thin, which
is significantly better than values reported in previous literature
(see Fig. 1b and Supplementary Table 1). This manifests proof-of-
the-concept effective heterogeneous interfacing. The introduced
layer structure could be used as repeat layer unit or as part of a
further multi-layer structure analogue to current commercial
barrier films. Therefore, not only permeation but also a range of
other properties can be tuned including adhesion and haze. We
demonstrate one of such a possibility to form multi-layer stacks (of
50 nm) by sandwiching RGA layer between two 20 nm thin AlOx

layers which shows superior barrier properties with a WVTR of
6.02 × 10−4 g/m2/day, comparable to values for commercial barrier
layers of 125 µm thickness. While our approach is scalable and

Fig. 4 Spectroscopy of graphene barrier films. Raman spectroscopy of graphene after first (a,b) and second (c,d) growth
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more error-tolerant than previous approaches, high throughput
manufacturing and handling of very large area ultra-thin films still
requires further innovation to assure high yield (see Supplemen-
tary Fig. 11). In summary, by combining catalytic CVD and ALD we
have demonstrated >90% transparent, contiguous and bendable
graphene-based nanolaminate barrier films that show WVTRs
below 7 × 10−3 g/m2/day while being ~10 nm thin and manually
handled in ambient. We systematically benchmarked these WVTRs
compared to existing literature and state-of-the-art barrier films
and demonstrated that the nanolaminate films can be effectively
integrated in OLEDs enabling half-life times of 880 h in ambient.
These results highlight the potential of such heterogeneous
material integration and the use of such nanolaminates as
building block to engineer new functionalities and form factors.

MATERIALS AND METHODS
Growth
Graphene growth was carried out by chemical vapor deposition (CVD) on
copper metal catalyst in a hot-wall reactor.29 A polycrystalline Cu foil (Alfa
Aesar, 25 μm thick, 99.999% purity) of 8 × 8 cm2 was blown dry with N2 to
remove any dust particles and used for electrochemical polishing (EP). For
EP, a mixture of H3PO4 and water was used (7:3) as electrolyte and a
constant voltage of 2.7 V was applied between cathode and anode for 8
min. After polishing, the foil was rinsed for few minutes, dipped in IPA for 5
min and then dried under N2 flow. The CVD parameters for the 1st and 2nd
growth (see Fig. 2a) were optimized to obtain complete coverage of the foil:
1st growth: annealing- H2:Ar::200:50 sccm for 90min, growth- H2:Ar:

CH4::35:200:15 sccm for 90min.
2nd growth: annealing- H2:Ar::200:50 sccm for 60min, growth- H2:Ar:

CH4::35:200:15 sccm for 90min.

The growth temperature was 970 °C. For the growth, CH4 at 0.1%
dilution in Ar was used to obtain a low nucleation density leading to an
larger average graphene grain size.40 A chamber pressure of 50 mbar was
maintained throughout the process.
For the re-growth, 10 nm AlOx was deposited on the G/Cu using a Beneq

TFS 200 atomic layer deposition (ALD) tool. The precursors for Al and
oxygen were TMA and water, respectively, set at 300 sccm flow rate. A
conformal growth of AlOx on G/Cu was optimized by utilizing few water
pulses which act as seed layer for the cyclic growth of the oxide.28,31

Transfer
The grown layers were transferred on planarized 125 µm thick PEN
substrate (Teijin DuPont Films™, roughness <2 nm) with standard PMMA-
based wet transfer method.41

Imaging and measurements
The cross-sectional HRTEM imaging was performed on a FEI Philips Tecnai
20. Plan-view TEM and SAED of suspended nanolaminates were done in a
Philips CM200 at 80 kV electron acceleration voltage. Raman spectra were
recorded using a Renishaw system at 532 nm wavelength.
The WVTR was calculated using Ca test. A corning glass of 10 × 10 cm2

was cleaned and dried in antechamber of glovebox along with graphene
samples at 60 °C overnight. The pressure-sensitive adhesive sealant was
applied on the glass with a centre opening of 3 × 3 cm2. A 100 nm Ca film
was evaporated in the centre using a shadow mask and then the G/PEN
sample was laminated gently across the Ca film. The quantitative study of
permeation was performed by monitoring optical transmission of the
glass/Ca/G/PEN stack. A rectangular laser beam (0.5 × 2 cm2) of wavelength
630 nm was used. The optical transmission of the cell was measured and
analysed using Beer–Lambert’s law to calculate the WVTR values. Unless
mentioned, these measurements were carried out at 22 °C and 50% RH.
Accelerated tests were also performed for selected samples at 38 °C and

Fig. 5 OLED fabrication and encapsulation with RGA barrier. a Schematic of stacks of organic layers in OLED and b final device. Dotted region
shows the RGA barrier of 7 × 7 cm2 and blue box indicates the position of active OLED. Demonstration of glowing OLED of 1 × 1 cm2 area for
the endurance test in ambient: c just after fabrication and d 1 week later
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90% RH. Traceability measurements were performed at the NPL facility
with a custom-built set-up based on cavity ring down spectroscopy6 (see
Supplementary Fig. 1). In addition, MOCON Aquatran-2 measurements
have been carried out for selective reference samples.

OLED fabrication
The OLED devices were PHOLED (phosphorescent OLED) with a structure
consisting of ITO(100 nm)/NPD(100 nm)/(TpBi:Ir(ppy)3)(80/20 nm)/LiF(1.4
nm)/Al(100 nm) on a glass substrate. ITO was used as anode; NPD N,N
′-Di(1-naphthyl)-N,N′-diphenyl-4,4′-diamine (also known as N,N′-Bis
(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB)), serves as hole trans-
port layer material; TpBi, 1,3,5-tris(N-phenylbenzimidizol-2-yl)benzene was
used as a “Host” doped with a green phosphorescent dopant of Ir(ppy)3,
Tris[2-phenylpyridinato-C2,N]iridium(III), commonly known as a green
phosphorescent emitter; LiF is used as electron injection layer material;
and aluminium as a cathode. The whole OLED fabrication was performed
in glovebox. The commercial barrier implemented was from OIKE Co. Ltd.
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