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Abstract—Adoption of Cloud Computing is on the rise[1]
and many datacenter operators adhere to strict energy efficiency
guidelines[2]. In this paper a novel approach to scheduling in
a Cloud Computing context is proposed. The algorithm Max-
min Fast Track (MXFT) revises the Max-min algorithm to better
support smaller tasks with stricter Service Level Agreements
(SLAs), which makes it more relevant to Cloud Computing.
MXFT is inspired by queuing in supermarkets, where there
is a fast lane for customers with a smaller number of items.
The algorithm outperforms Max-min in task execution times and
outperforms Min-min in overall makespan. A by-product of inves-
tigating this algorithm was the development of simulator called
“ScheduleSim”[3] which makes it simpler to prove a scheduling
algorithm before committing to a specific scheduling problem in
Cloud Computing and therefore might be a useful precursor to
experiments using the established simulator CloudSim[4].

Keywords—Cloud Computing, Scheduling, Max-min.

I. INTRODUCTION

A. Cloud Computing

Cloud Computing is the latest evolution from a history of
technologies that dominate our life today. The technologies
include Distributed Systems, Virtualisation, Web 2.0,
Service Orientated Computing and Utility Computing.
Cloud Computing is increasingly being adopted to provide
solutions to today’s demand for information and connectivity.
As an evolving technology, Cloud Computing has many
open challenges[5]. These include resource pooling/server
consolidation, SLAs, Quality of Service (QoS), energy
management, traffic management, stability and fault
tolerance[6][7]. These challenges are underpinned by
the NP-Complete problem of scheduling. There are two
important areas of scheduling which are allocating virtual
machines (VMs) to hosts (servers) and brokering cloudlets
(tasks) onto VMs [8][4].

One host can contain many VMs. When choosing the host
for a VM, the allocator must ensure the host has adequate
resources to support the VM. Resources to consider can be
one or any combination of cores, processing speed, RAM and
bandwidth. Consolidating the VMs (packing them onto few
hosts) means fewer hosts are required to be active.

Brokering cloudlets onto VMs is the process of deciding
which VMs should run which user applications. One VM
can process one cloudlet at a time. By effectively scheduling
cloudlets onto VMs the makespan (execution time) of
metatasks (groups of tasks) take to run can be reduced.

These areas of scheduling in the Cloud present important
opportunities for improving efficiency and performance. Server
utilisation has been cited as low as 6%[9]. Through improved
scheduling, tasks can be consolidated on fewer hosts to save
power. Fully relieving hosts is important because servers
consume 50% of their peak power at idle, which make it
detrimental to run servers with a light work load[10]. Globally,
datacenters consume approximately 1.5-2% of global electric-
ity and this is predicted to grow at a rate of 12% annually[11].
Based on that prediction from 2011, datacenters may now be
consuming as much as 3%-3.9% of global electricity.

B. Scheduling Algorithms

Scheduling algorithms are a variation of the NP-Complete
problem of fitting x objects into y space. There are many algo-
rithms proposed to solve this problem. An important difference
to note is whether an algorithm acts on metatasks (batched)
or individual tasks (online). Another important distinction to
make is whether an algorithm behaves statically or dynamically
- does the algorithm dynamically adapt it’s behaviour in
response to it’s environment or does it always do the same
thing? Another difference to note is how much information a
algorithm requires. For instance, whether the algorithm needs
to know execution time for each take and/or the performance
of each VM.

C. Aim and Structure

The aim of this paper is to propose a novel algorithm which
considers the Cloud scheduling problem of brokering cloudlets
on VMs. This paper is structured as follows. Related Work, this
section describes existing adaptions to the Max-min algorithm.
Proposed Algorithm, this section describes the proposed novel
algorithm. Description of ScheduleSim, this section details the
novel simulator created for experimentation. Methodology, the
methodology section describes the experiments carried out.
Results and Discussion, the section presents the results and
remarks of the findings. Conclusion and Future Work, this



section reflects on the findings and identifies some research
opportunities opened up by MXFT and ScheduleSim.

II. RELATED WORK

A. Max-min

The Max-min is popularly researched scheduling algo-
rithm. It assigns the tasks with the latest (Max) possible
completion time to the fastest (Min) VM. Numerous papers
find Max-min produces the best overall makespan but has poor
average task makespan due to placing numerous small tasks
on slower VMs. Max-min is the opposite of Min-min which
assigns the task earliest (Min) possible completion time to the
fastest (Min) VM.

B. Improved

The Max-min Improved algorithm improves and adapts the
Max-min algorithm for the Cloud[12]. By default the Max-min
assigns the tasks with the latest (Max) possible completion
time to the fastest (Min) VM. Max-min Improved assigns tasks
with shortest execution time to the VM that can complete it
earliest.

C. Selective

Etminani and Naghibzadeh proposed the Min-min
Max-min Selective algorithm for scheduling in Grid
environment[13]. The algorithm is based on the premise
that in certain scenarios Min-min can outperform Max-min.
It selects between Min-min and Max-min using standard
deviation of the expected completion times of tasks on
resources. The standard deviation is used to decide whether
this is a small or big task relative to the list. This allows the
algorithm to select the VM Max-min would have chosen or
the VM Min-min would have chosen. In the scenarios chosen,
the algorithm always performed as well as either Max-min or
Min-min.

D. Duplex/Greedy

Similar to the selective algorithm above, Duplex con-
siders both Max-min and Min-min and uses the better
solution[14][15]. Duplex executes both Max-min and Min-
min, then chooses the solution that achieves the smaller sum
of the predicted run-time - minimised over all VMs[16].
The difference to selective is that this algorithm chooses an
algorithm for the whole metatask rather than an algorithm for
each task.

E. RASA

RASA considers the distribution and scalability of
VMs[17]. Like the Selective and Duplex mentioned above
RASA also combines Max-min and Min-min. RASA uses
the Min-min to execute small tasks before the large tasks
and uses the Max-min algorithm to support concurrency. The
RASA algorithm alternates between Max-min and Min-min
task by task. If task one was assigned by Max-min, task two
would be assigned by Min-min.

Considering the existing research into the Max-min algo-
rithm, this paper builds on the Max-min Improved algorithm.

However, unlike Selective, Duplex and RASA (rather than
integrating the Min-min algorithm), this paper takes a novel
approach by using a fast track instead. The hypothesis is that
extending the Max-min algorithm in this way will improve
task execution makespan for small tasks.

III. PROPOSED ALGORITHM

In this paper we propose a new algorithm, Max-min Fast
Track (MXFT). MXFT extends Max-min Improved[12]. The
below broadly describes the steps in the algorithm.

• For each consumer find their delay times. As they may
already have tasks waiting.

• Sort new tasks - biggest tasks first.

• Place 60% of the number of tasks in the normal track
biggest tasks first.

• Place the remaining smaller task in the fast track.

• Add up the units of the task in the normal and fast
track.

• Work out the ratio of the units in the fast track to the
units in the normal track.

• Sort the consumers - fastest consumers first.

• Using the ratio, place consumers into the fast tack,
fastest first (skipping every other).

• Place the remaining consumer into the normal track.

• Perform the normal Max-min algorithm to place the
fast tracked tasks onto the fast track.

• Perform the normal Max-min algorithm to place the
normal tracked tasks onto the normal track.

Furthermore, Algorithm 1 shows the detailed algorithm.
Table I defines the variable used in the algorithm.

TABLE I. ALGORITHM NOTATION USED IN ALGORITHM 1.

R Resources, (Consumers or VM).
Rp Combined resources speed.
Rp
i

A resources speed (processing speed).
Rdi A resources delay, the time until it is free.
T A metatask (Tasks to schedule).
T l Number of tasks
Ti A task.
T si A tasks size.
NT Normal track Tasks.
FT Fast track Tasks.
NTj A task in normal track.
FTj A task in fast track
NT s Normal track tasks combined size.
FT s Fast track tasks combined size.
FR Fast track resources.
NR Normal track resources.
FRj A fast track resource.
NRj A normal track resource.
Eij Execution time of task on a resource.
Cij Completion time of a task on a resource.

IV. DESCRIPTION OF SCHEDULESIM

A. Design Features

ScheduleSim is an open source scheduling simulator
implemented in Java[3]. The simulator operates by using



Algorithm 1 Max-min Fast Track
for all R do
{Accumulate total speed for all resources.}
Rp+ = Rp

i
end for
sort tasks T biggest execution time first
for all T do
{Is index in first 60% of the number of tasks?}
if i < T l ∗ 0.6 then

append Ti to NT
{Accumulate total size of normal track tasks.}
NT s+ = T si

else
append Ti to FT
{Accumulate total size of fast track tasks.}
FT s+ = T si

end if
end for
{Calculate ratio of speed to size.}
α = Rp/(NT s + FT s)
{Calculate the size the fast track should have.}
λ = Rp ∗ FTs
sort R fastest first
for all R do

if FRp < λ then
append Ri to FR
skip Ri+1

else
append Ri to NR

end if
end for
for all FTi do

for all FRj do
{Find completion time.}
Cij = Eij + Rdj

end for
end for
while FT not empty do

find task Ti costs maximumexecutiontime
assign Ti to FRj which gives minimumcompletiontime
remove Ti from T
update Rdj
for all i do

update Cij
end for

end while
for all FTi do

for all FRj do
{Find completion time.}
Cij = Eij + Rdj

end for
end for
while NT not empty do

find task Ti costs maximumexecutiontime
assign Ti to NRj which gives minimumcompletiontime
remove Ti from T
update Rdj
for all i do

update Cij
end for

end while

discrete time steps instead of an event driven design. This
allows fine gain control and simplifies design.

ScheduleSim uses generic terminology (producer,tasks,
units, steps, schedulers and consumers) which prevents
association of ScheduleSim to a specific context. Producers
are where tasks are created. In Cloud terms this is where the
cloudlets from users enter the Cloud. Tasks represent load on
the Cloud, for instance, user applications to be ran. Schedulers
are where tasks are routed - these execute the scheduling
algorithms. Consumer are where tasks are processed, in Cloud
these could be seen as VMs.

Outside of scope is modelling scheduler processing

time. Schedulers are allowed to do as much processing as
required without time advancing. It should be noted that
network latency is not modelled - meaning that a task can
fully transverses the network from the producer through
any number of schedulers to a consumer in a single step.
ScheduleSim simulates a single producer which makes the
simulation inherently centralised. ScheduleSim is however
capable of modelling hierarchical tree structures with the
limitation that schedulers and consumers can only have only
one parent. Schedulers and consumers have buffers in which
they store tasks waiting to be processed. Consumers can
only actively process one task at a time. Tasks are measured
in units, the higher units the larger the task. Consumers
are rated with a units per step, this is how many units
they can decrement per step from the task they are actively
processing. Producers can submit a metatask at any time step.
The size and number of tasks in the metatask can be specified.

V. METHODOLOGY

Three experiments were conducted to look at the impact
of different variables. Five algorithms were compared - two
static algorithms (Random and Round Robin) and three
dynamic algorithms (Min-min Max-min and MXFT). Each
experiment was ran 10 times.

A. Gaussian Generation of Experiments

All experiments create tasks and consumers from normal
distribution. The continuous Gaussian formula (below) was
used to create a discrete distribution.

p(x) =
1

σ
√
2π
e−

1
2 (
x−µ
σ )2

When:
µ Determines the position of the normal distribution.
σ Determines width of the normal distribution.

Consumers and tasks are created to follow the distribution.
When creating either a task or consumer cause the target value
to be exceeded, execution stops.

When adding a task or a consumer to the collection of tasks
or consumers, would causes the target value to be exceeded,
execution stops. This means there is always less total consumer
speed or task size than the target.

B. Experiment One Setup

Experiment one varies the consumer µ. The consumer
µ variable changes the position of the peak of the normal
distribution. This changes speed of consumers created. II
details the variables and there corresponding values for this
experiment.

Fig. 1 shows created consumers of different sizes at
the start of the experiment. The Y axis shows number of
consumers and the X axis shows the speed of the consumers.
The arrow shows how the normal distribution is shifted as
the µ is altered. A normal distribution is used to weight the



TABLE II. EXPERIMENT ONE PARAMETERS

Variable Value(s)
Consumer Min Size 2
Consumer Max Size 32

Consumer µ 2 to 32, increments of 1
Consumer σ 6

Consumer Target Speed 4000
Job Min Size 20
Job Max Size 240

Job µ 110
Job σ 44

Job Target Size 200000

creation of consumers of different speeds. Note that although
the most common consumer speed varies over the course of
the experiments, the total combined speed stays at a consistent
level. The result of this is that in the first simulations there
are many lower speed consumers and in the later experiments
there are fewer but faster consumers.

Fig. 1. Experiment One Variable - showing the most common consumer
speed for the first simulations.

C. Experiment Two Setup

Experiment two varies the task µ - changing the size of
the tasks created. Table III shows the variables and there
corresponding values for this experiment.

TABLE III. EXPERIMENT TWO PARAMETERS

Variable Value(s)
Consumer Min Size 2
Consumer Max Size 32

Consumer µ 17
Consumer σ 6

Consumer Target Speed 4,000
Job Min Size 20
Job Max Size 240

Job µ 20 to 240, increments of 5
Job σ 44

Job Target Size 200,000

Again note that the total combined size of the tasks stay
at a consistent level. In Fig. 2 the Y axis shows number of
task and the X axis shows the size of the tasks.

D. Experiment Three Setup

Changes the count of tasks. This is achieved by increasing
the target for the total units of all tasks. This increases the
workload without changing the distribution. The experiment
runs the algorithm from with a few tasks to with many tasks.

Fig. 2. Experiment Two Variable - showing the most common task size for
the first simulation.

TABLE IV. EXPERIMENT THREE PARAMETERS

Variable Value(s)
Consumer Min Size 2
Consumer Max Size 32

Consumer µ 17
Consumer σ 6

Consumer Target Speed 4,000
Job Min Size 20
Job Max Size 240

Job µ 110
Job σ 44

Job Target Size 20,000 to 800,000, increments of 5,000

Table IV shows the variables and there corresponding values
for this experiment.

In Fig. 3 normal distribution does not change, instead the
counts of task changes. Fig. 3 (like in 2) the Y axis shows
number of tasks and the X axis shows the size of the tasks.

Fig. 3. Experiment Three Variable - showing the count of tasks for the first
simulation.

E. Performance Metrics

1) Overall Makespan: In verbose, the max/latest finishing-
time into the simulation for given tasks. m = Max{T fj |∀j ∈
T} where, m is the makespan, T fj is finishing time of task j
and T is all submitted tasks from all metatasks.

2) Task Makespan: This is simply the time the task took
to execute on a given consumer. Eij represents the execution
time of task j on i. This is the time the task took to run. In
verbose, T fj − T sj , where T sj is the start of execution for task
j and T fj is the finish time.



VI. RESULTS AND DISCUSSION

A. Experiment One

In experiment one, the variable investigated was Consumer
µ. The results in Fig. 4 show that the overall makespan reduces
with fewer but faster consumers. This could be because the
scheduling problem becomes less combinatorially complex -
supporting this is that gap between the algorithms becomes
narrower.

Note that in all of the result graphs the Random and
Round Robin Algorithms are omitted because performance
was significantly worst than Min-min, Max-min and MXFT
algorithms. This result was expected as the Random and
Round Robin algorithms are static algorithms and do not
consider consumer load like the other algorithms investigated.
In addition MXFT can seen to outperform Min-min.

Fig. 4. Experiment One Results - mean overall makespan of the algorithms
when given different distributions of consumers.

B. Experiment Two

The results in Fig. 5 show that the Max-min and MXFT
algorithms both are able to achieve a lower overall makespan
when provided with many small tasks opposed to a few large
tasks. An explanation for this is that the Max-min algorithm by
executing the few big tasks first, is left with the many smaller
tasks towards the end of the simulation that it can compact into
gaps created by the bigger tasks. Again MXFT can be seen to
outperform Min-min. Seeing Fig. 8 may help understanding.

C. Experiment Three

The of experiment 3 showed linear relationship between the
combined number of task units and the overall makespan. As
Fig. 4 and 5 Min-min has the smallest mean overall makespan
followed by Max-min and MXFT.

D. All Experiments

Tasks that fall in the fast track-able margin show reduced
makespans (execution times). Data collected over all exper-
iments shows that MXFT reduces task execution time for

Fig. 5. Experiment Two Results - mean overall makespan of the algorithms
when given different distributions of tasks.

small tasks up to the point where the tasks are too big to be
submitted to the fast track. This attribute of MXFT is useful
in the scenario that small task have stricter SLA agreements.
Fig. 7 and 6 show that MXFT outperforms Max-min in task
makespan.

Fig. 6. Mean task makespan of equi-width bins based on task size.

Fig. 7. Mean tasks makespans for each algorithm.



E. Reflection on Simulation

A unique benefit ScheduleSim is the ability to visualise
the Scheduling. This novel way of interpreting the data allows
for rapid and deep understanding of the implications of an
algorithm. In Fig. 8 you can see the scheduling of the MXFT
algorithm.

Fig. 8. Max-min Fast Track Visualised using ScheduleSim.

In Fig. 8, consumers (VMs) are represented as the black
horizontal lines on the left, the longer the line the higher
the units per step (MIPS) of Consumer (VM). Tasks are
represented over time starting on the left going towards the
right by the grey scale horizontal lines. The dashes along the
top are at intervals of ten steps. The start of the processing
of a task is marked by a cyan dot, the proceeding colour of
the task represents the size of the task, the darker the task is
harder it is to complete.

In Fig. 8 our algorithm can be seen to be performing
reasonably optimally. There is very little wasted throughput.
This is expected because the algorithm we extended (Max-
Min) is within 20% of optimal. Although it should be noted
this number was computed with small simulations as the
solution had to be brute forced to confirm the best solution[14].

Better than Max-min, our algorithm can be seen prioritising
small tasks. Every other fast server is elected as fast-track, and
can be seen running small tasks on the fastest consumers.

VII. FUTURE WORK AND CONCLUSION

This paper modifies the Max-min algorithm, however opti-
mising the proposed algorithm was not explored. For instance,
in this paper the “margin” value (the size of the Fast Track)
was fixed to 40% of the count of tasks. However it is likely that
adjusting this margin to suit variations in the tasks could yield
better results. In addition, we can improve performance by
using a more sophisticated approach to decide how to allocate
consumers to the fast track once the tasks have been divided.

In conclusion, MXFT offers a compromise between task
execution makespan of small tasks and overall makespan,
which could be beneficial in a Cloud Computing context. The
algorithm outperforms Max-min in task execution times and

outperforms Min-min in overall makespan. Another outcome
of this paper is the simulator ScheduleSim which provides a
simple environment for testing algorithms.
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