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Abstract  

 

This study compares and contrasts computational predictions against experimental 

data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides 

the comparative data-set, the specific flow of interest is an 8:1 abrupt circular 

contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken 

against increasing flow-rate, such a model is observed to capture significant vortex-

enhancement in these axisymmetric flows, reflecting well the counterpart 

experimental findings. In addition, rich vortex characteristics are reflected, through 

evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A 

systematic parametric analysis is conducted over three independent and governing 

material parameters in the model, whilst attempting to interpret rheological 

adjustment against such changes in flow-structure. Specifically, this has involved 

variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-

based dissipative parameter (λD). 

 

Keywords: Experimental data vs numerical predictions; Boger fluids; flow-structure 

and pressure-drop; circular contraction flow; lip-, salient- and elastic-corner vortices; 

swIM model 
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1. Introduction 

Amongst other things, this study addresses the problem of matching experimental 

findings with numerical prediction, covering vortex-structures and experimental-level 

pressure-drops. That is, as observed in 8:1 circular contraction flows by Nigen and 

Walters [1]. Close attention is paid to flow-field structure, evolving through flow-rate 

increase varying material parameters of solvent-fraction (β), finite-extensibility (L), 

and extensional-based dissipation (λD). Each of these material parameters provides an 

alternative form of rheological response, through extensional viscosity ( e ) and first 

normal-stress difference (N1). This permits some insight on the issue of dominant 

rheological behaviour within this complex flow setting of an 8:1 circular contraction 

geometry. The solvent-fraction and finite-extensibility parameter significantly adjust 

both levels of extensional viscosity and first normal-stress difference encountered. In 

contrast, the extensional-based dissipative parameter, only affects extensional 

response, and hence provides insight upon separability. 

  

 To address the relevant experimental background, Nigen and Walters [1] 

compared pressure-drops with increasing flow-rates for two sets of Boger fluids of 

constant shear viscosity, (fluids B1 and B2, polyacrylamide/water–glucose), and for 

two Newtonian liquids (fluids NS1 and NS2, glucose–water). Axisymmetric and 

planar contraction configurations were considered for different contraction-ratios 

(between 2 and 32), including both long- and short-die exit-lengths. Accordingly, a 

linear relationship was established between pressure-drop and flow-rate. For 

axisymmetric flows (not planar counterparts) and at relatively high flow-rates, 

differences in pressure-drops between Boger and Newtonian fluids became clearly 

apparent. These authors also observed that when the die-length was short, such 

apparent differences were exaggerated over long-length exit-dies. On vortex-

structure, the same authors observed vortex-enhancement, with Boger fluids and 

axisymmetric configurations, a feature absent in planar counterparts. The complex 

nature and dependency of vortex-enhancement, with its various aspects of vortex-

structure (salient-corner vortex, lip-vortex, and elastic-corner vortex behaviour), were 

found to depend on many factors:- material properties, level of flow-rate, geometry of 

contraction (planar or axisymmetric), contraction-ratio, shape of contraction (abrupt 

or rounded), and fluid inertia (see Boger et al. [2], Evans and Walters [3], Aboubacar 
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et al. [4], Rothstein and McKinley [5], Alves et al. [6], Oliveira et al. [7]). In 

particular, the importance of the extensional viscosity must be emphasized and the 

role it plays in the development of vortices (Boger and Walters [8], Boger et al. [2]). 

Furthermore, recent numerical predictions (Tamaddon-Jahromi et al. [9, 10], López-

Aguilar et al. [11, 12]) have confirmed earlier comments by Binding [13], Debbaut 

and Crochet [14], and Debbaut et al. [15] that, high extensional viscosity levels 

provide large increase in excess pressure-drop (epd). An overview of the development 

of numerical methods and their solutions, when applied to the flow of viscoelastic 

fluids through planar and axisymmetric contractions, has been described in great 

detail in Walters and Webster [16], Owens and Phillips [17] and López-Aguilar et al. 

[11, 18]. Such discussion addresses the position for Boger fluids, which manifest 

constant shear viscosity and strong strain-hardening. 

 

2. Governing equations and flow problem 

 

The relevant equations for the problem at hand are those for incompressible 

viscoelastic flow, considered under isothermal creeping-flow conditions. This 

involves field equations for mass conservation, momentum transport and an equation-

of-state for stress, represented in non-dimensional form (through scales expressed 

below) as: 

 

0 u ,          (1)  

Re Re ,


     


T p
t

u
u u +        (2) 

where 2  dT   represents the total-stress, which is itself split into a non-linear 

polymeric-contribution  , and a Newtonian solvent-component 2s d  . Here, we 

adopt the notation where, u, d, and p represent fluid-velocity, rate-of-deformation 

tensor 
†( ) / 2 u + u , and hydrodynamic pressure, respectively. The solvent-

fraction parameter  is defined as s

s p

=
+

β


 
, which modulates the solvent-to-

polymer content in the fluid composition. Then, s  and p are solvent and solute 

components, respectively, where zero shear-rate viscosity is 0 s p    . 

 

2.1 The swanINNFM(q) (or swIM) model  

The swanINNFM(q) (or swIM) model is a hybrid construction based on FENE-CR 

model (Finite Extendible Nonlinear Elasticity - Chilcott and Rallison, [19]) and 

White-Metzner models. As such, the relevant theory commences from that of the 
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FENE-CR model, with the following expression for polymeric-stress (  ), expressed 

in a conformation-tensor A-form as: 

Wi f (Tr( ))( I) 0.


  A A         (3) 

 The stretch function f (Tr( ))A  in (3) depends on the extensibility parameter L, and 

is given by: 

2

1
f (Tr( )) .

1 Tr( ) / L



A

A
        (4) 

 Then, Kramers rule interrelates polymeric-stress and configuration-tensor, viz. 

(1 )
f(Tr( ))( )

Wi
A A - I





 .        (5) 

 Above, Reynolds and Weissenberg Group numbers may be defined as: 

s pRe = U / ( + )  charL , and Wi = 
1U / charL , respectively. Accordingly, material 

parameter are -  representing fluid density, (λ1) a single averaged Maxwellian 

relaxation time and zero shear-rate viscosity of 0 s p    . Characteristic scales are 

taken of U  for velocity, and char cL R  as constriction width for length (thus 

constructing a characteristic time-scale as Lchar/U ). 

 

 The constitutive model used in the present study is that based on the FENE-CR 

model (as above), taken in combination with an extension-rate dependent viscosity, 

following the ideology of the White-Metzner model (White and Metzner [20]). The 

consequence is then the swanINNFM(q) model (or swIM, in short), (see Tamaddon-

Jahromi et al. [10], López-Aguilar et al. [11, 12], and Garduño et al. [21]). The 

White-Metzner model is derived from network theory of polymers, assuming a 

flowing polymer of long-chain molecules, connected in a continuously changing 

network-structure with temporary junctions. As such, White-Metzner viscosity ( ) 

may be taken as a function of rate (second and third) invariants, see Debbaut and 

Crochet [14], upon which extensional-hardening may be incorporated. 

 

 The upshot is a new constitutive equation (swIM), which may be expressed on 

total-stress as: 

(1 )
f (Tr( ))( ( ) 2 ( )

Wi
A A - I) d,


 


   T        (6) 

where the dissipative-function ( )   is defined as  
2

( ) 1 D     , introducing the 

extension-rate , with its invariant dependence, and a dissipative extensional 

material time-scale parameter of  D , see Tamaddon-Jahromi et al. [10] for further 
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detail. This completes the White-Metzner viscosity ( ) component, via the 

dissipative-function ( )  . 

 

2.2 Material properties with swIM  

The associated rheometrical functions for the swIM model can be represented as: 

2

1

1,

2(1 )Wi
,

f




shearN



          (7) 

2

2 2 2

f
3 ( ) 3 ( )(1 )

f f Wi 2Wi

 
    

  
e      

 
. 

 

 Hence below, we compare and contrast the particular characteristics, and variation 

under parameter adjustment, of the two important quantities of extensional viscosity 

(ηe) and first normal-stress difference (N1). Essentially, to furnish rheological 

explanation for the various flow phenomena observed in the complex flow scenarios 

under investigation. 

 

Solvent fraction adjustment: (1/9≤ β <0.9): Figure 1a,b provides the associated 

material functions for swIM[λD=0.075, L=5] with variation in solvent-fraction, 1/9≤ 

≤0.9.  Enhancement in ηe is clearly apparent within swIM(
 
l

D
≠0) properties, when 

compared to those for FENE-CR (swIM(
 
l

D
=0)). Larger values of solvent-fraction (β) 

correspond to dilute or less-entangled systems (larger solvent composition); whilst 

lower β-values correspond to highly-entangled systems (larger solute/polymeric 

composition). As such, larger values of stretch and stress are anticipated under greater 

polymeric content. The swIM model predicts a constant shear viscosity, whilst 

inheriting from FENE-CR, a first normal-stress difference that is weaker than the 

strong Oldroyd-B quadratic-form. Particularly, one notes the distinct increase in level 

of e  as the solvent-fraction (β) decreases. This is in evidence at 1  >5 units, where 

there is almost a 6-times increase in e  from β=0.9 to β=1/9. In contrast, there is 

monotonic decline apparent in N1 with increasing solvent-fraction. Here, and at the 

rate of 1  =3 units, N1 declines from O(10) units at β=1/9, to O(1) units at β=0.9. 
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Comparably under the same solvent-fraction adjustment, but at the slightly higher rate 

of 
1  =5 units, N1-values drop from O(20) to O(3) units. 

 

Extensibility parameter adjustment: (5≤ L <10) The counterpart characterisation for 

swIM[λD=0.075, β=0.9] with elevation of extensibility parameter (L), 5≤ L <10, is 

displayed in Figure 1c,d. Response with swIM for large-L asymptotes towards 

Oldroyd-B behaviour in both N1 and e . In particular, at low strain-rate (≤0.5 units), 

extensional viscosity response practically mirrors that of Oldroyd-B. Subsequently, 

and up to strain-rates of O(4) units, swIM- e  follows FENE-CR response; yet 

thereafter, showing significant departure between swIM- e  and FENE-CR- e .  

When comparing decreasing-β against rising-L, with its impact on extensional 

viscosity ( e ), Figure 1a,c, one may note the following: e  sharply rises at 
1 

=5*10-1 units under (L-increase), whilst equivalently, it rises somewhat earlier at 1 

=10-1 units with (β-decrease). In addition, the level of e  for L=5 (β=1/9) is almost 

two-times larger than for L=10 (β=0.9). From past experience, this would lead one to 

anticipate larger vortex growth/enhancement with β-decrease than with L-increase. 

The counterparts of first normal-stress difference response (N1) and shear-viscosity 

( , constant) of swIM replicate FENE-CR properties. Furthermore, considering 

weakening-characteristics of N1 at larger rates (as in Figure 1d with L-decrease), 

against that of (Figure 1b with β-increase), upon close inspection one can gather, that 

decreasing-L conveys even greater N1-weakening than does β-increase. 

 

Dissipative-parameter adjustment: (0.0≤ λD <1.0): Figure 2 provides the 

corresponding { e , N1} material functions for swIM[L=5, β=0.9] with λD–variation, 

0≤λD≤1.0. Here, a rising trend in extensional viscosity is clearly observed for 

swIM(λD>0), when compared to that for base-form, FENE-CR(λD=0). Yet, this is 

considerably less than Oldroyd-B response for strain-rates 1  ≥0.5 units. Notably, the 

(λD=0.1)-curve captures FENE-CR(λD=0) base-form up to its second limiting-plateau 

at high rates; it departs in response around strain-rates 1  ~O(3) units; then, rising 

sharply thereafter. Relative to subsequent elevation to (λD=0.4), this departure point 
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occurs somewhat earlier at 
1  ~0.9 units, thereby bypassing the characteristic plateau 

of FENE-CR(λD=0). Equivalently for λD=1.0, such departure has shifted by over a 

decade earlier to 
1  ~0.3 units. Once again, first normal-stress difference response 

(N1) and shear-viscosity (η) of swIM follow from FENE-CR, being independent of λD. 

Therefore, under (λD-adjustment), only extensional viscosity can be responsible for 

vortex-growth characteristics (as here, there is no impact on N1). This lies in distinct 

contrast to the counterpart position under {L, β}-adjustment. 

 

3. Algorithm and problem specification  

Figure 3a (domain) and Figure 4 (pressure-drop) illustrate the background detail to 

the flow problem at hand, that of the 8:1 circular abrupt contraction flow. This 

information indicates the target experimental data of Nigen and Walters [1] for the 

predictive solutions to replicate. Here, the pressure-drop ( P)  and flow-rate (Q) are 

scaled, respectively, using base-values extracted from [1] of P0=
510 Pa  and 

0 0 3

1g / s
Q Q

0.0014 g / mm

 
  

 
, taking the fluid density as ρ ~ 1.4 mg/mm3.  

One may derive a relationship between the alternative definitions used in the 

literature for Weissenberg number in experiments and computations, viz, 

experimentally 
1 1 13

( , 0.16 ) Exp Exp Exp

c

Q
Wi s

R
  


, and computationally 

1 1 13
( ) Sim Sim Sim

char

c

Q
Wi U L

R
  


. The principal reason for such differences lies in the 

choice made, in each case, between the particular factor within the Weissenberg 

number to hold fixed. Experimentally, it is often more convenient to work with a 

single fluid (fixing 
1

Exp ) and to vary flow-rate; whilst computationally, it is often 

more convenient to work at a fixed flow-rate (retaining fixed boundary conditions) 

and to vary the material relaxation time ( 1

Sim ). Nevertheless, one may establish a 

scaling factor between 
1

ExpWi and 
1

SimWi , in order to compare experimental and 

simulation findings on a one-to-one basis. In this particular instance, this provides an 

equivalent and relational scaling factor of 6.25, so that 
1 1

6.25Sim ExpWi Wi  ; see [10, 11] 

for a more detailed explanation. Note, in this study, findings are conveyed in terms of 
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a relative flow-rate (Q/Q0) measure, based on [1], whilst selecting 0 2237 c charR L .  

and 1 1Sim , whereby 
10 0 0352 SimQ / Q . Wi . 

The principal finite-element meshing used to represent this geometric 

configuration, of Figure 3a (medium mesh), reflects 1707 quadratic-elements and 

3634 nodes, with 22768 degrees-of-freedom (dof) . Mesh refinement has been 

employed over three levels of gradation h={coarse, medium, refined}, from which 

consistency upholds the medium mesh on solution precision. Overall, triangular 

element mesh structure is illustrated, in Figure 3a. There, the various mesh 

characteristics are quantified, with details recorded of total numbers of elements, 

nodes, and degrees of freedom. One notes that differences in solutions through mesh 

refinement (medium and refined meshes), with swIM[L=5, λD=0.075, =0.9] model, are 

found to be less than 0.2% in first normal stress difference (N1), along the centreline 

of the flow away from boundary layer influence, see Figure 3b. Hence, justifying the 

choice of the medium refined-mesh upon which to base the subsequent study. 

 Creeping flow conditions are assumed, so that (ReO(10−2)), wherein momentum 

convection considerations are negligible. To maintain compatibility with the 

composition of the Boger fluids used in the experiments, the base-setting for solvent-

fraction is taken as β=0.9. Subsequently, variation and departure in solvent-content is 

addressed, within this detailed parameter sensitivity analysis. Likewise, yet in 

contrast, variation is considered under extensibility-parameter (L), and dissipative 

extensional material time-scale parameter  D . 

 The numerical method presented in this article is based on a hybrid finite-element 

and a finite-volume algorithm, which follows a three-stage time-splitting semi-

implicit formulation. This scheme combines a finite-element (fe) discretisation 

(Taylor-Petrov-Galerkin/incremental Pressure-Correction) for the conservation-

momentum equation set, with a cell-vertex finite-volume (fv) scheme for the 

differential constitutive equation. The details of this algorithm have been extensively 

documented elsewhere (see, for example, Wapperom and Webster [22]; Belblidia et 

al. [23]; Webster et al. [24, 25]; López-Aguilar et al. [11, 18]). New and novel 

aspects to the computational procedures include - imposing velocity-gradient 

boundary conditions at the flow centreline (VGR-correction); a discrete correction for 

continuity; absolute-representation for the constitutive-model structure-function 
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(ABS-f); and adopting continuation through steady-state solutions whilst increasing 

flow-rate (see López-Aguilar et al. [11]). The first three of these additional strategies 

have been found to considerably enhance robustness in extraction of steady-state 

solutions. Flow-rate continuation is also an important consideration, when concerned 

with direct comparison between experimental results and numerical predictions. 

 

4. Discussion on Computational Predictions 

4.1 Numerical predictions versus experimental measurement – base-case 

scenario 

On pressure-drop: Figure 4 displays the charting of scaled experimental pressure-

drop data from Nigen and Walters [1], against present numerical predictions. In this, 

the dissipative extensional-viscous time-scales chosen are D ={0.05, 0.075, 0.1}. 

Henceforth, for clarity in notation, Q/Q0 is referred to as scaled (Q). Accordingly with 

all three values of D, one can observe that swIM–solutions well-capture the 

experimental data, whilst covering the low flow-rate regime of Q≤1. Shifting towards 

higher flow-rates, one notes that the pressure-drop(D=0.05)-solution underestimates 

the experimental position, whilst the pressure-drop(D=0.1)-solution provides 

overestimation. Then consistently, the intermediate pressure-drop(D=0.075)-solution 

provides a superior match to the experimental target data. Note in addition, that 

present Newtonian predictions agree well with Syrup 2-fluid pressure-drop data, 

extracted up to Q~1.5; subsequently, slightly underestimating experimental readings 

(with larger experimental error bars being anticipated at these higher rates). 

 

On vortex-activity: In addition for mid-range value (D=0.075)-solutions, Figure 5 

displays a canvas of three distinct phases of vortex build-up, a central feature to this 

analysis. This information identifies the construction of salient-corner vortices (scv); 

the emergence of lip-vortices (lv); their coalescence; and lastly, the establishment of 

elastic-corner-vortices (ecv). Such a position is strongly supported by the 

experimental evidence reported in Nigen and Walters [1]. 

 

 As such, inspecting the detail in Figure 5, salient-corner vortices are observed with 

Q-increase up to Q=0.09 units, of vortex intensity (vortex strength) 0.0064min  

units. Then, a lip-vortex first appears around Q=0.12 units, proving weaker in 

strength at this juncture than its salient-corner counterpart. Subsequently, the lip-
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vortex grows in strength to Q=0.15 units ( min =0.0103 units), whereupon it has 

almost doubled the rotational intensity of the salient-corner vortex. Furthermore, one 

discerns nearly one order of magnitude increase in lv-intensity, between these two 

flow-stations from Q=0.12 to Q=0.15 units. At and around the flow-rate of Q=0.2 

units, transition is captured, just prior to the engulfing of the weaker salient-corner 

vortex with the stronger lip-vortex. Beyond Q=0.2 units and with subsequent flow-

rate increase, these vortex patterns evolve into a substantial elastic-corner vortex, 

displaying features of an ever-growing reattachment-length on the upstream-wall, and 

a gradual switch in curvature of the vortex separation-line. This may be observed in 

the vortex-structures represented between Q=0.35 and Q=1.6 units, that reveal this 

switch between concave-shape to convex-shape.  

 Clearly, advancing steady-state solutions through an incremental continuation-

protocol and flow-rate (Q)-increase, as opposed to fluid-elasticity (1)-increase, has 

the tendency to generate considerably more exaggerated vortex-activity (see 

Tamaddon-Jahromi et al. [10], López-Aguilar et al. [11, 12]). For example, see 

Figure 5 for evidence on this matter, where vortex-intensity at Q=1.9 units ( min

=9.166 units) is almost two orders of magnitude larger than at Q=0.25 units ( min = 

0.0992 units). 

 

4.2 Parametric Variation: solvent-fraction (β), extensibility parameter (L), 

dissipative parameter (λD)  

In the present study, specific focus is placed upon the flow response under the 

influence of variation over these three rheometric factors: solvent-fraction (β), finite-

extensibility parameter (L), and the extensional-based dissipative parameter (λD). In 

such a complex contraction-flow setting, varying the solvent-fraction (β) and finite- 

extensibility parameter (L), significantly adjusts the pertaining levels of extensional 

viscosity ( e ) and first normal-stress differences (N1). Recall in addition, by 

increasing the extensional-based dissipative parameter (λD), one is able to discern the 

precise role that extensional viscosity (alone) has, upon associated solution-response 

(with no change in N1-properties in pure-shear). 
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Influence of solvent fraction adjustment: (1/9≤ β <0.9)  

The overall impact of solvent-fraction (β) adjustment on vortex-structure and 

intensity is presented in Figures 6-9. Such data covers solutions for fixed, yet ever 

rising flow-rates, with successive ramping between [Q=0.035, Q=0.09] (low), to 

[Q=0.12, Q=0.2] (medium), and finally, Q=1.6 units (high). 

 At the lowest flow-rate (Q=0.035, Figure 6a), only salient-corner vortex (scv) 

activity is detected; so being devoid of any lip-vortex (lv) activity. Vortex-size and 

intensity vary considerably with solvent-fraction reduction, from (β=0.9, highly-

dilute, min =0.0008) to (β=1/9, highly-polymeric, min =0.0020), substantiating a 

2.5-times boost in vortex-intensity. 

 With the second flow-rate reported (Q=0.09, Figure 6b), the first evidence for lip-

vortex formation is detected (lv, min =0.0047) as one transcends the various solvent-

fraction ratios to (β=0.7), see also Figure 9a. This is accompanied by salient-corner 

vortex presence (scv, min =0.0064). At slightly lower solvent-fractions of (β=0.6), 

such lip-vortex activity considerably strengthens (lv, min =0.0102), to even 

supersede the salient-corner vortex-intensity (scv, min =0.0087). Upon decreasing 

solvent-fraction somewhat further, from (β=0.6) to (β=0.5), the lip-vortex subsumes 

the salient-corner vortex, to emerge as a single strong elastic-corner vortex (ecv). 

These features are accompanied by the appearance of a convex-shaped vortex 

separation-line (see Figure 6b). One notes in passing that, ecv-intensity doubles from 

(β=0.5, min =0.0164) to (β=0.3, min =0.0307); and then subsequently, tripling to 

(β=1/9, min =0.0446). Previously, such vortex features have been observed 

experimentally by Boger et al. [2, 26], when switching between alternative 

composition Boger fluids of solvent-fractions (β=0.87) and (β=0.73). In that work, the 

circular contractions covered geometric aspect ratios 2:1, 4:1 and 16:1. 

 Next in Figure 7, one considers ramping of flow-rate to the more elevated levels of 

Q=0.12 and Q=0.2 units (medium Q-phase). Here, conspicuously at (Q=0.12, Figure 

7a), lip-vortex formation now appears earlier in β-decline, and hence, for more dilute 

systems at (β=0.9), see also Figure 9a. Subsequent trends are similar to the foregoing, 

noting that now, lip-vortex growth consumes and dominates scv-activity at the more-

dilute solvent-fraction of (β=0.7), whilst leading to the elastic-corner vortex-structure. 
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With concentration increase from (β=0.7 down to β=1/9), there is almost an 80% 

increase in ecv-intensity. During this phase, the more prominent shape-switch is 

beginning to appear in the elastic-corner vortex separation-line, from convex-to-

concave; this gradually becomes more prominent with decline in β-setting. 

 Still larger ecv-intensities are realised upon yet further increase in flow-rate, 

through stages Q={0.2, 0.56, 1.6} units (see Figures 7b, 8, 9, and Table 1; high Q-

phase). Table 1 also conveys the fringe behaviour of (scv/lv)-appearance and the 

pattern of how this occurs at ever decreasing flow-rate as solvent-fraction declines. 

Overall, one may gather that decline in solvent-fraction clearly stimulates 

considerable elevation in vortex-size, and this in turn, impacts on pressure-drop. So, 

for example, at a flow-rate Q=0.56 units, ecv-intensity (β=1/9, min =6.795 units) is 

almost 8-times that for (β=0.9, min =0.8853 units). One notes that, maxima in ecv-

intensity ( min =16.377 units) is captured with a solvent-fraction of (β=0.6) and a 

flow-rate of Q=1.6 units (beyond which stable steady-state solution become 

intractable). 

 On Q-increase at fixed solvent-fraction: From an alternative stance, one may also 

consider the position at fixed solvent-fraction and flow-rate increase. Then, for dilute-

systems at (β=0.9), with some 20% increase in flow-rate, from Q=0.12 to Q=0.15 

units, lv-intensity increases by nearly 85%; whilst comparably, scv-intensity increases 

by almost 40%. In contrast, for more concentrated systems at (β=1/9) and with the 

same increase in flow-rate, ecv-intensity rises by nearly 55%, see Figures 7a and 10a. 

At (β=0.9) in Figure 9a, one may also detect erratic behaviour in scv-growth with 

flow-rate rise (Q=0.09 to Q=0.15, medium rate-range), just prior to ecv-onset. Note 

also that, in this same figure, scv-decline at the intermediate flow-rate of Q=0.12 

(β=0.9) is accompanied with a lip-vortex. 

 On vortex-activity and N1: Furthermore, one may extract a degree of correlation 

between vortex-activity and first normal-stress difference N1, considering the solvent-

fraction range, 1/9≤≤0.9, for (Q=0.15 units) in Figure 10a. From this data, it is 

apparent that the various vortex-structures (scv, lv, and ecv) correlate closely with the 

corner-patterns in N1-fields. One may gather from this evidence that elasticity, 

through first normal-stress difference, strongly influences the formation of such 

vortex-structures (as observed in López-Aguilar et al. [12]). Furthermore in Figure 
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10b, various N1-profiles are presented for 1/9≤≤0.9; at (r=0) along the centreline (a 

pure-extension line); and at (r=1) along the downstream-wall (a pure-shear line) and 

upstream through the domain. When considering the centerline profile, there is almost 

six-fold increase in N1-maximum between β=0.9 (N1_max=12 units) to β=1/9 

(N1_max=70 units). This realization correlates well with the extensional viscosity plot 

for swIM of Figure 1a, where equivalently there is some six-fold increase in 
e  when 

1  >5. Moreover under solvent-fraction adjustment, along the downstream-wall 

(r=1) in shear, the N1-peak (183 units, β=1/9) near the contraction-zone is almost 

twelve times larger than its equivalent, N1-peak (15 units, β=0.9). 

 

Influence of finite extensibility adjustment: (5≤ L <10)  

With rising flow-rate (Q), Figure 11 conveys the influence on vortex-

structure/intensity of (L–rise). There are no significant changes to observe in scv-

intensities at relatively low-levels of flow-rate with increasing L (refer back to β-

decrease). Here, scv-intensity remains practically constant (~O(5*10-3) units), over 

the range 5≤L≤10, for Q=0.035 (not shown) up to Q=0.12 units (Figure 11b); also the 

separation-line remains concave in shape. In contrast, and over the same range of 

flow-rates, such vortex intensity is almost two-orders of magnitude larger with β-

adjustment (see Figures 6, 7a); indicating the relative importance between these two 

factors. 

 Furthermore, at Q=0.12 units, a lip-vortex appears when {L=5, β=0.9}, Figures 

11b, 12. With L–rise, from L=6 to L=10, this feature then merges into the salient-

corner (not elastic-corner) vortex; residing firmly within the salient-corner 

neighbourhood whilst tapering down to the re-entrant corner. This is a distinct and 

new feature to the low-rate scenario, occurring under L–rise and high solvent-

fraction. Such an observation is somewhat different to findings above, when 

decreasing solvent-fraction at Q=0.12 units (Figure 7a). To distinguish, under β-drop, 

lip-vortex activity evolves into an elastic-corner vortex; being then accompanied by 

adjustment in outer-shape of the vortex separation-line from concave-to-convex. 

These differences at Q=0.12 units may be associated with the earlier rate-rise in 

extensional viscosity under β-change, as opposed to L-parameter change. Note that, 

whilst solvent-fraction drops from β=0.9 to β=1/9, extensional viscosity levels 
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increase from ~O(7) to ~O(40) units. Alternatively, with L-rise from L=5 to L=10, e  

increases from ~O(7) to ~O(20) units; thus, barely half as much. Hence, one may 

attribute counterpart extensional viscosity response to these observed trends in 

vortex-growth. This feature becomes even more stark at yet larger flow-rates. For 

instance, consider the relative positions at flow-rate Q=0.56 units – there, β-decrease 

{from 0.9 to 1/9} has a much stronger influence on vortex-growth, when compared to 

L-increase {from L=5 to 10}. This can be gathered from solutions at the extremities: 

viz {L=5, β=1/9} vortex-intensity is almost three-times larger than for {L=10, β=0.9}. 

Moreover, interpreting from respective extensional viscosity plots (lower e  with L-

change in comparison to β-change), one may expect to gather more exaggerated 

solution response at larger rates with β-drop compared to L-rise (see Figure 8 versus 

Figure 11d; and Figure 9b versus Figure 12). 

 

Influence of dissipative-parameter adjustment: (0.0≤ λD <1.0) 

With rising flow-rate (Q), Figure 13 conveys the counterpart story to that above, at 

three selected flow-rates (Q=0.09, Q=0.12, and Q=0.15), now considering the 

influence of ( )D –variation on vortex-structure. Here, solvent-fraction is set at 

(β=0.9) and extensibility parameter is (L=5). One notes that vanishing-
D  implies 

collapse of swIM extensional-viscosity enhancement, then recovering to base-form 

FENE-CR. Larger 
D –factors correspond to extensional viscosity elevation when 

1  >0.5 (see Figure 2a). At Q=0.09 units and with rise in D  to D ~0.3, there is little 

significant change to note in scv-intensity. This may be associated with a delayed rise 

in e  up to 1  =1, which agrees with observations above under L-increase (small 

vortex-intensities at low-rates with delayed rise in e ). However, as flow-rate rises, it 

is clearly apparent that increase in D  stimulates considerable adjustment in vortex-

structure. One may observe such impact at Q=0.09 units, in switching between 

parameters { D =0.0 to D =0.8} (see Figure 13a and Figure 14a, 0<Q≤0.15). Under 

this Q-setting, each feature of salient-corner vortex, lip-vortex and elastic-corner 

vortex has been observed; as indicated in Figures 13, 14. Interestingly, one may detect 

the first signs of lip-vortex appearance, by monitoring reduction in scv-intensity, 

between D =0.1 to D =0.2 solutions (Figure 13a). For example at Q=0.09 units, no 
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lip-vortex appears with L-increase (β=0.9, 
D =0.075), whilst a lip-vortex is first 

detected with β-decrease at β=0.7 (L=5, 
D =0.075). Once more, this concurs with the 

various levels of e  observed under {
D , L, β}-adjustment. Again, at (Q=0.09 units), 

a lip-vortex first appears in advance of 
D  at 

D =0.3; this then significantly 

magnifies, by nearly an order-of-magnitude at 
D =0.6. Such a trend is also 

accompanied with strong adjustment in intensity of the salient-corner vortex. 

Moreover, and with still further elevation of dissipative-parameter to 
D =0.7, as 

earlier, the lip-vortex evolves into an elastic-corner vortex (displaying a 

concave/convex-shaped separation-line).  

 

 Furthermore, and upon increasing flow-rate to Q=0.12 units (Figure 13b, Figure 

14a, 0<Q≤0.15), such a lip-vortex appears earlier in 
D -adjustment; even at (

D =0.0). 

So, at (
D =0.0), lv-intensity is around twenty–fold that at (

D =0.4). This is the 

largest lip-vortex observed with {
D , L, β}-adjustment. In addition, considering 

instead elastic-corner vortex appearance, this also appears earlier at D =0.5 for 

Q=0.12 units; whilst in contrast and for still lower flow-rates of Q=0.09, such an 

elastic-corner vortex is more delayed and appears at D =0.8. This goes hand-in-hand 

with the sharp increase noted in ( )e , for 
D ≥0.5. 

Furthermore, with a higher level of flow-rate of Q=0.15 units and at D =0.1, the 

lv-intensity is nearly one order of magnitude larger than at the lower flow-rate of 

Q=0.12 units (Figure 13b, Figure 14a, 0<Q≤0.15). Beyond D =0.2 and with 

increasing D , the lip-vortex evolves into an elastic-corner vortex (see Figure 13c). 

From this position onwards, and with subsequent flow-rate rise, through stages 

Q={0.2, 25, 0.56, 1.05 1.6} units, a large ecv-intensity dominates. That is, with 

increasing D –parameter, from ( D =0) to ( D =0.5) (see vortex-intensity plot, Figure 

14b, 0.15<Q≤1.6)). For instance, at flow-rate Q=0.2 units, ecv-intensity ( D =0.5) is 

almost twice that for ( D =0.0). Moreover, amongst { D , L, β}-adjustment, the largest 

ecv-intensity ( min =18.053 units) has been recorded at Q=1.6 units, and that 

corresponds to D = 0.3, Figure 14b. 
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 So, overall with {β , L, 
D }-adjustment, major differences are detected in the 

medium rate-range with Q-rise. There, β-decrease shows significant differences in 

vortex- structure (convex-shaped vortex separation-line, larger vortex intensities and 

ecv-intensity); that is in comparison to L-increase (still concave-shaped) and 
D -

increase (concave-to-convex shaped). Yet, 
D -increase characteristics follow more 

closely to trends under β-decrease, than to L-increase; indicating again, the strong 

influence of ( )e  on vortex characteristics.  

 

 

 

5. Conclusions  

 
This work stands as a benchmark study on circular contraction flows, for Boger fluids 

covering a range of different rheological parameters - as in, solvent-fraction (β), 

finite-extensibility (L), and extensional-based dissipation (λD). The influence of 

extensional viscosity ( )e and first normal-stress difference (N1) on flow structure has 

been examined and demonstrated, through predictions with the swIM model, under 

constant shear viscosity characteristics.  

 

 Advancing steady-state solutions through an incremental continuation-protocol 

and flow-rate (Q)-increase, as opposed to the fluid-elasticity ( 1 )-increase, has the 

tendency to generate considerably more exaggerated vortex activity. From this 

investigation, findings have revealed that different flow-structures in salient-corner 

(scv), lip- (lv) and elastic-corner vortices (ecv), have each been successively 

observed. Hence, confirming the experimental findings of Nigen and Walters [1]. 

Here, with β-adjustment, first evidence of lip-vortex-formation is observed for 

Q=0.09 units at the solvent-fraction (β=0.7), whilst the latest evidence of lip-vortex-

formation is detected at β=0.9 for Q=0.15 units. In addition, at relatively low Q-levels 

(Q=0.12), vortex-intensity is almost two-orders of magnitude larger with β-

adjustment than with increasing L.  

 More generally, differences in vortex-growth characteristics and enhancement with 

{β, L, D } adjustment may be associated with earlier rate-rise and level in extensional 

viscosity under β-change, as opposed to L- and D -changes. Here, for meaningful 
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comparisons in ( )e across parameters, one must take care to adjust a single 

parameter at a time, and to balance others whilst doing so. Furthermore, one may 

detect the first signs of lip-vortex appearance, by monitoring reduction in scv-

intensity, when anticipating vortex-growth with increasing flow-rate. Moreover, it is 

shown that the various vortex-structures generated (scv, lv, and ecv) correlate closely 

with corner-patterns in N1-fields. One may gather from this evidence that elasticity, 

through localised first normal-stress difference, is responsible for the formation of 

such vortex-structures. Yet, in addition, one can infer from vortex-trends observed 

under 
D -increase (with characteristics of only e -increase, no N1-change), that e -

strengthening also strongly impacts on vortex-growth and structures formed. 

The common trend observed in vortex-growth with flow-rate rise is to form a 

salient-corner vortex at low-rates, which gives way to coexistence with lip-vortex 

formation in a low-to-mid rate range, prior to coalescence. Under {β, 
D }-change, 

the lip-vortex has been observed to dominate in this coalescence (convex-concave 

separation-line), in leading towards a strong elastic-corner vortex at larger flow-rates 

(with a concave separation-line). Alternatively, under L-rise, the coalescence emerges 

with salient-corner vortex characteristics. The eye of this vortex subsequently 

strengthens and gradually shifts towards the re-entrant corner through the low-to-mid 

rate range, mimicking a lip-vortex. Finally, at larger flow-rates, once again a strong 

elastic-corner vortex is recovered. The subtle balance in rheology, and most 

particularly in e , is primarily held responsible for these noted differences.  

 

 Additionally, a secondary aim of this study has been realised, in establishing 

agreement between the experimental pressure-drop data of Nigen and Walters [1] for 

8:1 contraction-flows, and swIM computational predictions. In itself, this work stands 

as a major step forward, advancing beyond our earlier studies on contraction-

expansion flows, where both rounded-corner and abrupt-corner configurations were 

presented (Tamaddon-Jahromi et al. [10], López-Aguilar et al. [11, 12]). 

Accordingly, one may observe that suitably large pressure-drops can be attained with 

appropriate selection of extensional time-scale λD. If anything, this study has tied 

down such excess pressure-drop generation, alongside its counterpart vortex activity. 
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Figure captions  

 
Table 1. Salient-corner (scv), lip-vortex (lv) and elastic corner (ecv) appearance, 0<Q/Q0≤1.6 

units, swIM[L=5, λD=0.075], various β 

 
Figure 1. a, c) Extensional viscosity, b, d) first normal-stress difference for Oldroyd-B and 

swIM models, D=[0.0, 0.075], a, b) 1/9≤ ≤0.9, L=5;  c, d) 5≤ L ≤10, β=0.9   

 

Figure 2. a) Extensional viscosity b) first normal-stress difference for Oldroyd-B and swIM 

models, λD=[0.0-1.0], β=0.9, L=5 

 

Figure 3. a) Zoomed mesh sections, 8:1 contraction geometry (Coarse: elements=868, 

nodes=1897, dof=11897; Medium: elements=1707, nodes=3634, dof=22768; Refined: 

elements=2762, nodes=5787, dof=36235); b) N1 at centerline (coarse, medium, refined 

solutions), Q=0.15 units; swIM[L=5, λD=0.075, =0.9]  

 

Figure 4. Pressure-drop vs flow-rate, Nigen and Walters, [1] 8:1 axisymmetric contraction, 

experimental data vs swIM(λD =0.05, 0.075, 0.1; L=5, β=0.9) predictions 

 

Figure 5. Streamlines, 0.035≤Q/Q0≤1.9; swIM[=0.9, L=5, λD=0.075] 

 

Figure 6. Streamlines, a) Q/Q0=0.035, b) Q/Q0=0.09; swIM[L=5, λD=0.075]; 1/9≤≤0.9 

 

Figure 7. Streamlines, a) Q/Q0=0.12, b) Q/Q0=0.2; swIM[L=5, λD=0.075]; 1/9≤≤0.9 

 

Figure 8. Streamlines, a) Q/Q0=0.56, b) Q/Q0=1.6; swIM[L=5, λD=0.075]; 1/9≤≤0.9 

 

Figure 9. a) Salient-corner (scv) and lip-vortex (lv)elastic corner b) elastic-corner (ecv) 

vortex intensity (ψmin), 0<Q/Q0≤1.6; swIM[L=5, λD=0.075]; 1/9≤≤0.9 

 

Figure 10 a) Streamlines ψ, first normal-stress difference N1-fields; b) first normal-stress 

difference N1-profiles at r=0 (symmetry line) and r=1; Q/Q0=0.15; swIM[L=5, λD=0.075]; 

1/9≤≤0.9 

 

Figure 11. Streamlines, a) Q/Q0=0.09, b) Q/Q0=0.12, .15, c) Q/Q0=0.2, .25, d) Q/Q0=0.56, 

1.6; swIM[[=0.9, λD=0.075], 5≤L≤10 
 

Figure 12. Vortex intensity (ψmin), 0<Q/Q0≤1.6; swIM[[=0.9, λD=0.075], 5≤L≤10 

 

Figure 13. Streamlines, a) Q/Q0=0.12, b) Q/Q0=0.12, c) 0.15; swIM[=0.9, L=5], various λD 

 

Figure 14. a) Salient, lip, and b) elastic-corner vortex intensity (ψmin); swIM[=0.9, L=5], 

0<Q/Q0≤1.6, various λD 
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Table 1. Salient-corner (scv), lip-vortex (lv) and elastic corner (ecv) appearance, 0<Q/Q0≤1.6 units; 

swIM[L=5, λD=0.075], various β 

 

 

 

 

Q/Q0 β 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 1/9 

0.035 scv scv scv scv scv scv scv scv scv 

0.09 scv scv scv/lv scv/lv ecv ecv ecv ecv ecv 

0.12 scv/lv scv/lv ecv ecv ecv ecv ecv ecv ecv 

0.15 scv/lv ecv ecv ecv ecv ecv ecv ecv ecv 

0.2, 0.56 ecv ecv ecv ecv ecv ecv ecv ecv ecv 

1.6 ecv ecv ecv ecv - - - - - 
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Figure 1. a), c) Extensional viscosity; b), d) first normal-stress difference; Oldroyd-B and swIM models; 

D=[0.0, 0.075], a),b) 1/9≤ ≤0.9, L=5;  c), d) 5≤ L ≤10, β=0.9   

-variation L-variation 

ηe 

N1 

a) 

b)  

c) 

d)  
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λD-variation a) 

Figure 2. a) Extensional viscosity b) first normal-stress difference for Oldroyd-B and swIM models, 

λD=[0.0-1.0], β=0.9, L=5 

b)  
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Figure 3 a) Contraction mesh sections, 8:1 contraction (Coarse: elements=868, nodes=1897, dof=11897; Medium: 

elements=1707, nodes=3634, dof=22768; Refined: elements=2762, nodes=5787, dof=36235);  

b) N1 at centerline (coarse, medium, refined solutions), Q=0.15 units; swIM[L=5, λD=0.075, =0.9]  
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Figure 4. Pressure-drop vs flow-rate, Nigen and Walters [1], 8:1 axisymmetric contraction,  

experimental data vs swIM[(λD =0.05, 0.075, 0.1; L=5, β=0.9)] predictions 
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Figure 9. a) Salient (scv), lip (lv) and b) elastic-corner (ecv) vortex intensity (ψmin), 0<Q/Q0≤1.6;  

swIM[L=5, λD=0.075]; 1/9≤≤0.9 
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L - variation 

  

Figure 12. Vortex intensity (ψmin), 0<Q/Q0≤1.6; swIM[[=0.9, λD=0.075], 5≤L≤10 
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Figure 13. Streamlines, a) Q/Q0=0.12, b) Q/Q0=0.12, c) 0.15; swIM[=0.9, L=5], various λD 
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swIM[=0.9, L=5], 0<Q/Q0≤1.6, various λD 


