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Towards colloidal spintronics through Rashba
spin-orbit interaction in lead sulphide nanosheets
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Employing the spin degree of freedom of charge carriers offers the possibility to extend the

functionality of conventional electronic devices, while colloidal chemistry can be used to

synthesize inexpensive and tunable nanomaterials. Here, in order to benefit from both con-

cepts, we investigate Rashba spin–orbit interaction in colloidal lead sulphide nanosheets by

electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets

possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken

by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to

Rashba-type band splitting in momentum space at the M points, which results in an

unconventional selection mechanism for the excitation of the carriers. The effect, which is

supported by simulations of the band structure using density functional theory, can be tuned

by the gate electric field and by the thickness of the sheets. Spin-related electrical transport

phenomena in colloidal materials open a promising pathway towards future inexpensive

spintronic devices.
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T
hough in the last decades developments in semiconductor
device engineering led to constantly improved perfor-
mances, nowadays it is very difficult to keep this pace1,2.

Further challenges in terms of manufacturing cost, flexibility,
power consumption and device functionality are ahead, for
example, for the internet of things2,3. Recent ideas try to address
these issues by the introduction of new materials as the active
semiconductor channel or new mechanisms of information
processing2,4. One solution is replacing the electron charge by
its spin as an information carrier4,5. For this purpose, materials
with strong spin–orbit coupling (SOC) are particularly interesting
since in these materials spin orientation can be manipulated by
an external electrical field5–8. In semiconductors, SOC can
originate from bulk inversion asymmetry (Dresselhaus SOC) or
from structural inversion asymmetry (Rashba SOC)5–7,9,10. Since
Rashba SOC can be influenced by customizing the structure
(for example, by confining the material) or by a gate voltage, it is
being studied comprehensively5–7,10. As a further development in
data processing, the concept of valleytronics has been introduced
for materials with multiple valleys (multiple extrema with equal
energies) in the band structure11–14. By controlling the number of
carriers in each valley, a so-called valley-polarized current can be
produced, which leads to an additional degree of freedom4,12–14.
As a consequence of spin–valley coupling in these materials, it has
been shown that the valleys can be also populated selectively
based on the spin of the carriers11–13,15.

Up to now, spin/valley-dependent transport phenomena have
been investigated mostly in two-dimensional nanostructures
prepared by industry-incompatible methods (for example,
mechanical exfoliation) or by cost-intensive instruments such as

molecular-beam epitaxy6,9,16. In this work, we demonstrate the
presence of easily accessible SOC in nanomaterials synthesized by
colloidal chemistry. The solution-based synthesis of colloidal
nanomaterials offers enormous opportunities in the production of
inexpensive and high-quality crystals for electronic and, as we will
show, spintronic devices17–19. Colloidal lead sulphide (PbS)
nanosheets as continuous 2D crystals with promising properties
do not suffer from tunnel barriers like other colloidal systems,
such as thin films of nanoparticles17,18,20. However, their rock
salt crystal structure is centrosymmetric. In order to break the
inversion symmetry, we apply an electric field (gate) to the crystal
as well as different boundaries underneath and above the PbS
nanosheet (SiO2 and vacuum)6,21. In combination with strong
SOC, this suggests Rashba-type band splitting, which is confirmed
by Kohn-Sham density functional theory (KS-DFT). In PbS
nanosheets, the band splitting occurs in momentum space at the
four M points. Upon illumination with circularly polarized light,
the circular photo-galvanic effect (CPGE) leads to a net current
that can be explained by an unconventional selection mechanism,
depending on the spin orientation of the carriers. The observed
effect is precisely tunable by changing the gate voltage or by
changing the confinement (thickness of the sheets).

Results
Circular photo-galvanic measurements on the nanosheets. We
synthesized PbS nanosheets with lateral dimensions of up to 5mm
and tunable thickness of 2–20 nm by introducing different
amounts of oleic acid to the synthesis19,20,22 (for crystallographic
characterization see Supplementary Fig. 1). The height of the
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Figure 1 | Circular photo-galvanic effect in lead sulfide nanosheet devices. (a) Schematic image of the experimental setup. The semiconductor channel

(PbS nanosheet, shown in grey) experiences an electric field and asymmetric interfaces (vacuum and SiO2, shown in blue) and is illuminated with circularly

polarized light. (b) Breaking the inversion symmetry in a PbS crystal. The symmetry is reduced from Oh point group (for the bulk crystal) to C4v (2D crystal

with external asymmetries). The blue and violet spheres represent lead and sulfur atoms respectively. The arrow shows the asymmetry in the crystal,

including the gate electric field and the asymmetric interfaces. (c) Photocurrent at zero bias as a function of the quarter-wave plate angle (with a small

non-zero incidence illumination angle). Fitting the results shows the existence of a non-zero CPGE current, suggested to originate from Rashba SOC in PbS

nanosheets (LPGE: linear photo-galvanic effect). The arrows show the quarter-wave plate angles, in which the light is circularly or linearly polarized.
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nanosheets directly determines the band gap of the material
by confinement23. This tunability is of advantage for the
performance of applications such as transistors, photodetectors
and solar cells17,18,20,23. The synthesis of the nanosheets is
independent of the fabrication of the devices, which makes it
practical for industrial applications. The nanosheets were
spin-coated on Si/SiO2 substrates and contacted individually with
Au electrodes by electron-beam lithography (see Supplementary
Fig. 2). The contacts were placed in o1104 direction of the
crystal (corresponding to the M point direction in k-space) which
is also the lateral growth direction of the nanosheets.

In order to evidence the possibility of spin manipulation in PbS
nanosheets, we performed measurements on the CPGE as a
function of light polarization6,7,9–12. For this purpose, photo-
excited charge carriers with preferred spin orientation were
prepared by illumination with circularly polarized light produced
by a linearly polarized laser beam (l¼ 627 nm) through a
quarter-wave plate. The helicity of the exciting light was
determined by the angle of the quarter-wave plate, which
controls the spin orientation of the carriers. The beam was
pointed to the sample obliquely in the yz plane (x is the direction
of the current flow, z is normal to the nanosheet and y is
perpendicular to these two).

Figure 1a schematically illustrates the experimental setup.
This configuration provides the required inversion asymmetry
(including the gate electric field and asymmetric vertical
boundaries) in order to detect the CPGE. Bulk PbS with a rock
salt crystal structure obeys the Oh point group symmetry which is
inversion symmetric. By confining the material in z direction
(height of the nanosheets), the symmetry is reduced first to the
D4h point group and then, by application of asymmetric vertical
interfaces on top and underneath (SiO2 and vacuum) as well as by
the gate electric field, to C4v. For this symmetry group, the
inversion centre is absent, which supports the band splitting by
SOC (Fig. 1b). Figure 1c depicts the variation of the photocurrent
with changing the angle of the quarter-wave plate. It shows that
illumination of the unbiased devices can yield a non-zero helicity-
dependent photocurrent whose direction can be reversed by
changing the light polarization from right-handed to left-handed,
which is a sign for a spin-polarized current, generated as a
consequence of spin injection into a spin–orbit coupled
system5,6,12. In addition to that, other polarization-independent
currents are detected which should be distinguished from the
spin-related current.

The generated photocurrent is described by the expression

Jtotal ¼ J0þ JCPGEsinð2jÞþ JLPGEsinð2jÞcosð2jÞ ð1Þ

which can be employed for fitting the measurement results to
determine the contribution of each effect5,9–12,16. In the equation,
J0 is the background current, resulting from, for example,
photovoltaic effects, the Damber effect or hot electron injection.
This component is independent of the helicity of the light. JLPGE

is the amplitude of the linear photo-galvanic effect which is due to
asymmetric scattering of electrons along the conduction path.
Although the LPGE is a function of the quarter-wave plate angle,
it is equal for the right-handed and left-handed polarized light,
which implies its independency from the helicity or respectively
the spin orientation of the carriers. The oscillation period of
the LPGE is equal to 90�. Eventually, JCPGE is the amplitude of the
CPGE, the current which is attributed to the population of the
conduction band with spin-polarized charge carriers. In contrast
to the LPGE, the CPGE oscillates with a period of 180�. It is
maximum at a helicity of þ 1 (45� and 225�), minimum when the
helicity is � 1 (135� and 315�) and zero when the light is linearly
polarized (0�, 90�, 180� and 270�) (refs 11,16).

Origin of the effect. Generally, different phenomena can lead
to the existence of a CPGE in a 2D material, including
Rashba/Dresselhaus SOC5,6,9, orbital interactions16, spin–valley
coupling11,12 or topological surface states24. Even in
centrosymmetric materials with negligible SOC, in silicon or
graphene for instance, this effect has been detected due to the
asymmetry at the edges or contacts16,25 (in-plane asymmetries).
Lead sulphide as a crystal including high atomic-number Pb
atoms (Z(Pb)¼ 82) can be considered as having strong SOC15,26.
Further, the band structure of 2D PbS consists of a rectangular
Brillouin zone with four equal valleys at the corners, the M points.
By selectively exciting the carriers in each valley, a valley-
polarized current might occur11–13,15,27. Such effects can be
detected by the CPGE current since the angular momentum of
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Figure 2 | Origin of the circular photo-galvanic effect in lead sulfide

nanosheets. (a) The generated CPGE by shadowing different positions of

the device, and with different illumination angles. The blue and the red lines

represent the high and the low illumination angles respectively. The letters

indicate the position of the centre of the shadow. The contribution of the

vertical asymmetry and the enhanced in-plane asymmetry can be observed

(Ivertical and Iin-plane). The inset is a schematic top view of the device to

illustrate the position of the shadow during the experiment. In position D

the whole device is covered, in C and E half of the device (Ishadow), and A, B,

F, and G represent the full illumination of the device (Ifull). (b) Illustration of

the possible selection mechanism for exciting the carriers over the band

gap. Illumination of the PbS crystal with circularly polarized light leads to

transitions in both valleys but excitation of only one spin orientation.

(kM,M’: momentum of the excited carriers in a valley). Here, the angular

momentum of exciting photons is � 1, which is added to the spin-angular

momentum of electrons. The states are labeled as |J,M_J4.
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circularly polarized photons couples to the spin or valley index
of the carriers, or leads to asymmetric scattering of the carriers.
In any case, an inversion asymmetry must be present in the
structure, which results in an asymmetric distribution of carriers
in momentum space or asymmetric movement of the carriers in a
certain direction. Therefore, a net CPGE current can be
observed5,6,9–12,16,25.

As the first step to explain the effect, we show that it mainly
originates from the imposed vertical asymmetry to the crystal and
not from the contacts/edges. For this purpose, we measured the
CPGE current while we shadowed different parts of the device,
to control the position of the beam and to intentionally enhance
the asymmetry between the contacts/edges. Figure 2a shows the
measured CPGE according to the position of the shadow. The
measurements were done with a high incidence angle (about
15 degrees, the max. incidence angle due to the size of the view
port of the vacuum chamber) and a lower one (around 6 degrees).
By moving the shadow from one side of the device to the other
one under the low incident angle, it is possible to reverse the
direction of the in-plane asymmetry12,16,24,25, expressed by a sign
change of the shadowed CPGE current Ishadow (Fig. 2a, positions
C and E). On the other hand, the function shows an offset which
implies that a part of the current is independent of the in-plane
asymmetry. In the following, this part will be shown to be the
current originating from the vertical asymmetry (Ivertical), caused
by the two interfaces and the gate. By increasing the incidence
angle, firstly it can be observed that the unshadowed current (Ifull)
increases, which shows that the vertical asymmetry is an effective
factor for generating Ifull. In fact, to observe the CPGE based
on in-plane asymmetry (Iin-plane), illumination should be
perpendicular to the surface of the nanosheets. For a vertical
asymmetry, such illumination leads to a zero CPGE current, and
Ivertical increases with increasing the incidence angle6,12,16,24–26,
which explains the increase of the measured Ifull with the larger
angle. When the shadow is applied, the imbalance of Ishadow

(difference between the currents in positions C and E) becomes

more pronounced with the higher illumination angle. It shows
that Ivertical has a larger part in Ishadow, while Iin-plane is almost
constant. By shadowing, we cover half of the device, which
decreases the effective part of the crystal to generate Ivertical.
In contrast, it leads to a higher Iin-plane, as we magnify the
asymmetry. Since the share of Ivertical is larger now, Ishadow

becomes less than Ifull (for the ideal contribution of Ivertical and
Iin-plane see Supplementary Fig. 3). All of these observations prove
that the vertical asymmetry is indeed able to generate a net CPGE
current by changing the distribution of the carriers in the band
structure, although they do not exclude the possibility of local
in-plane asymmetries, such as contacts or edges.

Simulation of the band structure and the selection mechanism.
In order to further investigate the origin of CPGE in PbS
nanosheets, we calculated the band structure of clean PbS (001)
slabs (with 15 atomic layers) including an external electric
field using DFT based on the general-gradient approximation,
employing the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional28 (see Supplementary Fig. 4). SOC was
taken into account by using fully relativistic projector-
augmented-wave (PAW) potentials. It should be pointed out
that when SOC is considered, general-gradient approximation
functionals are known to underestimate the band gap in bulk PbS
and even predict a band inversion29,30. The usage of hybrid
functionals (for example, Heyd–Scuseria–Ernzerhof) or many-
body corrections like the GW approximation were shown to
improve the agreement with experimental band gaps, but they
are much more computationally demanding than pure DFT29,30.
The qualitative trend of the influence of an external electric field
on the band structure is expected to be described well enough by
PBE to get reliable results, as this functional was already used to
describe Rashba systems31–33.

Without an external electric field, inversion symmetry is
maintained, and no Rashba spin splitting can be observed along
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Figure 3 | Dependency of the effect on the back-gate voltage. (a) Dependence of different components of the photocurrent on the gate voltage.

Similar gate dependencies can be observed for J0, JLPGE and JCPGE (background current, linear photo-galvanic effect and circular photo-galvanic effect).

(b) The measured CPGE current and its normalized value as a function of back-gate voltages for an 18 nm thick sheet. (c) Calculated (DFT) valence

and conduction bands at the M point with application of different external electric fields—modelling the gate (15 layers). S denotes the path from G to M.

The red and the blue colours denote the sign of the spin projection on the in-plane axis perpendicular to the G–M path (oSi>S4).The valence-band

maximum was set to 0 eV.
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the G–M–X path (see Supplementary Fig. 5a). At the band gap
(M point), the two highest filled bands split in direction of the G
point. Adding an external electric field along the surface normal
breaks the inversion symmetry, and Rashba spin splitting occurs
at the M point (see Supplementary Fig. 5b), which is confirmed
by a spin texture typical for the Rashba effect (see Supplementary
Fig. 5c). The Rashba spin splitting of the highest filled band
differs from the splitting of the second highest filled band. Rashba
spin splitting can be also observed for the conduction band.

The calculated band structure implies that by exciting the
material with right-handed (left-handed) polarized light, that is
photons with angular momentum of þ 1 (� 1), some of the
possible transitions between the valence and conduction bands
are forbidden since energy and angular momentum must be
conserved during the transition. The possible excitation mechan-
ism of the carriers over the band gap is illustrated schematically
in Fig. 2b. The bands are split around the M point. However,
in contrast to other multi-valley materials, the splitting occurs in
momentum space and the split bands, corresponding to the two
opposite spin orientations, have equal energies. For materials with
rectangular Brillouin zone, both valleys (M and M0) represent
similar orbital characters. Therefore, they are not selectively
populated by adjusting the angular momentum of the exciting
photons (which is done by selecting the handedness of the
circular polarization)27. On the other hand, by splitting the bands
in momentum space, the angular momentum of the split bands
becomes different for each spin. As it can be observed in
Supplementary Fig. 6, total angular momentum of the valence
band and the conduction band are respectively 3/2 and 1/2 with
spin-angular momentum of 1/2 (ref. 34). By controlling the
helicity of the exciting light, carriers can be selectively excited
based on their spin orientation12,14,26. Upon illumination with
circularly polarized light and population of the conduction band
with spin-polarized electrons, the number of excited carriers is
equal in the M valley and in the M0 valley, but the linear
momentum differs, since splitting is asymmetric at these two
points. For instance, the spin-up band is shifted away from the
Gamma point (to higher momentum) at the M point, but towards
the Gamma point (to lower momentum) at M0. Therefore, spin-
up electrons at the M point have higher momentum compared to
those at the M0 point. This results in the generation of the spin-
polarized CPGE current based on Rashba SOC which splits the
valleys of the band structure.

The current generated by the CPGE in the direction of a
specific crystal orientation (l) can be expressed by

JCPGE� l ¼
X

m

wlmemE2
0Pcirc; ð2Þ

where m is one of the different crystal orientations (x, y, z), w is the
CPGE second-rank pseudo tensor which is directly affected by the
crystal asymmetry, E0 is the electric field (complex amplitude)
of the light wave, Pcirc is the helicity of the circularly polarized
light (degree of polarization), e¼ q/q is the unit vector for the
light propagation, and q is the wave vector of the light in
the medium5,6,9. For the C4v point group, the pseudo tensor
w has non-zero elements, which results in a non-zero CPGE
current35,36.

Gate dependency of the effect. Having introduced confinement
and symmetry breaking by the gate electric field as the factors
influencing the SOC, we separately studied these elements under
the low illumination angle in order to tune the band splitting in
the PbS nanosheets. Figure 3 shows the dependence of the CPGE
current on the gate voltage (see also Supplementary Fig. 7).
Changing the gate voltage can influence the photocurrent in

two ways: First, it affects the band splitting by modification of
the inversion asymmetry5,6,12. Second, the band alignment of the
material with the contact metals is altered, which results in
changing the extraction probability and the recombination rate
of all the excited carriers including the spin-polarized ones37–39.
The former is observable only for the CPGE current, whereas the
latter is a general effect and can govern all three components of
the photocurrent (J0, JCPGE, JLPGE). As a result, comparable
responses to the gate can be observed for these components
(Fig. 3a). In order to extract the pure gate dependence of SOC, the
change in the band alignment or any other spin-independent
effect should be excluded from the results. This can be done by
normalizing the CPGE current by the background current6,9,16.
The normalized value represents the internal tunability of the
band splitting by the gate voltage.

As shown in Fig. 3b, by sweeping the back-gate voltage from
� 8 to 8 V, the CPGE current of the nanosheets changes
significantly. The gate dependency of the normalized CPGE
current also shows the clear tunability of the band splitting by
the gate electric field. By changing the electric field in the
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semiconductor channel, resulting from the back gate, the
potential profile of the confined crystal can be modulated6,
resulting in the modulation of the degree of reduction in
symmetry. As a result, by increasing the gate voltage, a larger
band splitting can be expected12, which causes a wider
distribution of the carriers in momentum space and hence a
higher CPGE current is generated. The DFT band structure
calculations show that the strength of the gate electric field can
modify the Rashba splitting of the valence and conduction bands
(Fig. 3c). The gate effect is superimposed on the boundary
conditions resulting from the asymmetric interfaces. Therefore,
even at zero gate voltage, a CPGE current is generated (Fig. 3b).
Dependency on the gate voltage is another confirmation that the
vertical asymmetry is effective in the CPGE, since the vertical
electric field is not expected to affect the in-plane asymmetry.

Thickness dependency of the effect. Moreover, we performed the
CPGE measurements on devices based on nanosheets with
three different thicknesses of 6, 9, and 18 nm to investigate the
influence of the quantum confinement on the Rashba effect
(Fig. 4a and Supplementary Fig. 8). By sweeping the gate voltage,
it can be seen that thicker sheets produce higher CPGE currents.
The character of the gate dependency for the CPGE current is
similar to the background current for all devices. Since the
channel dimensions (thickness and width) are different for each
sample, the absorption capability of the devices is different
as well. In order to make the results comparable, the CPGE
normalized by the background current was calculated (Fig. 4b).
The measurements indicate that by decreasing the thickness of
the sheets, which corresponds to an increase of the confinement
effect, structural inversion asymmetry and consequently the
Rashba SOC becomes more pronounced in PbS nanosheets.
Despite the different gate dependencies of the CPGE currents,
all thicknesses of nanosheets show comparable gateabilities for
the normalized CPGE. To clearly see the effect of the thickness
on the vertical asymmetry, tunability of the normalized CPGE
with the gate voltage can be observed, which is only a character of
the band splitting due to the vertical asymmetry and excludes the
effects of any in-plane asymmetry. As shown in Fig. 4b, the
thinner the nanosheet, the more effective is the gate voltage. By
sweeping the back-gate voltage from � 8 to 8 V, the normalized
CPGE for the 6 nm sheets changes six times more than that for
the 18 nm sheets. The gate voltage and the asymmetric bound-
aries result in an electric field in the crystal which breaks the
symmetry. The thinner the nanosheets the stronger is the effective
field. By increasing the effective electric field in the crystal,
splitting becomes larger, and a stronger CPGE can be detected.

Discussion
A CPGE has been observed in colloidal PbS nanosheets, which
could be assigned to Rashba SOC. The inversion symmetry in
the rock salt crystal of bulk PbS was broken by quantum
confinement, by asymmetric interfaces on two sides of the
material, and by a gate electric field. The effect of these
parameters was investigated experimentally, and the results were
substantiated by DFT simulations of the band structure. The
latter shows a splitting of the bands in momentum space, which
results in an unconventional selection mechanism based on the
spin of the photo-excited carriers. Our results are consistent
with a higher Rashba SOC in thinner sheets. The observation
of spin-related electrical transport phenomena in colloidal
materials is promising in terms of future industrial applications,
which supports the recently emerging spintronic approaches with
simplicity, inexpensiveness and scalability of the colloidal
synthesis of nanomaterials.

Methods
Synthesis. All chemicals were used as received: lead(II) acetate tri-hydrate
(Aldrich, 99.999%), thioacetamide (Sigma-Aldrich, X99.0%), diphenyl ether
(Aldrich, 99%þ ), dimethyl formamide (Sigma-Aldrich, 99.8% anhydrous),
oleic acid (Aldrich, 90%), trioctylphosphine (ABCR, 97%), 1,1,2-trichloroethane
(Aldrich, 96%). In a typical synthesis, a three neck 50 ml flask was used with a
condenser, septum and thermocouple. 806 mg of lead acetate trihydrate (2.3 mmol)
was dissolved in 10 ml of diphenyl ether. Depending on the targeted thickness,
2–10 ml of OA (5.7–28 mmol) was added. The mixture was heated to 75 �C until
the solution turned clear. Then, vacuum was applied for 3.5 h to transform lead
acetate into lead oleate and to remove acetic acid in the same step. The solution was
heated under nitrogen flow to the desired reaction temperature of 130 �C, while at
100 �C, 0.7 ml of TCE (7.5 mmol) was added under reflux to the solution and the
time has been started. After 12 min 0.23 ml of 0.04 g TAA (0.5 mmol) in 6.5 ml
DMF was added to the reaction solution. After 5 min, the heat source was removed
and the solution was let to cool down below 60 �C which took approximately
30 min and afterwards, centrifuged at 4,000 rpm for 3 min. The precipitant was
washed two times in toluene before the nanosheets were finally suspended in
toluene again for storage.

Device preparation. PbS nanosheets with lateral dimensions of up to 5 mm
suspended in toluene were spin-coated on silicon wafers with 300 nm thermal
silicon oxide as the gate dielectric. The highly doped silicon was used as the back
gate. The individual nanosheets were contacted by e-beam lithography followed by
thermal evaporation of Ti/Au (1/40 nm) and lift-off.

Measurements. Immediately after device fabrication, we transferred the samples
to a probe station (Lakeshore-Desert) connected to a semiconductor parameter
analyser (Agilent B1500a). All the measurements have been performed in vacuum
at room temperature. The vacuum chamber had a view port above the sample
which is used for sample illumination. For illumination of the nanosheets, an
18 mW red laser (627 nm) with a spot size of 4 mm was used. The laser was able
to excite the electrons over the band gap, while its energy was not enough for
excitations to higher levels of the conduction band40. The polarization of the laser
beam was controlled by a polarization filter and a quarter-wave plate.

Density functional theory simulations. Density functional theory calculations
were done by employing the electronic structure code Quantum Espresso 5.2.1
(ref. 41) in combination with the PBE exchange-correlation functional28 and the
PAW method. Relativistic effects (scalar- and spin–orbit coupling) were considered
through the PAW potentials (Valence configuration: Pb: 5d106s26p2; S: 3s23p4)
self-consistently (the used PAW potentials for lead and sulphur were taken
from the pslibrary.1.0.0 downloadable at: http://www.qe-forge.org/gf/project/
pslibrary/frs). A kinetic-energy cut-off for the wavefunction of 46 Ry and
a kinetic-energy cut-off of the electronic density of 460 Ry were used. The Brillouin
zone was sampled with a shifted 8� 8� 8 grid for bulk PbS and a shifted 8� 8� 1
mesh for two-dimensional (001)-PbS sheets. The default convergence thresholds
were used for all calculations.

The atomic positions in the slab were allowed to relax, while the lattice constant
was kept fixed at the value calculated for bulk PbS using the same computational
settings (6.002 Å). SOC and dispersion interactions were not considered during the
relaxation. The slabs were separated by a vacuum of 15 Å.

Band-structure calculations were carried out on those optimized structures
considering SOC. External electric fields were simulated with a saw-like potential,
changing along the surface normal. A larger vacuum layer (20 Å) was used, and the
decrease of the saw-like potential to its initial value was set to be in the middle of
the vacuum. Symmetry was not used to reduce the number of k points during the
self-consistent field calculation.

The projected density of states resolved on the band structure was calculated
using a Gaussian smearing with a broadening of 0.0001 Ry. The projected density
of states was summed over all atoms for any type of orbital.

Data availability. All the theoretical and experimental data supporting this study
are available from the corresponding author.
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