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On weak solutions of stochastic differential equations
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AbstractWe extend Krylov and Röckner’s result [15] to the drift coefficients in critical Lebesgue

space, and prove the existence and uniqueness of weak solutions for a class of SDEs. To be more

precise, let b : [0, T ]×R
d → R

d be Borel measurable, where T > 0 is arbitrarily fixed. Consider

Xt = x+

∫ t

0
b(s,Xs)ds +Wt, t ∈ [0, T ], x ∈ R

d,

where {Wt}t∈[0,T ] is a d-dimensional standard Wiener process. If b = b1+b2 such that b1(T−·) ∈

C0
q ((0, T ];L

p(Rd)) with 2/q + d/p = 1 for p, q ≥ 1 and ‖b1(T − ·)‖Cq((0,T ];Lp(Rd)) is sufficiently

small, and that b2 is bounded and Borel measurable, then there exits a unique weak solution

to the above equation. Furthermore, we obtain the strong Feller property of the semi-group

and existence of density associated with above SDE. Besides, we extend the classical partial

differential equations (PDEs) results for Lq(0, T ;Lp(Rd)) coefficients to L∞
q (0, T ;Lp(Rd)) ones,

and derive the Lipschitz regularity for solutions of second order parabolic PDEs (see Lemma

2.1).

MSC (2010): 60H10; 34F05

Keywords: Existence, uniqueness, weak solution, SDEs with irregular drifts, strong Feller

property

1 Introduction

Let T ∈ (0,∞) be arbitrarily fixed. For a Borel measure function h : [0, T ] → R, we set the

notation ITh(t) := h(T − t), t ∈ [0, T ]. Furthermore, for a (joint) Borel measurable function

∗Corresponding author. Email: j.l.wu@swansea.ac.uk
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f : [0, T ] × R
d → R, we denote ITf(t, x) := f(T − t, x), (t, x) ∈ [0, T ] × R

d. We are concerned

with the following stochastic differential equation (SDE for short) in R
d:

{

dXt(x) = b(t,Xt(x))dt+ dWt, 0 < t 6 T,

X0(x) = x ∈ R
d,

(1.1)

where {Wt}06t6T = {(W1,t,W2,t,··· ,Wd,t)}06t6T is a d-dimensional standard Wiener process

defined on a given stochastic basis (Ω,F , {Ft}06t6T ,P), and the drift coefficient b : [0, T ]×R
d →

R
d is Borel measurable such that b ∈ L1(0, T ;L1

loc(R
d;Rd)).

When b is Lipschitz continuous in x ∈ R
d uniformly for t ∈ [0, T ], the existence and unique-

ness for strong solutions of (1.1) can be followed by the classical Cauchy-Lipschitz theorem. This

result was firstly extended by Veretennikov [19] to bounded Borel measurable function b. Since

then, Veretennikov’s result was strengthened in different forms under the same assumption on b.

For instance, Mohammed, Nilssen, Proske in [16] not only showed the existence and uniqueness

of strong solutions, but also obtained that the unique strong solution forms a Sobolev differ-

entiable stochastic flows; Davie showed in [5] that for almost every Wiener path W , there is a

unique continuous X satisfying the integral equation (also see [8]).

For integrable drift coefficient, i.e.

b ∈ Lq(0, T ;Lp(Rd;Rd)) (1.2)

with some p, q ∈ [2,∞) such that

2

q
+
d

p
< 1, (1.3)

by applying Girsanov’s theorem and Krylov’s estimate, Krylov and Röckner [15] showed the

existence and uniqueness of strong solutions for SDE (1.1). On the other hand, under the

same conditions (1.2) and (1.3), Fedrizzi and Flandoli [7] proved the α-Hölder continuity of

x ∈ R
d 7→ Xt(x) ∈ R

d for every α ∈ (0, 1). Some further interesting extensions for non-constant

diffusion coefficients, the reader is referred to Zhang [22, 23].

However, to the best of our knowledge, there are few investigations to consider the critical

case, i.e.

2

q
+
d

p
= 1. (1.4)

Inspired by Ambrosio [2], by introducing a notation of Lagrangian flow, Beck, Flandoli, Gu-

binelliz and Maurellix in [4] derived the existence and uniqueness, in the present setting, for

SDE (1.1) for every ω ∈ Ω being fixed. As stated in [4]: “we do not know whether or not

strong solutions exist and are unique under the conditions (1.2) and (1.4), and as we know this

problem is still open”. In fact, under the conditions (1.2) and (1.4), there are as well few works

for the existence and uniqueness of weak solutions to (1.1) and yet it remains to be a challenging

problem.
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The above problems are the main driving source for us to work out the present paper. In this

paper, we will discuss the existence and uniqueness of weak solutions to SDE (1.1) under the

critical case (1.4) by replacing the integrable condition (1.2) to that b ∈ Cq((0, T ];L
p(Rd;Rd)).

Our main result is the following

Theorem 1.1 Suppose that p, q ∈ [1,∞). Let b = b1+b2 such that IT b1 ∈ Cq((0, T ];L
p(Rd;Rd))

with p, q satisfying (1.4), b2 is bounded. Suppose that ‖IT b1‖Cq((0,T ];Lp(Rd)) is sufficiently small,

then we have the following consequences

(i) There is a filtered probability space (Ω̃, F̃ , {F̃t}06t6T , P̃) on which there are two processes

{X̃t}t∈[0,T ] and {W̃t}t∈[0,T ] such that {W̃t} is a d-dimensional {F̃t}-Wiener process and {X̃t} is

an {F̃t}-adapted, continuous, d-dimensional process for which

P̃

(

∫ T

0
|b(t, X̃t)|dt <∞

)

= 1 (1.5)

and the following equation holds

X̃t = x+

∫ t

0
b(s, X̃s)ds + W̃t, t ∈ [0, T ], P̃− a.s.. (1.6)

(ii) If in addition IT b1 ∈ C0
q ((0, T ];L

p(Rd;Rd)), then all weak solutions for SDE (1.1) have

the same probability law on d-dimensional classical Wiener space (W d([0, T ]),B(W d([0, T ]))).

We then use Px to denote the unique probability law on (W d([0, T ]),B(W d([0, T ]))) corresponding

to the initial value x ∈ R
d.

(iii) With the same condition of (ii). For every f ∈ L∞(Rd), we define

Ptf(x) := E
Pxf(w(t)), t > 0,

where w(t) is the canonical realisation of a weak solution {Xt} with initial X0 = x ∈ R
d on

(W d([0, T ]),B(W d([0, T ]))). Then, the semigroup {Pt} has strong Feller property, i.e. each Pt

maps a bounded function to a bounded and continuous function. Moreover, Pt admits a density

p(t, x, y) for almost all t ∈ [0, T ]. Besides, for every t0 > 0 and for every r ∈ [1,∞),

∫ T

t0

∫

Rd

|p(t, x, y)|rdydt <∞. (1.7)

.

Remark 1.1. Here the existence is only for weak solutions, and the uniqueness holds only in

the sense of probability laws. However, we do not know in the present setting for general d,

whether the strong solutions do exist and further, if they do, whether the uniqueness holds. But

for d = 1, with the aid of Tanack, Tsuchiya, Watanabe’s result [21, Proposition 1.1], we can give

a positive answer on strong uniqueness. To be more precise, we have

Corollary 1.1 Suppose that p, q ∈ [1,∞). Let b = b1 + b2 such that IT b1 ∈ C0
q ((0, T ];L

p(R))

with 2/q + 1/p = 1, b2 is bounded. Suppose that ‖IT b1‖Cq((0,T ];Lp(Rd)) is sufficiently small, then

SDE (1.1) exists a unique strong solution with d = 1.
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To illustrate the present result and to compare it with the results given by the case of

b ∈ Lq(0, T ;Lp(Rd;Rd)), let us look at an example.

Example 1.1 Let p, q ∈ [1,∞) such that (1.4) holds. Suppose b̃ ∈ C([0, T ];Lp(Rd;Rd)) with

T = 1/2, so that ‖b̃‖C([0,T ];Lp(Rd)) is small enough. We set

b(t, x) = (
1

2
− t)

− 1
q | log(

1

2
− t)|−1b̃(t, x), (1.8)

then

t
1
q b(

1

2
− t, x) = | log t|−1b̃(

1

2
− t, x),

which indicates that I 1
2
b ∈ C0

q ((0,
1
2 ];L

p(Rd;Rd)). By Theorem 1.1, SDE (1.1) with b given

by (1.8) exists a unique weak solution. On the other hand, from the explicit form (1.8), b ∈

Lq(0, 12 ;L
p(Rd;Rd)), but for every q1 > q, b /∈ Lq1(0, 12 ;L

p(Rd;Rd)). Now since 2/q + d/p = 1,

from existing results, we do not know whether there exists a unique solution to (1.1). From

this point of view, it is clear that we extend the existing results on Lq(0, 12 ;L
p(Rd;Rd)) with

2/q + d/p < 1 to 2/q + d/p = 1 partially.

The rest of this paper is arranged as follows. In Section 2, we present some preliminaries.

Section 3 is devoted to the proof of existence for Theorem 1.1 and in Section 4, the final section,

we prove the uniqueness, strong Feller property as well as the existence of the density.

When there is no ambiguity, we use C to denote a constant whose true value may vary from

line to line. As usual, N stands for the set of all natural numbers.

2 Preliminaries

To start with, let us introduce some spaces. For q > 1, we denote L∞
q (0, T ) the space of all

Borel-measurable functions h : [0, T ] → R such that sup
06t6T

(|h(t)|t
1
q ) <∞, the norm is defined as

follows

‖h‖L∞
q (0,T ) := sup

06t6T
(|h(t)|t

1
q ).

Clearly, L∞
q (0, T ) is a Banach space. If h ∈ L∞

q (0, T ), then there is a positive constant C

such that |h(t)| 6 Ct
− 1

q . Observing that t
− 1

q ∈ Lq,∞(0, T ) (weak-Lq(0, T ) space), then h ∈

Lq,∞(0, T ). Similarly, let p > 1, we define L∞
q (0, T ;Lp(Rd)) to be the set of all Lp(Rd)-valued

L∞
q (0, T ) functions f , such that

‖f‖L∞
q (0,T ;Lp(Rd)) := sup

06t6T
(‖f(t)‖Lp(Rd)t

1
q ) <∞. (2.1)

Then L∞
q (0, T ;Lp(Rd)) is a Banach space as well.

4



Analogously, we define Cq((0, T ]) the space of all continuous function h : (0, T ] → R such that

sup
0<t6T

(|h(t)|t
1
q ) < ∞, the norm is the same as on L∞

q (0, T ). C0
q ((0, T ]) is the space consisting

by all the functions h in Cq((0, T ]) such that limt↓0(|h(t)|t
1
q ) = 0. Then, with the norm on

Cq((0, T ]), C
0
q ((0, T ]) is still a Banach space. Respectively, for p > 1, we define Cq((0, T ];L

p(Rd))

and C0
q ((0, T ];L

p(Rd)), and the norms are given by (2.1). Now let us give a good approximation

property for functions in Cq((0, T ];L
p(Rd)).

Proposition 2.1 Suppose that p, q ∈ [1,∞). Given a function f in Cq((0, T ];L
p(Rd)), we set

fn(t, x) = (f(t, ·) ∗ ρn)(x), n ∈ N, where ∗ stands for the usual convolution and

ρn := ndρ(n·) with 0 6 ρ ∈ C∞
0 (Rd), support(ρ) ⊂ B0(1),

∫

Rd

ρ(x)dx = 1. (2.2)

Then

lim
n→∞

sup
0<t6T

(

t
1
q ‖fn(t)− f(t)‖Lp(Rd)

)

= 0. (2.3)

Proof. Notice that f ∈ Cq((0, T ];L
p(Rd)) means that t

1
q f ∈ C([0, T ];Lp(Rd)), if one defines

the value at 0 by its right limit. Thus, to prove (2.3), it is sufficient to show that for f ∈

C([0, T ];Lp(Rd))

lim sup
n→∞

sup
06t6T

‖fn(t)− f(t)‖Lp(Rd) = 0. (2.4)

By virtue of properties of the convolution, for every fixed t ∈ [0, T ], then

lim
n→∞

‖fn(t)− f(t)‖Lp(Rd) = 0. (2.5)

On the other hand for t1, t2 ∈ [0, T ], by utilising Young’s inequality,

‖fn(t1)− fn(t2)‖
p
Lp(Rd)

=

∫

Rd

|(f(t1, ·)− f(t2, ·)) ∗ ρn(x)|
pdx

6

∫

Rd

|f(t1, x)− f(t2, x)|
pdx. (2.6)

From (2.6), for any ǫ > 0, there exists δ > 0 such that for |t1 − t2| 6 δ, then one has uniformly

in n the following

‖fn(t1)− fn(t2)‖Lp(Rd) 6 ‖f(t1)− f(t2)‖Lp(Rd) <
ǫ

2
. (2.7)

Let t ∈ [0, T ] be given, then (2.5) holds. With the aid of (2.6) and (2.7), then

lim sup
n→∞

sup
[t−δ,t+δ]∩[0,T ]

‖fn(s)− f(s)‖Lp(Rd)

6 lim sup
n→∞

sup
[t−δ,t+δ]∩[0,T ]

‖fn(s)− f(s)− fn(t) + f(t)‖Lp(Rd) + lim sup
n→∞

‖fn(t)− f(t)‖Lp(Rd)

5



< ǫ.

Since ǫ > 0 and t ∈ [0, T ] are arbitrary, we conclude that (2.4) holds. �

Remark 2.1. We claim that the above approximating property is not true if one takes the

function in L∞
q ((0, T ];Lp(Rd)) instead of in Cq((0, T ];L

p(Rd)). To show this, one needs to claims

that (2.4) is not true if f ∈ L∞(0, T ;Lp(Rd)). We give a counter example below. For simplicity,

we assume that T = d = 1 and p = 2. For k ∈ N, we define fk(x) by the following

fk(x) := k1[k,k+ 1
k2

)(x),

and further set

f(t, x) :=

∞
∑

k=1

1[ k−1
k

, k
k+1

)(t)f
k(x) =

∞
∑

k=1

1[ k−1
k

, k
k+1

)(t)k1[k,k+ 1
k2

)(x).

Then

∫

R

|f(t, x)|2dx =

∞
∑

k=1

1[ k−1
k

, k
k+1

)(t)

∫

R

k21[k,k+ 1
k2

)(x)dx =

∞
∑

k=1

1[ k−1
k

, k
k+1

)(t) = 1[0,1)(t).

Hence f ∈ L∞(0, 1;L2(R)). We estimate (2.4) by the following
∫

R

|fn(t, x)− f(t, x)|2dx

=

∫

R

∣

∣

∣

∫

R

f(t, y)ρn(x− y)dy − f(t, x)
∣

∣

∣

2
dx

=

∫

R

∞
∑

k=1

k21[ k−1
k

, k
k+1

)(t)
∣

∣

∣

∫

R

1[k,k+ 1
k2

)(y)ρn(x− y)dy − 1[k,k+ 1
k2

)(x)
∣

∣

∣

2
dx

=

∫

R

∞
∑

k=1

k21[ k−1
k

, k
k+1

)(t)
∣

∣

∣

∫ k+ 1
k2

k
ρn(x− y)dy − 1[k,k+ 1

k2
)(x)

∣

∣

∣

2
dx

> 1[ k−1
k

, k
k+1

)(t)

∫ k+ 1
k2

k
k2
∣

∣

∣

∫ k+ 1
k2

k
ρn(x− y)dy − 1

∣

∣

∣

2
dx.

For any fixed n, for sufficiently large k, we have |
∫ k+ 1

k2

k ρn(x− y)dy| < 1
2 . Thus

sup
06t61

∫

R

|fn(t, x)− f(t, x)|2dx

> sup
k

sup
06t61

1[ k−1
k

, k
k+1

)(t)

∫ k+ 1
k2

k
k2
∣

∣

∣

∫ k+ 1
k2

k
ρn(x− y)dy − 1

∣

∣

∣

2
dx >

1

4
.

Therefore

lim inf
n→∞

sup
06t61

∫

R

|fn(t, x)− f(t, x)|2dx >
1

4
.
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Let p > 1 such that g ∈ L1(0, T ;Lp
loc(R

d;Rd)), f ∈ L1(0, T ;L1
loc(R

d)). Consider the following

Cauchy problem for u : [0, T ] × R
d → R

{

∂tu(t, x) =
1
2∆u(t, x) + g(t, x) · ∇u(t, x) + f(t, x), (t, x) ∈ (0, T )× R

d,

u(0, x) = 0, x ∈ R
d.

(2.8)

We call u(t, x) a generalized solution of (2.8) if it lies in C([0, T ];W 1,p(Rd)) such that for every

test function ϕ ∈ C∞
0 ([0, T ) ×R

d), the following holds

0 =

∫ T

0

∫

Rd

u(t, x)∂tϕ(t, x)dxdt +
1

2

∫ T

0

∫

Rd

u(t, x)∆ϕ(t, x)dxdt

+

∫ T

0

∫

Rd

g(t, x) · ∇u(t, x)ϕ(t, x)dxdt +

∫ T

0

∫

Rd

f(t, x)ϕ(t, x)dxdt. (2.9)

The following proposition is routine and we therefore omit its proof. For more details, the

reader is referred to [24, Proposition 3.5].

Proposition 2.2 Let p ∈ [1,∞) such that g ∈ L1(0, T ;Lp(Rd;Rd)), f ∈ L1(0, T ;Lp(Rd)) and

u ∈ C([0, T ];W 1,p(Rd)). The following statements are equivalent

(i) u is a generalized solution of (2.8).

(ii) For every ψ ∈ C∞
0 (Rd), and every t ∈ [0, T ), the following holds

∫

Rd

u(t, x)ψ(x)dx =
1

2

∫ t

0

∫

Rd

u(s, x)∆ψ(x)dxds +

∫ t

0

∫

Rd

g(s, x) · ∇u(s, x)ψ(x)dxds

+

∫ t

0

∫

Rd

f(s, x)ψ(x)dxds.

(iii) For every t ∈ [0, T ] and for almost everywhere x ∈ R
d, u fulfils the following integral

equation

u(t, x) =

∫ t

0
K(t− s, ·) ∗ (g(s, ·) · ∇u(s, ·))(x)ds +

∫ t

0
(K(t− s, ·) ∗ f(s, ·))(x)ds (2.10)

where K(t, x) = (2πt)−
d
2 e−

|x|2

2t , t > 0, x ∈ R
d.

We now state a useful lemma.

Lemma 2.1 Let p, q ∈ [1,∞) and g ∈ L∞
q (0, T ;Lp(Rd;Rd)), f ∈ L∞

q (0, T ;Lp(Rd)), such

that (1.4) holds true and ‖g‖L∞
q (0,T ;Lp(Rd)) is sufficiently small. Then the Cauchy problem

(2.8) has a unique generalized solution u. Moreover, the unique generalized solution lies in

L∞(0, T ;W 1,∞(Rd)) and there is a constant C0(p, d) such that

‖u‖L∞(0,T ;W 1,∞(Rd)) 6
C0(p, d)‖f‖L∞

q (0,T ;Lp(Rd))

1− C0(p, d)‖g‖L∞
q (0,T ;Lp(Rd))

. (2.11)
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Proof. We prove the result by first assuming that g = 0. With the help of Proposition 2.2, it

suffices to show that

u(t, x) =

∫ t

0
(K(t− s, ·) ∗ f(s, ·))(x)ds (2.12)

is in C([0, T ];W 1,p(Rd))∩L∞(0, T ;W 1,∞(Rd)). Firstly, by the explicit representation (2.12), for

every (t, x) ∈ (0, T ) × R
d, we have

|u(t, x)| 6

∫ t

0
‖f(s)‖Lp(Rd)‖K(t− s)‖

L
p

p−1 (Rd)
dr

6 ‖f‖L∞
q (0,t;Lp(Rd))

∫ t

0
s−

1
q (t− s)−

d
2pds

= t
1
2 ‖f‖L∞

q (0,t;Lp(Rd))B(1−
1

q
,
1

q
+

1

2
),

where B is the Beta function.

Therefore u ∈ L∞(0, T ;L∞(Rd)) and

‖u‖L∞(0,T ;L∞(Rd)) 6 CT
1
2 ‖f‖L∞

q (0,T ;Lp(Rd)). (2.13)

For x ∈ R
d and 1 6 i 6 d,

∣

∣

∣
∂xi
u(t, x)

∣

∣

∣
=

∣

∣

∣

∫ t

0

∫

Rd

∂xi
K(t− r, x− y)f(r, y)dydr

∣

∣

∣

6
1

(2π)
d
2

∫ t

0
‖f‖Lp(Rd)(r)(t− r)−

d
2
−1

[

∫

Rd

∣

∣

∣
e
− |x−y|2

2(t−r) |xi − yi|
∣

∣

∣

p
p−1

dy
]

p−1
p
dr

6 C‖f‖L∞
q (0,t;Lp(Rd))

∫ t

0
r
− 1

q (t− r)
−1+ 1

q dr

= C(p, d)‖f‖L∞
q (0,T ;Lp(Rd)), (2.14)

where the constant in (2.14) is given by

C(p, d) = π
− d+p−1

2p 2
p−d
2p

[

Γ
(2p − 1

2p − 2

)]
p−1
p
(p− 1

p

)

(d+1)p−d

2p
B(1−

1

q
,
1

q
), (2.15)

and Γ is the gamma function. Since 1 6 i 6 d is arbitrary, |∇u| ∈ L∞((0, T ) × R
d).

Now we will show that u ∈ C([0, T ];W 1,p(Rd)). To prove this result, for p > 1, β > 0, let

Hβ,p(Rd) := (I −∆)−β/2(Lp(Rd)) be the Bessel potential space with the norm

‖h‖Hβ,p(Rd) = ‖(I −∆)−β/2h‖Lp(Rd).

For h ∈ Lp(Rd), we use the notation Tth to denote K(t, ·) ∗ h with K given in (2.12). Then by

a same discussion as [24, Lemma 2.5], we have the following claims:
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(i) For p > 1, β > 0 and every h ∈ Lp(Rd), there is a constant C(p, d, β) > 0 such that

‖Tth‖Hβ,p(Rd) 6 C(p, d, β)t−
β

2 ‖h‖Lp(Rd). (2.16)

(ii) For p > 1, θ ∈ [0, 1], there is a constant C(p, d, θ) > 0 such that for every h ∈ Hβ,p(Rd)

‖Tth− h‖Lp(Rd) 6 C(p, d, θ)t
θ
2 ‖h‖Hθ,p(Rd). (2.17)

For every 0 6 s < t 6 T , then

u(t, x)− u(s, x) =

∫ t

0
Tt−rf(r)dr −

∫ s

0
Ts−rf(r)dr

=

∫ t

s
Tt−rf(r)dr +

∫ s

0
[Tt−r − Ts−r]f(r)dr

=

∫ t

s
Tt−rf(r)dr +

∫ s

0
T s−r

2
[Tt−s − I]T s−r

2
f(r)dr. (2.18)

Observing that W 1,p(Rd) = H1,p(Rd) (see [1]), from (2.18), (2.16) and (2.17), then

‖u(t) − u(s)‖W 1,p(Rd)

6

∫ t

s
‖Tt−rf(r)‖H1,p(Rd)dr +

∫ s

0
‖T s−r

2
[Tt−s − I]T s−r

2
f(r)‖H1,p(Rd)dr

6 C

∫ t

s
(t− r)−

1
2‖f(r)‖Lp(Rd)dr + C

∫ s

0
(s− r)−

1
2 ‖[Tt−s − I]T s−r

2
f(r)‖Lp(Rd)dr

6 C

∫ t

s
(t− r)−

1
2‖f(r)‖Lp(Rd)dr + C(t− s)

θ
2

∫ s

0
(s− r)−

1
2 ‖T s−r

2
f(r)‖Hθ,p(Rd)dr

6 C

∫ t

s
(t− r)−

1
2‖f(r)‖Lp(Rd)dr + C(t− s)

θ
2

∫ s

0
(s− r)−

1+θ
2 ‖f(r)‖Lp(Rd)dr, (2.19)

for some θ ∈ [0, 1].

Since f ∈ L∞
q (0, T ;Lp(Rd)), if one chooses θ = (2(q − 1)(q − 2))/((3q − 2)q), from (2.19) by

using Hölder’s inequality, it then yields the following

‖u(t) − u(s)‖W 1,p(Rd)

6 C‖f‖L∞
q (0,T ;Lp(Rd))

[

∫ t

s
(t− r)−

1
2 r

− 1
q dr + (t− s)

θ
2

∫ s

0
(s− r)−

1+θ
2 r

− 1
q dr

]

6 C‖f‖L∞
q (0,T ;Lp(Rd))|t− s|

θ
2 . (2.20)

From this, one completes the proof for g = 0.

For general g, since u ∈ L∞(0, T ;W 1,∞(Rd)), we conclude that: if g ∈ L∞
q (0, T ;Lp(Rd;Rd)),

then g · ∇u ∈ L∞
q (0, T ;Lp(Rd)). We define a mapping from L∞(0, T ;W 1,∞(Rd)) to itself by

Tv(t, x) =

∫ t

0
K(t− s, ·) ∗ (g(s, ·) · ∇v(s, ·))(x)ds +

∫ t

0
(K(t− s, ·) ∗ f(s, ·))(x)ds.

9



Observing that ‖g‖L∞
q (0,T ;Lp(Rd)) is small enough, the mapping is contractive, so there is a unique

u ∈ L∞(0, T ;W 1,∞(Rd) satisfying u = Tu. This fact combining an argument as g = 0 implies

the existence of generalized solutions of the Cauchy problem (2.8).

Since (2.10) holds, by virtue of (2.13) and (2.14), there is a constant C0(p, d) such that

‖u‖L∞(0,T ;W 1,∞(Rd)) 6 C0(p, d)
[

‖g‖L∞
q (0,T ;Lp(Rd))‖u‖L∞(0,T ;W 1,∞(Rd)) + ‖f‖L∞

q (0,T ;Lp(Rd))

]

,

which suggests that (2.11) is valid since ‖g‖L∞
q (0,T ;Lp(Rd)) is sufficiently small. �

Remark 2.2. (i) If p, q ∈ (1,∞), f ∈ Lq(0, T ;Lp(Rd)) and g ∈ Lq(0, T ;Lp(Rd;Rd)), from clas-

sical Lq(Lp) theory for second order parabolic PDEs, there is a unique u ∈W 1,q(0, T ;Lp(Rd))∩

Lq(0, T ;W 2,p(Rd)) solving the Cauchy problem (2.8). Using the Sobolev embedding theorems

(or see [15, Lemma 10.2]), if 2/q+d/p < 1, then ∇u is bounded. But this embedding is not true

in general when 2/q + d/p = 1. By extending the Banach space Lq(0, T ;Lp) to L∞
q (0, T ;Lp),

under the critical case 2/q + d/p = 1, we also get the boundedness for ∇u. In particular if we

take f̃ ∈ L∞([0, T ];Lp(Rd)), g̃ ∈ L∞([0, T ];Lp(Rd;Rd)), and set

f(t, x) = t−
1
q | log t|−1f̃(t, x), g(t, x) = t−

1
q | log t|−1g̃(t, x),

then f and g are in Lq(0, T ;Lp). In this sense, we generalize the classical PDE’s results.

(ii) When p > 2, one also proves ∂xi
u ∈ C([0, T ];Lp(Rd)) for every 1 6 i 6 d, by a duality

method. Without loss of generality, here, we concentrate our attention for g = 0. In this setting,

we first recall that L∞
q (0, T ;Lp(Rd)) ⊂ Lq−(0, T ;Lp(Rd)) (= ∪16r<qL

r(0, T ;Lp(Rd))), with the

help of [15, Theorem 10.3], u given by (2.12) is in W 1,q−(0, T ;Lp(Rd)) ∩ Lq−(0, T ;W 2,p(Rd)).

Let ̺ε be a regularizing kernel on R, i.e.

̺ε =
1

ε
̺(

·

ε
) with 0 6 ̺ ∈ C∞

0 (R), support(̺) ⊂ (−1, 1),

∫

R

̺(r)dr = 1. (2.21)

We extend u to the large interval [−ς, T + ς] for ς > 0 and set uε(t, x) = (u(·, x) ∗ ̺ε)(t). For

ε1, ε2 > 0 and every 1 6 i 6 d, we have

d

dt
‖∂xi

uε1(t)− ∂xi
uε2(t)‖

p
Lp(Rd)

= p〈∂xi
u′ε1(t)− ∂xi

u′ε2(t), [∂xi
uε1(t)− ∂xi

uε2(t)]|∂xi
uε1(t)− ∂xi

uε2(t)|
p−2〉L2(Rd)

= −C(p)〈u′ε1(t)− u′ε2(t), [∂
2
xi
uε1(t)− ∂2xi

uε2(t)]|∂xi
uε1(t)− ∂xi

uε2(t)|
p−2〉L2(Rd), (2.22)

where the prime in (2.22) denotes the derivative in t and C(p) = p(p− 1) in the last line.

From (2.22), for every 0 6 s, t 6 T , then

‖∂xi
uε1(t)− ∂xi

uε2(t)‖
p
Lp(Rd)

= ‖∂xi
uε1(s)− ∂xi

uε2(s)‖
p
Lp(Rd)
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−p(p− 1)

∫ t

s
〈u′ε1(r)− u′ε2(r), [∂

2
xi
uε1(r)− ∂2xi

uε2(r)]|∂xi
uε1(r)− ∂xi

uε2(r)|
p−2〉L2(Rd)dr.

Observing that for every s ∈ (0, T ), ∂xi
uε1(s) → ∂xi

u(s) in Lp(Rd) as ε1 → 0, thus

lim sup
ε1,ε2→0

sup
06t6T

‖∂xi
uε1(t)− ∂xi

uε2(t)‖
p
Lp(Rd)

6 C lim sup
ε1,ε2→0

∫ T

0
|〈u′ε1(r)− u′ε2(r), [∂

2
xi
uε1(r)− ∂2xi

uε2(r)]|∂xi
uε1(r)− ∂xi

uε2(r)|
p−2〉L2(Rd)|dr

6 C lim sup
ε1,ε2→0

∫ T

0
‖u′ε1 − u′ε2‖Lp(Rd)‖∂

2
xi
uε1 − ∂2xi

uε2‖Lp(Rd)‖∂xi
uε1 − ∂xi

uε2‖
p−2
Lp(Rd)

dr

6 C lim sup
ε1,ε2→0

∫ T

0
‖u′ε1(r)− u′ε2(r)‖Lp(Rd)‖∂

2
xi
uε1(r)− ∂2xi

uε2(r)‖Lp(Rd)dr

6 C lim sup
ε1,ε2→0

∫ T

0

[

‖u′ε1(r)− u′ε2(r)‖
2
Lp(Rd) + ‖∂2xi

uε1(r)− ∂2xi
uε2(r)‖

2
Lp(Rd)

]

dr = 0.

Thus {∂xi
uε}0<ε<1 converge in C([0, T ];Lp(Rd)) to a function ũ ∈ C([0, T ];Lp(Rd)). Since we

also know ∂xi
uε(t) converges to ∂xi

u(t) for a.e. t ∈ [0, T ], u = ũ.

(iii) From above proof, we claim that u is continuous in (t, x) and ∇u is bounded Borel

measurable when f ∈ L∞
q (0, T ;Lp(Rd)) and g ∈ L∞

q (0, T ;Lp(Rd;Rd)). If f and g are more

regular, we also get the continuity of ∇u.

Corollary 2.1 Suppose that p and q are given in Lemma 2.1, such that f ∈ Cq((0, T ];L
p(Rd)),

g ∈ Cq((0, T ];L
p(Rd;Rd)) and ‖g‖Cq((0,T ];Lp(Rd)) is small enough. Then there is a unique u

belonging to L∞(0, T ; C1
b (R

d))∩C([0, T ];W 1,p(Rd)) solving the Cauchy problem (2.8). Moreover,

(i) If g = 0, u ∈ L∞(0, T ; C1
b (R

d)).

(ii) If f and g meet in addition that g ∈ C0
q ((0, T ];L

p(Rd;Rd)), f ∈ C0
q ((0, T ];L

p(Rd)), then

u ∈ C([0, T ]; C1
b (R

d)).

Proof. We only need to prove the continuity for ∇u and for simplicity, we show the case of

g = 0.

(i) For x, h ∈ R
d and 1 6 i 6 d, by repeating the calculation in (2.14), it yields that

sup
06t6T

∣

∣

∣
∂xi

u(t, x+ h)− ∂xi
u(t, x)

∣

∣

∣
6 C sup

06t6T

[

∫

Rd

∣

∣

∣
t
1
q f(t, x+ h− z)− t

1
q f(t, x− z)

∣

∣

∣

p
dy

]
1
p
.

Notice that t
1
q f ∈ C([0, T ];Lp(Rd)), by an analogue argument of the proof of Proposition 2.1, if

one lets h approach to 0, then

sup
06t6T

∣

∣

∣
∂xi

u(t, x+ h)− ∂xi
u(t, x)

∣

∣

∣
→ 0,

which implies ∂xi
u ∈ L∞(0, T ; C(Rd)). And 1 6 i 6 d is arbitrary, so ∇u is continuous in x

uniformly respect to t.
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(ii) If the conditions g ∈ C0
q ((0, T ];L

p(Rd;Rd)), f ∈ C0
q ((0, T ];L

p(Rd)) hold in addition, we

will show the continuity of ∇u in t. We first show the continuity at 0. In view of (2.14), then

for t > 0,

lim
t↓0

sup
x∈Rd

|∂xi
u(t, x)| 6 lim

t↓0
C[t

1
q ‖f(t)‖Lp(Rd)] = 0. (2.23)

Noting that u(0, x) = 0, it implies |∇u(0, x)| = 0, so ∇u is continuous in t at 0.

For t > 0, we only prove the right continuous at t since the proof for left continuous is the

similar. Let ϑ > 0, t ∈ (0, T ) such that t+ ϑ ∈ (0, T ), then for every 1 6 i 6 d
∣

∣

∣
∂xi
u(t+ ϑ, x)− ∂xi

u(t, x)
∣

∣

∣

=
∣

∣

∣

∫ t+ϑ

0

∫

Rd

∂xi
K(t+ ϑ− s, x− y)f(s, y)dyds−

∫ t

0

∫

Rd

∂xi
K(t− s, x− y)f(s, y)dyds

∣

∣

∣

6

∣

∣

∣

∫ ϑ

0

∫

Rd

∂xi
K(t+ ϑ− s, x− y)f(s, y)dyds

∣

∣

∣

+
∣

∣

∣

∫ t

0

∫

Rd

∂xi
K(t− s, x− y)[f(s+ ϑ, y)− f(s, y)]dyds

∣

∣

∣
=: I1(t, ϑ) + I2(t, ϑ).

By using (2.23), the I1(t, ϑ) → 0 as ϑ→ 0. Now let us calculate I2(t, ϑ).

|I2(t, ϑ)| 6 C

∫ t

0
(t− s)−1+ 1

q ‖f(s+ ϑ)− f(s)‖Lp(Rd)ds

6 C

∫ t

0
(t− s)−1+ 1

q (s+ ϑ)−
1
q ‖(s + ϑ)

1
q f(s+ ϑ)− s

1
q f(s)‖Lp(Rd)ds

+C

∫ t

0
(t− s)

−1+ 1
q (s+ ϑ)

− 1
q ‖(s+ ϑ)

1
q f(s)− s

1
q f(s)‖Lp(Rd)ds

6 C

∫ t

0
(t− s)

−1+ 1
q s

− 1
q ‖(s+ ϑ)

1
q f(s+ ϑ)− s

1
q f(s)‖Lp(Rd)ds

+C

∫ t

0
(t− s)

−1+ 1
q s

− 1
q ‖s

1
q f(s)‖Lp(Rd)

[

1− (
s

s+ ϑ
)
1
q

]

ds.

Observing that as functions of s on (0, t), (t − s)
−1+ 1

q s
− 1

q ∈ L1(0, t), ‖(s + ϑ)
1
q f(s + ϑ) −

s
1
q f(s)‖Lp(Rd) and ‖s

1
q f(s)‖Lp(Rd)

[

1 − (s/(s + ϑ))
1
q

]

are bounded. By applying the dominated

convergence theorem, then I2(t, ϑ) → 0 as ϑ→ 0. So we finish the proof. �

Remark 2.3. Even though a function f lies in C0
q ((0, T ];L

p(Rd)), it is not in Lq(0, T ;Lp(Rd))

generally. For example, if ‖f(t)‖Lp(Rd) 6 Ct−
1
q | log t|−β with some real number β > 0 near 0,

then f ∈ C0
q ((0, T ];L

p(Rd)), and when β > 1/q, it belongs to Lq(0, T ;Lp(Rd)), otherwise it does

not lie in Lq(0, T ;Lp(Rd)).

Let Wt be a d-dimensional standard Wiener process, X0 ∈ F0, {ξt}06t6T is a {Ft}06t6T

adapted process, we define

Xt = X0 +

∫ t

0
ξsds+Wt. (2.24)
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We now give a Krylov type estimate.

Theorem 2.1 Suppose Xt is given by (2.24) and X0 = x ∈ R
d. Let p, q ∈ [1,∞) and IT f ∈

L∞
q (0, T ;Lp(Rd)) such that (1.4) holds. Let C0(p, d) be given in Lemma 2.1, then

E

∫ T

0
f(t,Xt)dt 6 C0(p, d)

(

1 + E

∫ T

0
|ξt|dt

)

‖IT f‖L∞
q (0,T ;Lp(Rd)). (2.25)

Proof. Let u be given by

u(t, x) =

∫ t

0
(K(t− s, ·) ∗ IT f(s, ·))(x)ds.

Observing that ITf ∈ L∞
q (0, T ;Lp(Rd)) with p, q satisfying (1.4), by virtue of Lemma 2.1, then

u ∈ C([0, T ];W 1,p(Rd)) ∩ L∞(0, T ;W 1,∞(Rd)) and it solves the following Cauchy problem

{

∂tu(t, x) =
1
2∆u(t, x) + IT f(t, x), (t, x) ∈ (0, T )× R

d,

u(0, x) = 0, x ∈ R
d,

in the sense of (2.9). Moreover, (2.11) holds with g = 0.

By Sobolev embedding theorem, C([0, T ];W 1,p(Rd)) ⊂ C([0, T ] × R
d), u is continuous in t

and x. If we smooth u by convolution, then the modified function converges to u for every

(t, x) ∈ [0, T ]× R
d, so we only concentrate our attention on u ∈ C∞([0, T ] × R

d).

By virtue of Itô’s formula, we have

du(T − t,Xt)

= −∂tu(T − t,Xt)dt+
1

2
∆u(T − t,Xt)dt+ ξt · ∇u(T − t,Xt)dt+∇u(T − t,Xt) · dWt

= ξt · ∇u(T − t,Xt)dt− f(t,Xt)dt+∇u(T − t,Xt) · dWt. (2.26)

Since ∇u is bounded, the last term in (2.26) is a martingale, which implies that

u(T, x) = E

∫ T

0
f(t,Xt)dt− E

∫ T

0
ξt · ∇u(T − t,Xt)dt.

Hence

E

∫ T

0
f(t,Xt)dt 6 sup

(t,x)∈(0,T )×Rd

|u(t, x)| + sup
(t,x)∈(0,T )×Rd

|∇u(t, x)|E

∫ T

0
|ξt|dt. (2.27)

By using Lemma 2.1, from (2.27), (2.25) holds true. �

Remark 2.4. Krylov’s estimates will play a crucial role in proving the existence of weak

solutions for SDE (1.1). Observing that, when verifying a Krylov type estimate, the central

part is to estimate the boundedness of ∇u (u is the unique solution of a second order parabolic

PDE). By finding this fact, we only assume that f ∈ L∞
q (0, T ;Lp(Rd)) with 2/q + d/p = 1.
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3 Stochastic differential equations with irregular drift coeffi-

cients: the existence result

We now consider the SDE (1.1) and the main result is concerned with existence, which is stated

below

Theorem 3.1 Assume that p, q ∈ [1,∞). Let b = b1 + b2 such that IT b1 ∈ Cq((0, T ];L
p(Rd))

with p, q satisfying (1.4), b2 is bounded and Borel measurable. Suppose the constant C0(p, d) is

given in (2.25) and

‖IT b1‖Cq((0,T ];Lp(Rd)) < (2C0(p, d))
−1. (3.1)

There is a filtered probability space (Ω̃, F̃ , {F̃t}06t6T , P̃), two processes X̃t(x) and W̃t defined for

[0, T ] on it such that W̃t is a d-dimensional {F̃t}-Wiener process and X̃t is an {F̃t}-adapted,

continuous, d-dimensional process for which (1.5) holds, and almost surely, for all t ∈ [0, T ],

(1.6) holds.

Proof. We follow the proof of [14, Theorem 1, p.87]. Firstly, we smooth out bi (i = 1, 2) using

the convolution: bn1 (t, x) = (b1(t, ·) ∗ ρn)(x), b
n
2 (t, x) = (b2(t, ·) ∗ ρn)(x) with ρn given by (2.2).

According to Proposition 2.1 and the properties of convolution, it is clear that, as n→ ∞,

‖IT b
n
1 − IT b1‖Cq((0,T ];Lp(Rd)) → 0, ‖bn2 − b2‖Lq(0,T ;Lp

loc
(Rd)) → 0, (3.2)

and for every n > 1,

‖IT b
n
1‖Cq((0,T ];Lp(Rd)) 6 ‖IT b1‖Cq((0,T ];Lp(Rd)), ‖b

n
2‖L∞((0,T )×Rd) 6 ‖b2‖L∞((0,T )×Rd). (3.3)

Moreover there is a sequence of integrable functions hni on [0, T ], such that

|bni (t, x)− bni (t, y)| 6 hni (t)|x− y|, ∀ x, y ∈ R
d, i = 1, 2.

Using Cauchy-Lipschitz’s theorem, there is a unique {Ft}-adapted, continuous, d-dimensional

process Xn
t (x) defined for [0, T ] on (Ω,F , {Ft}06t6T ,P) such that

Xn
t = x+

∫ t

0
bn(s,Xn

s )ds+Wt = x+

∫ t

0
bn1 (s,X

n
s )ds+

∫ t

0
bn2 (s,X

n
s )ds+Wt. (3.4)

With the help of Theorem 2.1 and (3.3),

E

∫ T

0
|bn1 (t,X

n
t )|dt 6

(

1 + E

∫ T

0
|bn(t,Xn

t )|dt
)

C0(p, d)‖IT b
n
1‖Cq((0,T ];Lp(Rd))

6

(

1 + T‖b2‖L∞((0,T )×Rd)

+E

∫ T

0
|bn1 (t,X

n
t )|dt

)

C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd)).
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Observing that (3.1) holds, then

C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd)) <
1

2
,

therefore

E

∫ T

0
|bn1 (t,X

n
t )|dt 6 2

(

1 + T‖b2‖L∞((0,T )×Rd)

)

C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd)). (3.5)

On the other hand, bn2 is bounded uniformly in n, with the help of (3.3), one concludes that

E

∫ T

0
|bn2 (t,X

n
t )|dt 6 T‖b2‖L∞((0,T )×Rd). (3.6)

By (3.4) to (3.6), then

sup
n

E

∫ T

0
|Xn

t |dt 6 C <∞. (3.7)

If one replaces the time interval (0, T ) by (t1, t2) for every 0 6 t1 < t2 6 T , similar calcula-

tions from (2.26) to (2.27) also yields that

E

∫ t2

t1

|bn1 (t,X
n
t )|dt

6 E|Un(T − t2,X
n
t2)− Un(T − t1,X

n
t1)|+ sup

(t,x)∈(0,T )×Rd

‖∇Un‖E

∫ t2

t1

|bn(t,Xn
t )|dt

6 sup
x∈Rd

|Un(T − t2, x)− Un(T − t1, x)|

+ sup
(t,x)∈(0,T )×Rd

‖∇Un‖
(

E|Xn
t2 −Xn

t1 |+ E

∫ t2

t1

|bn(t,Xn
t )|dt

)

, (3.8)

where Un is the unique generalized solution of

{

∂tUn(t, x) =
1
2∆Un(t, x) + |IT b

n
1 (t, x)|, (t, x) ∈ (0, T )× R

d,

Un(0, x) = 0, x ∈ R
d,

With the aid of Sobolev’s embedding theorem, (2.20) and (3.3), from (3.8)

E

∫ t2

t1

|bn1 (t,X
n
t )|dt

6 C‖Un(T − t2)− Un(T − t1)‖W 1,p(Rd) + C0(p, d)‖IT b
n
1‖Cq((0,T ];Lp(Rd))

(

E|Xn
t2 −Xn

t1 |

+|t2 − t1|‖b
n
2‖L∞((0,T )×Rd) + E

∫ t2

t1

|bn1 (t,X
n
t )|dt

)

6 C|t2 − t1|
θ
2 ‖IT b

n
1‖Cq((0,T ];Lp(Rd)) + C0(p, d)‖IT b

n
1‖Cq((0,T ];Lp(Rd))

(

E|Xn
t2 −Xn

t1 |
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+|t2 − t1|‖b
n
2‖L∞((0,T )×Rd) + E

∫ t2

t1

|bn1 (t,X
n
t )|dt

)

6 C|t2 − t1|
θ
2 ‖IT b1‖Cq((0,T ];Lp(Rd)) + C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd))

(

E|Xn
t2 −Xn

t1 |

+|t2 − t1|‖b2‖L∞((0,T )×Rd) + E

∫ t2

t1

|bn1 (t,X
n
t )|dt

)

,

which suggests that

E

∫ t2

t1

|bn1 (t,X
n
t )|dt 6

C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd))

1− C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd))

[

C|t2 − t1|
θ
2

+E|Xn
t2 −Xn

t1 |+ |t2 − t1|‖b2‖L∞((0,T )×Rd)

]

, (3.9)

where θ is given in (2.20).

By (3.1), there is a δ > 0, such that

C0(p, d)‖IT b1‖Cq((0,T ];Lp(Rd)) 6 (1− C0(p, d))‖IT b1‖Cq((0,T ];Lp(Rd)))(1− δ).

Combining (3.4) and (3.9), one reaches at

E|Xn
t2 −Xn

t1 | 6 E

∫ t2

t1

|bn1 (t,X
n
t )|dt+ E

∫ t2

t1

|bn2 (t,X
n
t )|dt+ E|Wt2 −Wt1 |

6 (1− δ)E|Xn
t2 −Xn

t1 |+ C
(

|t2 − t1|
θ
2 + |t2 − t1|+ |t2 − t1|

1
2

)

6 (1− δ)E|Xn
t2 −Xn

t1 |+ C|t2 − t1|
θ
2 ,

which implies that

E|Xn
t2 −Xn

t1 | 6
C

δ
|t2 − t1|

θ
2 6 C|t2 − t1|

θ
2 . (3.10)

Combining (3.7) and (3.10) for every ǫ > 0, one concludes that

lim
c→∞

sup
n

sup
06t6T

P{|Xn
t | > c} = 0, (3.11)

and

lim
h↓0

sup
n

sup
06t1,t26T,|t1−t2|6h

P{|Xn
t1 −Xn

t2 | > ǫ} = 0. (3.12)

In view of Skorohod’s representation theorem (see [14, Lemma 2, p.87]), there is a probability

space (Ω̃, F̃ , P̃) and random processes (X̃n
t , W̃

n
t ), (X̃t, W̃t) on this probability space such that

(i) the finite-dimensional distributions of (X̃n
t , W̃

n
t ) coincide with the corresponding finite-

dimensional distributions of the processes same as (Xn
t ,W

n
t ).

(ii) (X̃n
· , W̃

n
· ) converges to (X̃·, W̃·), P̃-almost surely.
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In particular W̃ is still a Wiener process and

X̃n
t = x+

∫ t

0
bn1 (s, X̃

n
s )ds+

∫ t

0
bn2 (s, X̃

n
s )ds+ W̃ n

t . (3.13)

For any k ∈ N, by virtue of Theorem 2.1,

Ẽ

(

∫ T

0
|bn1 (s, X̃

n
s )− b1(s, X̃s)|ds

)

6 Ẽ

(

∫ T

0
|bn1 (s, X̃

n
s )− bk1(s, X̃

n
s )|ds

)

+ Ẽ

(

∫ T

0
|bk1(s, X̃

n
s )− bk1(s, X̃s)|ds

)

+Ẽ

(

∫ T

0
|bk1(s, X̃s)− b1(s, X̃s)|ds

)

6 C
[

‖IT b
n
1 − IT b

k
1‖Cq((0,T ];Lp(Rd)) + ‖IT b

k
1 − IT b1‖Cq((0,T ];Lp(Rd))

]

+Ẽ

(

∫ T

0
|bk1(s, X̃

n
s )− bk1(s, X̃s)|ds

)

. (3.14)

By letting n→ ∞ first, k → ∞ next, from (3.2) and (3.14) we arrive at

lim
n→∞

∫ t

0
bn1 (s, X̃

n
s )ds =

∫ t

0
b1(s, X̃s)ds, P̃− a.s.. (3.15)

Similarly, we obtain

Ẽ

(

∫ T

0
|bn2 (s, X̃

n
s )− b2(s, X̃s)|ds

)

6 Ẽ

(

∫ T

0
|bn2 (s, X̃

n
s )− bk2(s, X̃

n
s )|ds

)

+ Ẽ

(

∫ T

0
|bk2(s, X̃

n
s )− bk2(s, X̃s)|ds

)

+Ẽ

(

∫ T

0
|bk2(s, X̃s)− b2(s, X̃s)|ds

)

= : Jn
1 + Jn

2 + Jn
3 . (3.16)

For k fixed, as n→ ∞, Jn
2 → 0. For Jn

1 , we have

Jn
1 6 ‖b2‖L∞((0,T )×Rd)Ẽ

∫ T

0
|1− 1|X̃n

s |6R|ds + Ẽ

(

∫ T

0
1|X̃n

s |6R|b
n
2 (s, X̃

n
s )− bk2(s, X̃

n
s )|ds

)

6
C

R
Ẽ

∫ T

0
|X̃n

s |ds+ C‖1|x|6R|b
n
2 − bk2 |‖Lq(0,T ;Lp(Rd)), (3.17)

for every R > 0.

By taking n → ∞, k → ∞, R → ∞ in turn, then Jn
1 → 0 as n → ∞. And the same

conclusion for Jn
3 is true by a same discussion. Combining (3.2), (3.16) and (3.17) we arrive at

lim
n→∞

∫ t

0
bn2 (s, X̃

n
s )ds =

∫ t

0
b2(s, X̃s)ds, , P̃− a.s.. (3.18)
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From (3.13), (3.15) and (3.18), one reaches at

X̃t = x+

∫ t

0
b(s, X̃s)ds + W̃t.

From this one finishes the proof since by using Theorem 2.1, (3.2) holds true obviously. �

Theorem 3.1 can be generalized to the case of nonconstant diffusion if the diffusion coefficients

are regular enough. For simplicity, we give an application to the case of diffusion coefficient is

time independent and d = 1.

Corollary 3.1 Let σ(x) : R → R be Borel measurable. Suppose that there are positive constants

δ1 and δ2 such that δ1 6 σ 6 δ2. Consider the following SDE with nonconstant diffusion in R

dXt = b(t,Xt)dt+ σ(Xt)dWt, X0 = x ∈ R, t ∈ [0, T ]. (3.19)

Let p and q be given in Theorem 3.1, that b = b1 + b2 such that IT b1 ∈ Cq((0, T ];L
p(R)) and

‖IT b1‖Cq((0,T ];Lp(R)) is sufficiently small, b2 is bounded Borel measurable. Moreover, for this p,

we assume in addition that σ′ = σ̃1 + σ̃2, with σ̃1 ∈ Lp(R) and ‖σ̃1‖Lp(R) is small enough,

σ̃2 ∈ L∞(R). There is a filtered probability space (Ω̃, F̃ , {F̃t}06t6T , P̃), two processes X̃t(x) and

W̃t defined for [0, T ] on it such that W̃t is a 1-dimensional {F̃t}-Wiener process and X̃t is an

{F̃t}-adapted, continuous, 1-dimensional process for which (1.5) holds, and almost surely, for

all t ∈ [0, T ],

X̃t = x+

∫ t

0
b(s, X̃s)ds +

∫ t

0
σ(X̃s)dW̃s.

Proof. The proof here is inspired by Zvonkin’s transformation. Let us define

Φ(x) =

∫ x

0

1

σ(y)
dy, (3.20)

and since δ1 6 σ 6 δ2, Φ
−1 exists. Moreover, for every x, y ∈ R,

δ−1
2 |x− y| 6 |Φ(x)− Φ(y)| 6 δ−1

1 |x− y|, δ1|x− y| 6 |Φ−1(x)− Φ−1(y)| 6 δ2|x− y|.

Let us consider the following SDE

Yt(y) = y +

∫ t

0
[b(s,Φ−1(Ys))σ

−1(Φ−1(Ys))−
1

2
σ′(Φ−1(Ys))]ds +Wt. (3.21)

Noting that IT b1 ∈ Cq((0, T ];L
p(R)) and ‖IT b1‖Cq((0,T ];Lp(R)) is small enough, so IT b1(·,Φ

−1(·)) ∈

Cq((0, T ];L
p(R)), ‖IT b1(·,Φ

−1(·))‖Cq ((0,T ];Lp(R)) is sufficiently small too. And this conclusion

holds for σ̃1(Φ
−1). Upon using Theorem 3.1, there is a weak solution (Ỹt, W̃t) of (3.21) on a

filtered probability space (Ω̃, F̃ , {F̃t}06t6T , P̃) for which W̃t is a standard 1-dimensional standard

Wiener process to {F̃t}06t6T .
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Initially, we assume σ ∈ C∞(R), then Φ−1 is smooth. By utilising Itô’s formula, one derives

that

dΦ−1(Ỹt) = [Φ−1]′(Ỹt)dỸt −
1

2
[Φ′(Φ−1(Ỹt))]

−1Φ′′(Φ−1(Ỹt))[Φ
−1]′(Ỹt)

2dt

= σ(Φ−1(Ỹt))[b(t,Φ
−1(Ỹt))σ

−1(Φ−1(Ỹt))−
1

2
σ′(Φ−1(Ỹt))]dt

+σ(Φ−1(Ỹt))dW̃t +
1

2
σ(Φ−1(Ỹt))σ

′(Φ−1(Ỹt))dt

= b(t,Φ−1(Ỹt))dt+ σ(Φ−1(Ỹt))dW̃t, (3.22)

which implies (X̃t, W̃t) = (Φ−1(Ỹt), W̃t) is a weak solution of (3.19).

For general σ, we smooth it by convolution σε = σ ∗ ̺ε (̺ε is given in (2.21)). For Φ−1
ε ,

one gets an analogue of identity (3.22). With the same argument as in Theorem 3.1, by taking

ε→ 0, one finishes the proof. �

Remark 3.1. (i) The proof for the weak existence of solutions to SDE (3.19) is inspired by

Zvonkin’s transformation. For more details in this topic, one consults to [25].

(ii) When the Banach space Cq((0, T ];L
p(Rd)) is replaced by Lq(0, T ;Lp(Rd)), with q, p

meeting condition (1.3), there are many elegant study works [22, 23]. For example, under the

hypothesises that

(1) σ(t, x) is uniformly continuous in x ∈ R
d uniformly with respect to t and there is a

positive constant δ such that for all (t, x) ∈ [0, T ]× R
d,

δ|ξ|2 6
∑

i,k

|σi,k(t, x)ξi|
2 6

1

δ
|ξ|2.

(2) |∇xσt(x)|, |b| ∈ Lq(0, T ;Lp(Rd)). Zhang [23] obtained the existence and uniqueness of

the strong solution to the following SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x ∈ R
d, t ∈ [0, T ]. (3.23)

(iii) Other topics on SDE (3.23) such as existence, uniqueness of solutions, stochastic home-

omorphism, weak differentiability for b and σ in different classes, we refer the author to see

[3, 6, 10, 11, 16, 20] and the references cited up there.

4 Uniqueness and the strong Feller property

We first discuss the uniqueness. Before proceeding, let us present some useful lemmas.

Consider the SDE (3.23), with σ(t, x) ∈ R
d×d. If (Xt,Wt) is a weak solution on a probability

space (Ω,F ,P) with a reference family {Ft}06t6T , for every f ∈ C2
b (R

d), by Itô’s formula we
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have

f(Xt)− f(x)−

∫ t

0
b(s,Xs)ds−

∑

16i,j6d

∫ t

0
ai,j(s,Xs)∂

2
xi,xj

f(Xs)ds

=
∑

16i,k6d

∫ t

0
σi,k(s,Xs)∂xi

f(Xs)dWk,s.

Hence

f(Xt)− f(x)−

∫ t

0
b(s,Xs)ds −

∑

16i,j6d

∫ t

0
ai,j(s,Xs)∂

2
xi,xj

f(Xs)ds ∈ Mc
2([0, T ]), (4.1)

if
∫ T
0 |b(s,Xs)|ds < ∞ and

∫ T
0 |σ(s,Xs)|

2ds < ∞, a.s., where Mc
2([0, T ]) is the set of all con-

tinuous Ft-adapted L2(0, T ) martingale processes, ai,j =
∑

k σi,kσj,k/2. Conversely, if a d-

dimensional continuous adapted process {Xt}06t6T defined on a probability space (Ω,F ,P)

with a reference family {Ft}06t6T satisfies (4.1), then on an extension (Ω̃, F̃ , P̃) and {F̃t}06t6T ,

we can find a d-dimensional {F̃t}06t6T -Wiener process {W̃t}06t6T such that (X, W̃ ) is a weak

solution of (3.23) (see [12, pp168-169]). And if X meets (3.23), its probability law Px = P ◦X−1

on d-dimensional Wiener space (W d([0, T ]),B(W d([0, T ]))) satisfies

f(w(t))− f(x)−

∫ t

0
b(s,w(s))ds −

∑

16i,j6d

∫ t

0
ai,j(s,w(s))∂

2
xi,xj

f(w(s))ds ∈ Mc
2, (4.2)

for every f ∈ C2
b (R

d). In summary, we have

Lemma 4.1 ([12, Proposition 2.1, p169]) The existence of a weak solution of (3.23) is equiva-

lent to the existence of a d-dimensional process X satisfying (4.1), and this is also equivalent to

the existence of a probability P on (W d([0, T ]),B(W d([0, T ]))) satisfying (4.2).

After then, we give another lemma, which is used to deal with the uniqueness

Lemma 4.2 ([12, Corollary, p206]) If (X,W ) and (X ′,W ′) are weak solutions (3.23). Then

Px = P
′
x is equivalent to

∫

W d([0,T ])
f(w(t))Px(dw) =

∫

W d([0,T ])
f(w(t))P′

x(dw), (4.3)

for every t ∈ [0, T ] and every f ∈ Cb(R
d).

Now we give our uniqueness result.

Theorem 4.1 Let p, q and b be stated in Theorem 3.1. We assume that IT b1 ∈ C0
q ((0, T ];L

p(Rd;Rd))

in addition. If there are two weak solutions of (1.1), then the probability laws of them on d-

dimensional classical Wiener space (W d([0, T ]),B(W d([0, T ]))) are the same.
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Proof. We show the uniqueness by using Itô-Tanack’s trick (see [9]). Consider the following

vector valued Cauchy problem

{

∂tU(t, x) = 1
2∆U(t, x) + IT b1(t, x) · ∇U(t, x) + IT b1(t, x), (t, x) ∈ (0, T ) × R

d,

U(0, x) = 0, x ∈ R
d.

(4.4)

According to Lemma 2.1, there is a unique generalized solution U . Moreover by Corollary 2.1

(ii), U ∈ C([0, T ]; C1
b (R

d)) and there is a δ > 0 such that

‖U‖C([0,T ];C1
b
(Rd)) 6

C0(p, d)‖IT b1‖C0
q ((0,T ];Lp(Rd))

1− C0(p, d)‖IT b1‖C0
q ((0,T ];Lp(Rd))

< 1− δ,

since (3.1) holds.

We define Φ(t, x) = x+ ITU(t, x), then it forms a diffeomorphism on R
d, and

δ < ‖∇Φ‖C([0,T ];Cb(Rd)) < 2− δ,
1

2− δ
< ‖∇Ψ‖C([0,T ];Cb(Rd)) <

1

δ
, (4.5)

where Ψ(t, x) = Φ−1(t, x).

Using generalized Itô’s formula (see [15, Theorem 3.7]), if (Xt,Wt) is a weak solution of (1.1),

then

dΦ(t,Xt(x)) = b2(t,Xt)dt+ (I +∇ITU(t,Xt))dWt, Φ(0,X0(x)) = x+ U(T, x).

Denote Yt = Xt + ITU(t,Xt), then

dYt = b2(t,Ψ(t, Yt))dt+ (I +∇ITU(t,Ψ(t, Yt))dWt, Y0 = y. (4.6)

Now we assume that (X,W ) and (X ′,W ′) are weak solutions of (1.1) and the probability laws

of X and X ′ on (W d([0, T ]),B(W d([0, T ]))) are Px and P
′
x respectively. Correspondingly, we de-

note Py and P
′
y the probability laws of Y and Y ′. Since Yt = Φ(t,Xt) and Φ ∈ C([0, 1]; C1(Rd;Rd))

is a diffeomorphism on R
d uniformly for every t ∈ [0, T ], the relationships of Px and Py, P

′
x and

P
′
y are given by

Py = Px ◦ Φ
−1, P

′
y = P

′
x ◦ Φ

−1, (4.7)

where for a given measure µ on a Banach space S, and θ a map on S, we use the notation µ◦θ−1

to denote image measure of µ by the map θ, i.e.

∫

S
φd(µ ◦ θ−1) =

∫

S
φ(θ)dµ.

Combining (4.5) and noting that b2 is bounded Borel measurable, ITU is continuous in (t, x),

and I+ITU meets uniformly elliptic condition, applying Lemma 4.1 and [17, Theorem 5.6] (also

see [12, Theorem 3.3, p185] for time independent σ), the uniqueness of probability law for (4.6)

is true. So Py = P
′
y.
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For every f ∈ Cb(R
d) and every t ∈ [0, T ], by (4.7) then

∫

W d([0,T ])
f(w(t))Px(dw) =

∫

W d([0,T ])
f(Ψ(t,Φ(t, w(t))))Px(dw)

=

∫

W d([0,T ])
f(Ψ(t, w(t)))Py(dw), (4.8)

and
∫

W d([0,T ])
f(w(t))P′

x(dw) =

∫

W d([0,T ])
f(Ψ(t,Φ(t, w(t))))P′

x(dw)

=

∫

W d([0,T ])
f(Ψ(t, w(t)))P′

y(dw). (4.9)

Since Py = P
′
y, and for every t ∈ [0, T ], f ◦ Ψ(t, ·) ∈ Cb(R

d), from (4.8) and (4.9) one ends up

with (4.3). By applying Lemma 4.2, it is unique and we finish the proof. �

By using Zvonkin’s transformation and in view of the fact the uniqueness in probability law

implies the pathwise uniqueness in d = 1 (see [21, Proposition 1.1]), we have

Corollary 4.1 Let p, q, σ and b satisfy the assumptions stated in Corollary 3.1. We suppose

IT b1 ∈ C0
q ((0, T ];L

p(R)) further, then (3.19) exists a unique strong solution.

Proof. Clearly, by Yamada, Watanabe’d theory (see [20]), it only needs to prove the uniqueness.

Since the proof for uniqueness in probability law is analogue of the proof of Theorem 4.1, we

prove the pathwise uniqueness only. On the other hand, by the relationship between (3.19) and

(3.21), it suffices to show the pathwise for (1.1) on d = 1. When b is time independent and,

bounded and continuous in x, the proof can be seen in [21, Lemma p.75]. But the proof there

is adapted for the present b, so we completes the proof. �

Remark 4.1. Here we do not argue the general case, i.e. σ is time dependent and d > 1. As

discussed in [13], we may consider the existence and uniqueness for weak solutions, such that

the uniqueness holds only in the sense of finite dimensional probability laws. For more details

in this topic one can refers to [13] and the references cited up there.

Now we discuss the Feller property and the existence of density and initially we give a lemma.

Lemma 4.3 ([18]) Consider the following SDE
{

dXt(x) = b(t,Xt(x))dt+ σ(t,Xt(x))dWt, s < t 6 T,

Xs(x) = x ∈ R
d,

(4.10)

Suppose that b is bounded and Borel measurable, σ is bounded continuous and (ai,j) = (
∑

k σi,kσi,j)/2

is uniformly elliptic. Then there is a unique weak solution of (4.10) which is a strong Markov

process. Let P̃ (s, x, t, dy) be the transition probabilities and for every bounded function f , we

define

P̃s,tf(x) =

∫

Rd

f(y)P̃ (s, x, t, dy), (4.11)

22



then we have the following claims:

(i) P̃s,tf(x) is continuous in s and x for s < t.

(ii) P̃ (s, x, t, dy) has a density p̃(s, x, t, y) for almost all t ∈ [0, T ] which satisfies

∫ T

t0

∫

Rd

|p̃(s, x, t, y)|rdydt <∞. (4.12)

for every r ∈ [1,∞) provided s < t0.

Now we give our second result.

Theorem 4.2 Let p, q and b be described in Theorem 4.1. Consider SDE (4.10) with σ = Id×d.

Then there is a unique weak solution. Let P (s, x, t, dy) be the transition probabilities and for

every bounded function f , we set Ps,tf(x) by (4.12). Then Ps,tf(x) is continuous in s and x for

s < t and P (s, x, t, dy) has a density p(s, x, t, y) for almost all t ∈ [0, T ] which meets (4.12).

Proof. By Theorems 3.1 and 4.1, there is a unique weak solution of (4.10). Moreover, by (4.7)

and Lemma 4.3, Ps,x is a strong Markov process. Let P (s, x, t, dy) be its transition probabilities,

then for every f ∈ L∞(Rd),

Ps,tf(x) = E
Ps,xf(w(t)) =

∫

Rd

f(y)P (s, x, t, dy). (4.13)

Correspondingly, if one argues SDE (4.6) with initial data from time t = s and denotes the

transition probabilities by P̃ (s,Φ(s, x), t, dy), then with the help of (4.8), it yields that

Ps,tf(x) = P̃s,tf(Ψ(t, x)) =

∫

Rd

f(Ψ(t, y))P̃ (s,Φ(s, x), t, dy). (4.14)

So Ps,tf(x) is continuous in s and x for s < t. In particular, the semi-group P0,t(=: Pt) has

strong Feller property. And by Lemma 4.3, P̃s,t has a density p̃(s,Φ(s, x), t, y), from (4.14), then

Ps,tf(x) =

∫

Rd

f(Ψ(t, y))p̃(s,Φ(s, x), t, y)dy =

∫

Rd

f(y)p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)|dy.

Hence, for almost all t ∈ [0, T ], Ps,t has a density p(s, x, t, y) which is given by

p(s, x, t, y) = p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)|. (4.15)

From (4.15),for every r ∈ [1,∞) and s < t0

∫ T

t0

∫

Rd

|p(s, x, t, y)|rdydt =

∫ T

t0

∫

Rd

|p̃(s,Φ(s, x), t,Φ(t, y))|∇Φ(t, y)||rdydt

=

∫ T

t0

∫

Rd

|p̃(s,Φ(s, x), t, y)|∇Φ(t,Ψ(t, y))||r |∇Ψ(t, y)|dydt

6 C

∫ T

t0

∫

Rd

|p̃(s,Φ(s, x), t, y)|rdydt <∞,

where in the last line we have used (4.5). �
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unbounded Hölder continuous drift. Bull. Sci. Math. 134 405-422.
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