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Abstract 23 

Conventional in vivo directed evolution methods have primarily linked the biomolecule’s 24 

activity to bacterial cell growth. Recent developments instead rely on the conditional growth 25 

of bacteriophages (phages), viruses that infect and replicate within bacteria. Here we review 26 

recent phage-based selection systems for in vivo directed evolution. These approaches have 27 

been applied to evolve a wide range of proteins including transcription factors, polymerases, 28 

proteases, DNA-binding proteins, and protein-protein interactions. Advances in this field 29 

expand the possible applications of protein and RNA engineering. This will ultimately result in 30 

new biomolecules with tailor-made properties, as well as giving us a better understanding of 31 

basic evolutionary processes. 32 

 33 

Graphical abstract (submitted in separate TIFF file) 34 

 35 

 36 

Highlights (submitted in separate word file) 37 

 Directed evolution systems based on conditional phage replication (CPR) expand the 38 

potential of protein engineering. 39 

 CPR platforms function in both batch and continuous culture. 40 

 CPR systems bypass key limitations of conventional phage display. 41 

 Directed evolution of a wide range of proteins can be achieved by CPR. 42 

 43 
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Introduction 45 

Protein engineering enables the development of valuable biomolecules for pharmaceutical 46 

and biotechnological purposes. There are generally two strategies to guide protein 47 

engineering: rational design or directed evolution (Figure 1). Rational design usually uses 48 

computational tools and structural considerations to identify beneficial mutations in the 49 

protein of interest [1]. Recent advances in this strategy even allow the design of proteins 50 

completely de novo [2-6]. In comparison, directed evolution mimics natural evolution and 51 

starts with a population of genotype(s) and then proceeds with the iterative generation of 52 

genotype diversity and a selection based on linked phenotype activity. It is applied when too 53 

little structural or biochemical information is available to guide engineering. In many cases, 54 

these two strategies can be combined in a semi-rational approach to improve the activity of 55 

biomolecules [7,8]. This illustrates how the method must be chosen to fit the particular 56 

problem. 57 

 58 

A variety of directed evolution techniques have been developed that employ customized 59 

gene circuits [9-12]. One commonly used approach is to link the target protein’s activity to 60 

cell growth, which is particularly suitable when the evolving gene directly improves cellular 61 

fitness [13-15]. Alternatively, the use of phage particles offers a convenient way to uncouple 62 

the target protein’s activity from the fitness function of a cell. Instead, an artificial genetic 63 

circuit couples the evolving protein's function to increasingly efficient production of phage 64 

packaging the gene of interest [16]. 65 

 66 

Directed evolution requires genotypic diversity in the gene of interest and this can either be 67 

achieved in vivo or in vitro. In vivo mutagenesis relies on intracellular modification of the 68 

target gene [17-19] whereas in vitro mutagenesis can be achieved extracellularly by chemical 69 

modification [20], ultraviolet irradiation [21], or polymerase chain reaction (PCR) [22]. PCR-70 

based methods generally employ an error-prone polymerase or oligonucleotides that contain 71 

randomized bases at the desired positions. Chemical mutagenesis and irradiation are less 72 

commonly-used methods because of the lack of uniform mutational spectra [20,23]. By 73 

making randomized libraries or using a progressive series of mutations, it is possible to 74 

explore the ‘design space’ of a target gene, ultimately enabling the engineering of new 75 

proteins. 76 

 77 



 

 

 

 
4 

 

 

In this review, we first discuss the requirements for using phages to evolve biomolecules. We 78 

then focus on new directed evolution methods based on conditional phage replication that 79 

have been developed thanks to advances in molecular and synthetic biology. 80 

 81 

Re-engineering phage-host genetic interactions to select functional 82 

biomolecules 83 

When evolving a target gene from either a gene library or mutation system, the phenotype 84 

selection can either be performed outside a living cell (in vitro) or inside (in vivo). In vivo 85 

evolution systems allow selecting for more complex functions than in vitro methods (e.g. 86 

phage display) which are only suitable for binary protein-molecule interactions [24] (Figure 87 

2a). By contrast, intracellular evolution potentially allows selection for multi-step processes, 88 

as long as they can be linked to genotype survival [25]. For example, intracellular processes 89 

can facilitate the simultaneous mutation and selection of the gene of interest. Furthermore, it 90 

enables the use of counterselections against an undesired biomolecule function [26]. Another 91 

advantage of intracellular evolution is the subsequent compatibility of evolved genes or 92 

complex gene networks with the entire host cell machinery, as these have to function in a 93 

host cell context. To exploit these advantages, alternative phage-assisted directed evolution 94 

platforms have been developed. 95 

 96 

To allow enrichment of functional genes, phage selection systems require a link between the 97 

desired phenotype and conditional phage replication. This can be achieved by removing an 98 

essential gene required for phage replication from the phage genome and linking its 99 

expression to the function of the evolving biomolecule. Alternatively, this gene (or genes) 100 

could be a host co-factor required by the phage replication but dispensable to the cell (to 101 

allow cell survival in the uninfected cells that are required as a host reservoir). However, the 102 

only approaches developed so far rely on moving essential genes from the phage to the host 103 

cell or its associated plasmids [16,27] (Figure 2b,c). These systems may be classified 104 

according to the degree of phage engineering involved, where only a single gene may be 105 

moved or practically all of them. 106 

 107 

The evolving biomolecule has to be encoded in the phage and a genetic system has to be 108 

designed to allow a functional molecule to activate the expression of the essential gene 109 

(positive selection). When the evolving biomolecule is able to induce the expression of the 110 

missing gene, infectious virions will package the DNA encoding the biomolecule, promoting 111 

its survival. The conditional expression of the essential gene can be done at the 112 
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transcriptional or post-transcriptional levels, depending on the biomolecule to be evolved 113 

(e.g. a transcription factor or a riboregulator). 114 

 115 

Alternatively, selection may consist in designing a conditional interference with phage 116 

replication if a biomolecule is functional (negative selection). This is used to penalize any 117 

unwanted activity such as the original parental function of the biomolecule. The selection can 118 

also be complex or variable, where the stringency of positive and negative selection can be 119 

modulated exogenously [26]. 120 

 121 

Many alternative phage-host systems can in principle be chosen for the evolution of 122 

biomolecules depending on the application. For instance, if one wanted to evolve a 123 

photosynthetic protein, one might choose a cyanobacterium and one of its known phages. 124 

The disadvantage of such approaches is that the phage biology is not well characterized. 125 

Consequently, in this article we will focus on E. coli due to the lack of reported works with 126 

other organisms. The E. coli phages M13 [28], T4 [29,30], T7 [31] or λ [32] have been used 127 

to optimize protein function and stability with phage display, although M13 has been the only 128 

phage vector used to evolve biomolecules in vivo thus far. 129 

 130 

Evolving biomolecules through positive selection 131 

Recently, a new method to evolve biomolecules using M13 was developed, using a redesign 132 

of the host to implement a positive selection: Phage-Assisted Continuous Evolution (PACE) 133 

describes a general approach for the directed evolution of proteins in vivo [16]. Using PACE, 134 

new T7 RNA polymerase (RNAP) variants against a T3 promoter have been evolved, which 135 

are not bound by the wild-type T7 RNAP. For this, the minor coat protein pIII is replaced by 136 

the evolving gene of interest on the packaged M13 genome and the activity of the evolving 137 

protein is linked to conditional expression of pIII on a second plasmid, named an accessory 138 

plasmid (Figure 2b). Only phage particles assembled with pIII are infectious and propagate 139 

fast enough to stay in continuous culture. Mutations only accumulate within the packaged 140 

phage genome containing the target gene, and not in the E. coli strain, as bacteria are 141 

discarded (new uninfected bacteria are continuously provided). Enhanced genetic variation is 142 

obtained by a third mutagenesis plasmid (MP) that increases the mutation rate of E. coli cells 143 

[17]. All mutator genes on this MP are under an arabinose-inducible PBAD promoter allowing 144 

conditional mutagenesis only at the phage replication stage. In this way, a protein with 145 

desired characteristics can be evolved after dozens of reinfections within the continuous flow 146 

chamber. 147 

 148 
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Evolving biomolecules through negative selection 149 

In many cases, the requirements for evolved proteins not only include target activity but also 150 

the avoidance of potential off-target effects. This can be achieved by engineering a negative 151 

selection to remove variants with unwanted properties, which can be implemented by down-152 

regulating a gene required for phage replication [27,33]. Alternatively, one may exploit any of 153 

the known mechanisms by which a bacterium can counteract a phage infection [34]. PACE 154 

has been adapted for negative selection pressures by choosing an abortive infection 155 

mechanism, where the undesired activity (activation of the original promoter) was linked to 156 

the inhibition of phage propagation using a non-functional pIII variant [26]. 157 

 158 

Modulating selection stringency for new functions 159 

An important challenge is the ability to maintain phage replication when there is a lack of 160 

initial function for the biomolecule to be evolved. In the original PACE approach, an 161 

intermediate selection system was used where the T7 RNAP was initially evolved to 162 

transcribe a hybrid T3-T7 promoter, which had some activity, to later switch the selection to 163 

the full-target T3 promoter [16]. This is actually very difficult to achieve because it requires 164 

engineering a hybrid promoter that is still active with the original polymerase. Therefore this 165 

cannot be easily generalised to other cases. Fortunately, an alternative method was 166 

proposed that does not require re-engineering the target promoter [26] and instead relies on 167 

adding a second complementary copy of the gene used for selection (here gIII). This is 168 

similar to the hypothesis for the natural evolution of new functions de novo by gene 169 

duplication, where one gene duplicate maintains the original function, while the second copy 170 

is allowed to drift [35]. In the directed evolution case, the first gIII copy is under the control of 171 

a T3 promoter. The second copy is under the control of a T7 promoter, but the expression of 172 

this gIII is regulated (“stringency modulation”) to ensure this additional copy will cease to 173 

complement the original as the evolution progresses and the T7 RNAP acquires activity for 174 

the T3 promoter. Thus, the selection pressure is gradually increased over time to select the 175 

new function. 176 

 177 

Tackling complex evolution pressures 178 

Since the initial development of PACE, the platform has been adapted for the directed 179 

evolution of many different classes of proteins. For example, protease-PACE links the 180 

proteolysis of a target peptide to phage replication using a protease-activated RNA 181 

polymerase [36]. The system was used in the presence of two hepatitis C virus (HCV) 182 

protease inhibitor drug candidates (danoprevir and asunaprevir) to evolve HCV protease 183 

variants that possess up to 30-fold drug resistance. Strikingly, the predominant mutations 184 
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obtained in the HCV protease were consistent with the mutations observed in human 185 

patients treated with danoprevir or asunaprevir. Alternatively, DNA-binding PACE is a 186 

general method for the directed evolution of DNA-binding activity and specificity [25]. The 187 

platform was used to engineer transcription activator-like effector nucleases (TALENs) with 188 

improved DNA cleavage specificity [25]. On the other hand, protein-binding PACE enables 189 

the directed evolution of protein-protein interactions [37]. The authors evolved variants of the 190 

Bt toxin CrylAc against a cell receptor from the insect pest Trichoplusia ni with novel binding 191 

affinity that can ultimately overcome insect toxin resistance. PACE was also employed to 192 

continuously evolve T7 split RNA polymerases for downstream biosensor applications [38]. 193 

PACE has even been combined with high-throughput sequencing methods to improve 194 

downstream analysis which allows the characterization of whole protein populations as they 195 

adapt to selection pressures over time [39]. 196 

 197 

Evolution using phagemids 198 

Phagemids can provide an alternative to classic full-phage selection systems. They have 199 

specific advantages, such as large library sizes and avoiding the mutation of phage genes. 200 

Consequently, we developed a phagemid selection system [27,33] where only the phagemid 201 

(PM) containing a library member and one essential phage gene (gIII) is packaged, while all 202 

the other phage components (except gVI) are provided on a modified helper phage (HP). To 203 

complete the system, an accessory plasmid (AP) contains a conditional gene VI circuit 204 

(Figure 2c). After infection, a protein with desired activity upregulates gene VI expression 205 

and therefore increases phage production. In this way, a protein with desired activity can be 206 

selected after several rounds of reinfection. Notably, our recently described system [27,33] 207 

uses conditional production of the minor coat protein pVI instead of pIII used in PACE. This is 208 

particularly useful for the directed evolution of transcription factors against basally-active 209 

promoters as expressed gIII in the starter culture would otherwise cause infection resistance 210 

resulting in a significantly decreased selection efficiency [40,41]. 211 

 212 

Phagemid selection has been applied for the directed evolution of a set of orthogonal 213 

transcription factors based on λ cI against synthetic promoters [27]. Negative selection 214 

against wild-type (WT) activity via repression has been achieved by putting the WT DNA 215 

sequence between the -35 and -10 regions of each synthetic promoter. The resulting toolkit 216 

contains 12 transcription factors, operating as activators, repressors, dual activator-217 

repressors or dual repressor-repressors for the use in gene network engineering. Moreover, 218 

this evolution strategy functions in batch mode and therefore requires no special equipment 219 
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for reactor assembly, although it does rely on daily researcher interventions during selection 220 

[33]. 221 

 222 

Conclusion and perspectives 223 

Recently developed directed evolution methods based on conditional phage replication 224 

further emphasize the strengths of phage-assisted protein engineering. These systems are 225 

particularly useful as they bypass key limitations of the widely-used phage display technology 226 

such as the simultaneous mutation and selection of complex biological functions. When 227 

choosing the most suitable method, various aspects including desired protein activity, 228 

available structural information, selection pressure and required selection efficiency need to 229 

be considered. Intracellular phage-assisted systems can, in principle, be used for all types of 230 

proteins, as long as their activity can be linked to conditional phage production (Figure 3). 231 

Notably, this is easier to achieve for cytosolic proteins than it is for complex proteins (e.g. 232 

membrane proteins). Furthermore, general limitations of bacterial expression over 233 

mammalian expression such as protein solubility, posttranslational modifications and 234 

disulfide bond formation have to be taken into account when using any phage-assisted 235 

technology. 236 

 237 

Phages may also be used to evolve non-coding RNAs provided that their function can be 238 

linked to gene expression. This is particularly useful to complement computational designs of 239 

riboregulators [42], where a cognate regulatory sequence has to be added in the 5’UTR of 240 

the gene used for selection (for instance gene VI in [27,33]). Protein or RNA-based sensors 241 

(activating gene expression under the presence of a target chemical inducer) may also be 242 

encoded in the phage, provided one designs cycles of selections composed of two steps. 243 

The first step consists of a positive selection where the sensor may activate the infectious 244 

virion packaging in the presence of the chemical inducer. The second step occurs in the 245 

absence of the chemical inducer, where only sensors that do not activate the negative 246 

selection gene would be able to produce infectious virions. Similarly, negative selections may 247 

also be used to evolve the targeted function in the case of a negative regulator of gene 248 

expression (e.g., repressor). A negative selection would here act as an inverter such that 249 

constitutive phage replication could be used for evolving a repressor. 250 

 251 

Advances in the fields of DNA sequencing, gene synthesis and genome engineering will 252 

likely reduce costs and improve the efficiency of current phage-assisted systems as well as 253 

drive the development of new technologies based on bacteriophages other than M13 [43]. 254 
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These advances will also impact new mutagenesis strategies, in particular ones that enable 255 

targeted mutagenesis with improved mutation rates in vivo. The mutation of only the target 256 

gene(s) while not affecting any other genetic information is desirable in order to reduce the 257 

probability of selecting false positive variants in any directed evolution approach. As a 258 

consequence, phage-assisted evolution technologies will continue to play a key role in 259 

protein engineering efforts for basic as well as applied research. 260 
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Figures 474 

 475 

Figure 1. Protein engineering by rational design or directed evolution. a) Rational design uses 476 

computational tools as well as structural or other biochemical knowledge to identify beneficial 477 

mutations in the protein of interest. These mutations are inserted into the gene of interest (targeted 478 

mutagenesis) which is then expressed in host cells. Functional analysis for each protein variant is 479 

performed to confirm improved activity. b) Directed evolution is applied when too little structural or 480 

biochemical information is available to guide engineering. Mutations in the gene of interest are 481 

inserted randomly or by targeting specific positions in the gene sequence leading to a library of gene 482 

variants. Functional library members are then selected via a suitable selection system (e.g. phage-483 

assisted evolution) against a target function. The activity of the selected protein is finally confirmed by 484 

functional analysis. Rational design and directed evolution are often combined to obtain the best 485 

results (semi-rational approach). 486 
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Figure 2. Phage-assisted directed evolution methods. a) Affinity selection of library members by 489 

phage display. Protein variants are fused to a phage coat protein and are displayed on phage particles 490 

providing a physical connection between genotype and phenotype. b) Phage-assisted continuous 491 

evolution (PACE) is based on conditional M13 phage replication. The activity of the evolving protein on 492 

the selection phage (SP; contains the gene of interest and all phage genes except gene III) is linked to 493 

gIII expression on the accessory plasmid (AP; contains a conditional gene III expression circuit). Only 494 

phage particles assembled with pIII are infectious and propagate fast enough to stay in continuous 495 

culture. The system uses a mutagenesis plasmid (MP) that increases the mutation rate of E. coli cells 496 

to generate target gene diversity. Mutations only accumulate within the packaged phage genome 497 

containing the target gene and not in the E. coli strain due to the continuous nature of the system. In 498 

this way, a protein with desired characteristics can be evolved after dozens of rounds of reinfection. 499 

c) Phagemid-based evolution from combinatorial libraries in batch mode. The library members are 500 

located on a packaged phagemid (PM) which also contains one essential phage gene (gIII). All the 501 

other phage genes are located on a modified helper phage (HP; contains all phage genes except 502 

genes III and VI) and an accessory plasmid (AP; contains a conditional gene VI expression circuit). 503 

After infection, a protein with desired activity upregulates gene VI expression and therefore increases 504 

phage production. In this way, a protein with desired activity can be selected after several rounds of 505 

reinfection.  506 



 

 

 

 
16 

 

 

 507 
 508 

Figure 3. Directed evolution of different classes of proteins based on conditional M13 phage 509 

replication. a) An evolving T7 RNA polymerase upregulates gene III expression in an activity-510 

dependent manner [16]. b) An evolving N-terminal T7 RNA polymerase fused to a leucine zipper ZA 511 

assembles with a C-terminal T7 RNA polymerase variant fused to leucine zipper ZB leading to gene III 512 

expression in an activity-dependent manner [38]. c) An evolving transcription activator (e.g. λ cI) 513 

upregulates gene VI expression downstream of a specific promoter (e.g. λ PRM) [27]. d) DNA-binding 514 

PACE enables the evolution of transcription activator-like effector nucleases (TALENs) [25]. The 515 

evolving DNA-binding protein is linked to the ω subunit of bacterial RNA polymerase III and binding to 516 

a target DNA sequence upstream of a minimal lac promoter enables gene III expression in an activity-517 

dependent manner. e) Protease-PACE enables the evolution of proteases against desired cleavage 518 

sites [36]. The T7 polymerase is inhibited when bound to T7 lysozyme as it inhibits transcription 519 

initiation and the transition from initiation to elongation [44]. Proteolysis of the target cleavage site by 520 

an evolving protease activates the T7 RNA polymerase leading to gene III expression in an activity-521 

dependent manner. f) Protein-binding PACE allows the evolution of protein-protein interactions [37]. 522 

The target protein is bound to the DNA upstream the promoter PlacZ-opt via a fused DNA-binding 523 

domain (orange) and the RNA polymerase omega subunit (RpoZ; yellow) is fused to the evolving 524 

protein. The binding of the evolving protein to the target protein enables the transcription of gene III 525 

from the PlacZ-opt promoter. The evolving protein is highlighted in blue and the target sequence is 526 

depicted in red for each individual example. 527 


