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ABSTRACT: Protein aggregation into amyloid fibrils is a
ubiquitous phenomenon across the spectrum of neuro-
degenerative disorders and type 2 diabetes. A common
strategy against amyloidogenesis is to minimize the popula-
tions of toxic oligomers and protofibrils by inhibiting protein
aggregation with small molecules or nanoparticles. However,
melanin synthesis in nature is realized by accelerated protein
fibrillation to circumvent accumulation of toxic intermediates.
Accordingly, we designed and demonstrated the use of star-
shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of
human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The
binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of “stelliform” amyloids
originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike
scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary
structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated
IAPP aggregation. This study sheds new light on the structure−toxicity relationship of IAPP and points to the potential of
exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

■ INTRODUCTION

Type 2 diabetes mellitus (T2D) is a metabolic disease affecting
5% of the global population.1 Extensive research indicates that a
major factor in the development and pathogenesis of T2D is
dysfunction of human islet amyloid polypeptide (IAPP), a 37-
residue peptide cosecreted with insulin from pancreatic β-cells,
which undergoes fibrillization to form amyloid plaques found in
90% of T2D patients.2,3 The toxic IAPP aggregation products
are also capable of eliciting systemic damage in T2D patients
with evidence of cardiac dysfunction and neurological deficits
mediated by IAPP deposition increasing the burden of
disease.4,5 Concordantly, there is a crucial need for the
development of treatment agents that are capable of mitigating
IAPP-associated toxicity in vivo to reduce the morbidity of T2D
and prevent its development in prediabetics.
Aggregation inhibition with the use of small molecules as

well as metal, carbon, and polymeric nanoparticles (NPs)6−9

has been a major strategy against amyloid-mediated toxicity.

Polymeric NPs, specifically, have been explored as protein
aggregation inhibitors utilizing their tunable hydrophobicity as
well as their capacity for initiating H-bonding.10−13 For
example, antiprion activity has been demonstrated by
phosphorus dendrimers, maltose-based glycodendrimers
(mPPI), poly(propyleneimine) PPI, and poly(ethylenimine)
hyperbranched polymers.12−20 Of the myriad forms of
polymeric NPs, hyperbranched polymers and dendrimers
have demonstrated strong efficacies as antiamyloid
agents,11,12,15,21−26 though anti-IAPP applications have only
been explored recently. PPI glycodendrimers and lysine
dendrimers have been investigated as anti-Aβ aggregation
agents,22,23 and hyperbranched PEG-based polymers with a
dopamine moiety were found to be capable of inhibiting α-
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synuclein (αS) aggregation.11 Anionic low-generation den-
drimers have been shown to modulate IAPP fibrillization and
associated toxicity,24 and inhibition of IAPP fibrillization and
toxicity in vitro and ex vivo has recently been demonstrated by
our team with OH-terminated polyamidoamine dendrimers
(PAMAM-OH).26

Curiously, the amyloidogenesis of melanocyte protein
Pmel17 in the human system is entirely nonpathogenic.27

The rapid fibrillization of Pmel17, which transitions from
monomeric form to mature amyloid fibrils within 3 s, is a
cytoprotective mechanism, namely, through reducing the half-
life of toxic intermediate products (i.e., oligomers and
protofibrils) to favor the formation of nontoxic, mature
amyloid fibrils. Indeed, this effect has been shown to extend
to pathogenic amyloids; mice overexpressing the Alzheimer’s-
related amyloidogenic peptide amyloid-β (Aβ) with the “Artic”
mutation, correlated with the acceleration of Aβ fibrillization,
demonstrated higher plaque loading with lower or negligible
impact on behavioral function comparable to mice expressing
wild-type Aβ.28 The concept of fibrillization promotion, rather
than inhibition, thus provides a biomimetic and perhaps
counterintuitive strategy in the mitigation of amyloid
cytotoxicity.
Amyloid aggregation promotion as a strategy for mitigating

cytotoxicity has thus far only been reported for a selected few
small molecules.29,30 Specifically, high-throughput screening
identified aromatic small molecules capable of promoting Aβ
fibrillization to provide a cytoprotective effect, including the
orcein-related molecule O430 and the compound 2002-H20.29

Small molecules, however, are imperfectly suited as antiamyloid
agents when utilized without modifications to confer targeting
specificity, as they frequently display molecular promiscuity.31

In this study, we synthesized and demonstrated the use of
poly(2-hydroxyethyl acrylate) (PHEA) star polymers32 as an
anti-IAPP agent capable of cytoprotective rescue of pancreatic
β-cells through the promotion of amyloid aggregation. PHEA
stars were synthesized using a reversible addition-fragmentation
chain-transfer (RAFT) polymerization methodology and were
designed to mimic the chemistry of small molecule aggregation
promoters through the incorporation of hydroxyls and aromatic
rings via the RAFT end-groups.33,34 The PHEA stars were
weakly negatively charged, each possessing a hydrodynamic size
of ∼12 nm and containing on average 12 arms. Through
biophysical characterizations, we demonstrated a significant,
positive correlation between amyloid aggregation promotion
induced by PHEA stars and reduction in IAPP-mediated
cytotoxicity both in vitro and ex vivo and additionally identified
a new amyloid morphology, named “stelliform amyloids”,
formed by coaggregation of IAPP and PHEA stars at a molar
ratio of 5:1. Atomistic discrete molecular dynamics (DMD)35

simulations revealed that the PHEA stars possessed rigid arms
different from the porous and micellar PAMAM dendrimers.
The rodlike arms served as linear scaffolds for IAPP binding
and further accelerated the nucleation of β-sheet aggregates by
increased local peptide concentration. Each arm of the PHEA
stars could nucleate the fibrillization of IAPP resulting in the
stelliform amyloid morphology. This study opens the door to
the design and application of a new class of agents against
amyloid diseases.

■ EXPERIMENTAL METHODS
Materials. 2-Hydroxyethyl acrylate (HEA) was purchased from

Sigma-Aldrich and deinhibited by passing through a column of basic

alumina. S,S′-Dibenzyl trithiocarbonate (DBTC), N,N′-methylenebis-
(acrylamide) (X) was purchased from Sigma-Aldrich. Azobis-
(isobutyronitrile) (AIBN) was purified by recrystallization from
methanol before use. Dimethyl sulfoxide (DMSO) was purchased
from Merck Millipore and used as received. Human islet amyloid
polypeptide monomers (IAPP; disulfide bridge: 2−7; MW: 3,906; 37
residue: KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY;
>95% pure by HPLC) were obtained in lyophilized powder form
from AnaSpec and were made up to a 200 μM stock immediately prior
to an experiment or allowed to fibrillate at 25 °C for >5 days to
produce mature IAPP amyloids. All materials were weighed out on a
Cubis MSE balance (Sartorius, 0.01 mg resolution) and made up fresh
in Milli-Q water prior to experiments unless otherwise specified.
Thioflavin T (ThT) dye (Sigma-Aldrich) was prepared fresh for each
experiment at a 250 μM stock solution. Propidium iodide (PI) dye
stock solution (1 mg/mL in water) was stored at −20 °C.

RAFT Synthesis of Poly(2-hydroxyl ethyl acrylate) Stars.
Synthesis of Poly(2-hydroxyl ethyl acrylate) (p(HEA)) Homopol-
ymer. Three homopolymers of PHEA were prepared by RAFT
polymerization with molecular weights of 4,000, 8,000, and 16 000 g/
mol.

The synthesis of PHEA 1 (Mn = 4000 g/mol) was carried out using
the following stoichiometry: [DBTC]:[HEA]:[AIBN] = 1:38:0.1. In
brief, 2-hydroxyethyl acrylate (4.00 g, 0.034 mol), DBTC RAFT agent
(0.27 g, 9.12 × 10−4 mol), AIBN (15.4 × 10−3 g, 9.38 × 10−5 mol),
and DMSO (26 mL) were placed into a 50 mL round-bottom flask
equipped with a magnetic stirrer bar and capped with a rubber septum.
The reaction mixture was deoxygenated for 1 h at 0 °C with nitrogen
gas. The sealed deoxygenated reaction vessel was placed in a preheated
oil bath at 70 °C, and the polymerization was carried for 4 h with
stirring. Polymerization was stopped by placing the vessel in ice to
cool. The product was analyzed by 1H NMR and GPC. The monomer
conversion was determined to be approximately 88% by NMR, thus
resulting in a Mw of 4141 g/mol. By integrating the peaks associated
with the benzyl group (7.1−7.4 ppm) and the hydroxyl group in the
PHEA repeat unit (δ = 4.8 ppm), the Mn(NMR) is found to be 4374 g/
mol. Per arm, there are 32 units of the PHEA monomer because the
homopolymer constitutes 64 units. The molecular number and
polydispersity index were determined by GPC to be 8,276 Mn and
1.30, respectively.

A similar procedure was employed for the synthesis of PHEA 2 (Mn
= 8000 g/mol) using the following stoichiometry: [DBTC]:[HEA]:
[AIBN] = 1:75:0.1. In brief, 2-hydroxyethyl acrylate (4.00 g, 0.034
mol), DBTC RAFT agent (0.13 g, 4.58 × 10−4 mol), AIBN (7.2 ×
10−3 g, 4.38 × 10−5 mol), and DMSO (26 mL) were placed into a 50
mL round-bottom flask equipped with a magnetic stirrer bar and
capped with a rubber septum. The reaction mixture was deoxygenated
for 1 h at 0 °C with nitrogen gas. The sealed deoxygenated reaction
vessel was placed in a preheated oil bath at 70 °C, and the
polymerization was carried for 4 h with stirring. Polymerization was
stopped by placing the vessel in ice to cool. The product was analyzed
by 1H NMR and GPC. The monomer conversion was determined to
be approximately 85% by NMR, thus resulting in an Mn(th) of 7716 g/
mol. By integrating the peaks associated with the benzyl group (7.1−
7.4 ppm) and the hydroxyl group in the PHEA repeat unit (δ = 4.8
ppm), the Mn(NMR) is found to be 7729 g/mol. Per arm, there are 32
units of the PHEA monomer; therefore, the homopolymer constitutes
64 units. The molecular number and polydispersity index were
determined by GPC to be 14,688 Mn and 1.24, respectively.

The synthesis of PHEA 3 (Mn = 16,000 g/mol) was achieved in a
similar method as above using the following stoichiometry: [DBTC]:
[HEA]:[AIBN] = 1:144:0.1. In brief, 2-hydroxyethyl acrylate (4.91 g,
0.042 mol), DBTC RAFT agent (0.085 g, 2.93 × 10−4 mol), AIBN (5
× 10−3 g, 3.04 × 10−5 mol), and DMSO (32 mL) were placed into a
50 mL round-bottom flask equipped with a magnetic stirrer bar and
capped with a rubber septum. The reaction mixture was deoxygenated
for 1 h at 0 °C with nitrogen gas. The sealed deoxygenated reaction
vessel was placed in a preheated oil bath at 70 °C and the
polymerization was carried for 6 h with stirring. Polymerization was
terminated by placing the vessel in ice to cool. The product was
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analyzed by 1H NMR and GPC. The monomer conversion was
determined to be approximately 91% by NMR, thus resulting in an Mw
of 15,553 g/mol. By integrating the peaks associated with the benzyl
group (7.1−7.4 ppm) and the hydroxyl group in the PHEA repeat unit
(δ = 4.8 ppm), the Mn(NMR) is found to be 15,961 g/mol. The
molecular number and polydispersity index were determined by GPC
to be 26,676 Mn and 1.24, respectively.
Synthesis of PHEA Star. A typical PHEA star synthesis is carried

out as follows. The synthesis of PHEA star was conducted using the
following stoichiometry: [PHEA 2]:[HEA]:[AIBN]:[XL] =
1:12:0.4:18. In brief, a 1.86 mL aliquot (250 mg equivalent) of the
solution above, AIBN (1.60 mg, 9.76 × 10−3 mol), methylene
bis(acrylamide) (77.09 mg, 0.5 mol), and 930 μL of DMSO were
added into a glass vial equipped with a magnetic stirrer bar and capped
with a rubber septum. The reaction mixture was deoxygenated for 30
min at 0 °C with nitrogen gas. The sealed deoxygenated reaction
vessel was placed in a preheated oil bath at 70 °C, and the
polymerization was carried for 24 h with stirring. Polymerization was
terminated by placing the vessel in ice to cool.
Purification was conducted by dialysis against water with a MWCO

of 14 kDa for 2 days and then lyophilization. The product was
analyzed by GPC, and its molecular number and polydispersity index
were determined to be 85,500 Mn and 2.18, respectively. With the
given Mn values from GPC, the star was calculated to have 12 arms. In
theory, the molecular weight of the star is 47,295 g/mol.
Analysis Methods. 1H Nuclear Magnetic Resonance Spectros-

copy. 1H NMR spectra were recorded at 400 MHz on a Bruker
UltraShield 400 MHz spectrometer running Bruker Topspin, version
1.3. Spectra were recorded in DMSO-d6.
Gel Permeation Chromatography (GPC). GPC was performed

using a Shimadzu modular system comprised of a SIL-20AD automatic
injector, a RID-10A differential refractive-index detector, and a 50 ×
7.8 mm guard column followed by three KF-805L columns (300 × 8
mm, bead size: 10 μm, pore size maximum: 5000 Å). N,N′
-Dimethylacetamide (DMAc, HPLC grade, 0.03% w/v LiBr) at 50
°C was used for the analysis with a flow rate of 1 mL min−1. Samples
were filtered through 0.45 μm PTFE filters before injection. The GPC
calibration was performed with narrow-polydispersity polystyrene
standards ranging from 500 to 2 × 106 g mol−1.
Dynamic Light Scattering (DLS). DLS was carried out on a

Malvern Zetasizer Nano ZS Series running DTS software (laser, 4
mW, λ = 633; angle 173°). The polydispersity index (PDI) used to
describe the average diameters and size distribution of prepared stars
was determined via a cumulants analysis of the measured intensity
autocorrelation function using the DTS software. Samples were filtered
using 0.45 μm PTFE syringe filter to remove contaminants/dust prior
to the measurement.
Fourier Transform Infrared Spectroscopy-Attenuated Total

Reflectance (FTIR-ATR). ATR-FTIR measurements were performed
using a Shimadzu IRTracer 100 Fourier transform infrared
spectrometer with a GladiATR 10 single reflection ATR accessory.
Spectra were obtained in the midinfrared region of 4000−600 cm−1 at
a resolution of 8 cm−1 (512 scans) and analyzed using LabSolution IR
software.
Thioflavin T Assay. Aliquots of IAPP (final concentration of 25

μM), ThT dye (25 μM), and PHEA polymers (5, 1, or 0.2 μM) were
added directly to wells of a black/clear bottom 96-well plate (Costar)
and mixed thoroughly. The final well volume of 100 μL was made up
using Milli-Q water where necessary. The plate was run on a
Flexstation 3 plate reader (Molecular Devices) with samples excited at
440 nm and the emission read at 485 nm every 5 min for a total of 14
h (169 readings).
Circular Dichroism (CD) Spectroscopy. Experiments were

performed on a Chirascan CD spectrometer (Applied Photophysics)
with spectra read from 190 to 260 nm. Prior to sample loading, a
baseline with no cuvette was run. Then, 300 μL of 25 μM IAPP in
Milli-Q water alone or in the presence of PHEA (5 μM), was placed in
a cuvette with a 0.1 cm path length, and CD analysis was run at 0, 2.5,
and 24 h time points. Between samples, cuvettes were washed more
than 5× with distilled water. Reads are an average of 3 repeats. Raw

data were offset to zero and normalized against the spectra of Milli-Q
water for IAPP spectra and against PHEA alone for IAPP-PHEA mixed
samples. Data were then deconvoluted with CDNN software to give a
final relative percentage content of secondary structure.

Transmission Electron Microscopy. Samples were placed in
Eppendorf tubes at a final IAPP concentration of 25 μM and
incubated for 24 h at 25 °C. An aliquot (10 μL) was placed on 400
mesh carbon-coated Formvar copper grids (ProSciTech) that were
glow-discharged to promote hydrophilicity. Samples were adsorbed
onto the grid for 60 s, then drawn off using filter paper. Grids were
washed twice with 10 μL of Milli-Q water. Five microliters of 1%
uranyl acetate (in water) was then utilized to twice-stain grids by
touching one droplet and immediately drawing the stain off, and then
placing the grid atop the second droplet to stain for 15 s. TEM images
were obtained on a Tecnai TF20 transmission electron microscope
(FEI) with an UltraScan 1000 (2k × 2k) CCD camera (Gatan).

Determination of Fibril Morphology. Fibril tracking and analysis
were performed with software FiberApp36 to determine the
morphology and mesoscopic parameters of persistence length (λ)
and contour length (l) of IAPP fibrils. FiberApp was developed from
statistical physics and enables structural analysis of tubular and
macromolecular objects. The persistence length λ reflects the stiffness
of a polymer and is mathematically defined via the bond correlation
function (BCF) in 3D or 2D as the length over which angular
correlations in the tangential direction decrease by a factor of e.37

Here, the λ values of IAPP fibrils were estimated using the BCF, mean-
squared end-to-end distance (MSED), and mean-squared midpoint
displacement (MSMD) methods and presented as averaged values
determined by the three methods. The contour length corresponds to
the end-to-end length of a polymer along its physical contour. The
values of persistence length and contour length were obtained based
on statistical analysis of 1,243 fibrils.

Cell Culture and Viability. Insulin-producing βTC6 cells (ATCC)
were cultured in complete DMEM (ATCC; 15% FBS). For viability
assays, a 96-well plate (Corning) was coated with 70 μL of 70 μg/mL
poly-D-lysine for >10 min; then, the wells were washed 3× in 100 μL
of HBSS. Cells were seeded at a density of ∼50,000 cells per well in
200 μL of complete media and incubated at 37 °C in 5% CO2 for 3
days. Fresh IAPP or mature IAPP amyloids (200 μM stock) were
preincubated together with PHEA polymers (40, 8, and 3.2 μM
stocks) at a 1:1 v/v ratio for 24 h at room temperature. Prior to cell
treatment, the media was aspirated, and the wells were washed 1× in
100 μL of HBSS. One micromolar propidium iodide (PI; AnaSpec)
dye solution was made up in complete media containing 1% penicillin/
streptomycin, and 150 μL aliquots were added to each of the wells.
The cells were returned to the incubator for 30 min to equilibrate with
the dye solution. Each sample treatment was then added to the wells in
triplicate, in addition to an IAPP control made up fresh immediately
prior to adding to the wells (final well volume: 200 μL; final IAPP
concentration: 25 μM). The cells were imaged on an Operetta High-
Content Imaging System (PerkinElmer) utilizing standardized
excitation/emission settings for PI with images of five areas within a
single well taken every hour for 24 h. Total cell counts per well were
estimated using phase-contrast mapping within sampling areas. Cell
death over time was expressed as %PI positive cells within the total cell
count.

Ex Vivo Viability. C57BL/6 male mice (age 10−14-week-old) were
maintained at St. Vincent’s Institute animal care facility on a 12 h light-
dark cycle in a temperature-controlled room and obtained food and
water ad libitum. Uniformly sized mouse islets from C57BL/6 mice
were handpicked into 1 cm Petri dishes containing 1 mL of 25 μM
hIAPP, 5 μM PHEA, or a combination of both and cultured for 48 h.
At the end of the culture period, islets were dispersed with trypsin and
resuspended in 250 μL of hypotonic buffer containing 50 μg/mL of
propidium iodide, which stained nuclear DNA. The cells were
analyzed by fluorescence-activated cell sorter (FACS), and cell death
was identified by their subdiploid DNA content as previously
described.38 The study was conducted at St Vincent’s Institute
(Melbourne, Australia) following the guidelines of the Institutional
Animal Ethics Committee.
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Statistics. Where applicable, data were analyzed using a one-way
ANOVA with Tukey’s correction with p < 0.05 considered statistically
significant.
DMD Simulations and Simulation Setup. DMD is a special form

of molecular dynamics, where discrete step functions instead of
continuous functions are used to mimic the constraints. The united-
atom representation with all polar hydrogen and heavy atoms was used
to model IAPPs and PHEA polymers. An adapted Medusa force field35

with an implicit solvent model was used to describe the nonbonded
interatomic interactions, including van der Waals, solvation, hydrogen
bonding, and electrostatic terms. The Debye−Hückel approximation
with a Debye length of ∼10 Å was applied to capture the screened
electrostatic interactions. Anderson’s thermostat was used to maintain
temperature, which was fixed at 300 K in all simulations. The DMD
program is freely available to academic users at the Molecules in
Action Web site (http://moleculesinaction.com), and all simulation
parameters can be obtained upon request. Given the stochastic nature
in the dynamics of a multimolecular system and the nucleation-
dependent aggregation kinetics, we performed multiple independent
long simulations with different starting configurations (e.g., random-

ized velocities, intermolecular distances and orientations) to ensure
sufficient sampling and avoid potential bias associated with initial
configurations. Thermodynamic and kinetic prosperities were then
obtained by analyzing all the independent runs for each molecular
system.

All the PHEA model structures were constructed with the
Avogadro39 molecular builder software and energy minimized with
the MMFF94s force field.40 MedusaScore,41 an extension of the
Medusa force field,42 was adapted to model the polymers in addition
to IAPP. The MedusaScore was parametrized on a large set of ligands
and was transferrable to different molecular systems. The predictive
power of MedusaScore has been validated in various benchmark
studies, including recent community structure−activity resource
(CSAR) blind ligand−receptor docking prediction exercises.43,44

For each 2-arm PHEA (Figure S3A), we performed 20 independent
simulations at 300 K with different starting configurations. Each
independent simulation lasted 300 ns, and thus, an accumulative 6 μs
simulation was obtained for the polymer model. We used the last half
of all simulations and computed the radius of gyration (Rg) values of
the modeled polymers. For the 8-arm PHEA (Figure S3C), 20

Figure 1. Synthesis and preliminary characterization of PHEA stars via RAFT polymerization. (A) Synthesis of PHEA stars using a symmetrical
RAFT agent. (B) Gel permeation chromatograms for the PHEA arm (orange) and star (gray). (C) Size distribution by number from dynamic light
scattering for PHEA stars.
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independent simulations were performed at 300 K with different
starting configurations, each of which lasted 200 ns.
The IAPP (PDB ID: 2L86) structure was obtained from PDB.

Counterions Cl1− were introduced to achieve a neutral charge
condition if necessary. For systems containing six IAPPs (with and
without a 6-arm PHEA as shown in Figure S3B), the peptide
concentration was maintained by fixing the dimension of the
simulation box as 120 Å, and periodic boundary conditions were
applied. For each of the multimolecular systems, 20 independent
simulations starting with different intermolecular distances and
orientations were performed at 300 K, and each run lasted 100 ns.
Secondary structure analyses were performed using the dictionary

secondary structure of protein (DSSP) method. For each snapshot
structure, the secondary structure, such as helix, sheet, coil, and turn,
for each residue was obtained. An empirical sigmoidal function

= − + − − +y I I k t t I( )/(1 exp( ( )))max min 0 min (1)

was adopted to fit the kinetics of the total number of residues in the β-
sheet conformation, where fitting parameters A, B, t0, and k
corresponded to the max and min values of aggregation, the midpoint
time of aggregation, and the elongation rate, respectively. The lag time
was determined as

= −t t k2/lag 0

In the potential of mean force (PMF) calculation, normalized
sigmoidal function, Qfibrillization = 1/(1+ exp(−k(t − t0))), was used
to quantify the extent of fibrillization for each independent simulation.
For a given snapshot, the distribution of IAPP oligomers was analyzed,
where any two peptides interconnected by at least one intermolecular
heavy atom contact (the cutoff of 0.55 nm) was defined to belong to
an oligomer. The size of an oligomer, noligomer, was defined by the
number of IAPP peptides forming the aggregate. The two-dimensional
PMF (or effective free energy) was computed according to

= −K T P n QPMF ln ( , )B oligomer fibrillization (2)

where KB is the Boltzmann constant, T corresponds to the simulation
temperature 300 K, and P(noligomer, Qfibrillization) is the probability of
finding a peptide in an oligomer with the size of noligomer and the extent
of fibrillization Qfibrillization at the time.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of PHEA Stars. PHEA

stars were synthesized with constitutive elements similar to
those observed in small molecule aggregation promoters.
Specifically, the stars were designed to incorporate aromatic
rings (on the distal end of the star arms) and pendant hydroxyls
on the side chains of the arms. To actualize these design
criteria, we chose S,S′-dibenzyltrithiocarbonate (DBTC) as the
RAFT agent and employed in the polymerization of 2-
hydroxethyl acrylate (Figure 1A). The polymerization was
carried out in DMSO at 70 °C using AIBN as the radical
initiator. To provide a suitable array of arm molecular weights
for the subsequent star formation, we first synthesized three
PHEA homopolymers with varying degrees of polymerization
to approximately 80−90% conversion. The Mn of the
homopolymers was determined via 1H NMR analysis by
comparing integrals for the peaks at δ = 7.1−7.4 ppm
(corresponding to the benzyl leaving group of the RAFT
agent, i.e., the polymer end group) with the integral for the
peak corresponding to the hydroxyl group in the PHEA repeat
unit (δ = 4.8 ppm). These results agreed well with the
theoretical molecular weights determined from the ratio of the
monomer to RAFT agent (see Table S1). GPC analysis of the
various PHEA homopolymers revealed unimodal peaks with an
acceptable dispersity of 1.2−1.3, although of course the Mn
values from GPC differed considerably from those determined

above due to calibration of the GPC against polystyrene
standards.
The solutions of arm polymers (including unreacted HEA)

were then used to form the PHEA stars by adding
methylene(bis(acrylamide)) at various molar ratios and a
further aliquot of AIBN and then heating at 70 °C for 24 h.
Samples were taken periodically during the reaction with a
further aliquot of AIBN injected after 12 h. A library of different
core-cross-linked stars were formed with the results tabulated in
Table S2. It is worth noting that the symmetrical nature of the
RAFT agent used (DBTC) gave rise to arm polymer in which
the thiocarbonylthio moiety was in the middle of the polymer
chain. As such, subsequent introduction of the difunctional
monomer (to facilitate formation of the cross-linked core)
occurred in the middle of the arm polymer. The consequence
of this architecture is that the final stars had an arm molecular
weight that was half the value of the starting “arm” material. To
our knowledge, this is the first time that this approach (i.e., the
use of a symmetrical RAFT agent such as DBTC) has been
employed in the preparation of star polymers. The resulting star
polymers were analyzed by gel permeation chromatography to
identify the best conditions for star formation. For all systems,
there was a shift in the GPC trace for the PHEA homopolymer
to shorter retention times, reflecting successful chain extension,
with this shift typically most pronounced for higher ratios of
cross-linker to polymer (Figure 1B; for [P]:[M]:[X] = 1:12:16
and Mn(GPC)

arm = 14,500 g mol−1). Estimation of approximate
arm number could be made by dividing the Mn(GPC) for the star
by 1/2 Mn(GPC) for the arm. The factor of 1/2 is introduced
into this equation because of the symmetry of the chain transfer
agent, as noted above. For each series, higher ratios of cross-
linker led to higher arm numbers. It should be noted, however,
that these values are only indicative of the true arm number due
to the potential underestimation of molecular weight when
applying GPC to hyperbranched materials. Moreover, the
indicative nature of this approach is clearly evident in that the
arm number should only ever be even given the symmetrical
nature of the RAFT agent. Importantly, the use of DBTC as a
RAFT agent for the HEA polymerization and the subsequent
formation of star from DBTC-derived PHEA led to somewhat
broader molecular weight distributions than have been achieved
using other star polymer systems.33 Although there is evidence
in the literature that varying the solvent for star formation can
improve arm incorporation and minimize polydispersity,33 the
scope for optimization of the current system was limited by the
intransigent solubility of the stars in most solvents: we observed
that the resulting materials were soluble only in DMSO or
water. Even then, some difficulty was encountered when
attempting to redisperse the star in these solvents after
lyophilization. We attribute this effect to hydrogen bonding
between the arms and as such allowed a minimum of 72 h for
the polymer to equilibrate after redispersing in water.
From the GPC data, the star with the clearest shift to higher

molecular weight accompanied by maintenance of a relatively
unimodal molecular weight distribution was observed for the
system where Mn(GPC)

arm = 14,500 g mol−1 and [P]:[M]:[X] =
1:12:16. Analysis of this material by dynamic light scattering
(Figure 1C) indicated a number-average hydrodynamic radius
of approximately 9.8 nm for the stars when dispersed in water,
which is consistent with other water-soluble star polymers
synthesized via RAFT polymerization. Spectroscopic evaluation
of these same PHEA stars was also conducted with the
recorded 1H NMR spectrum confirming that the desired
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aromatic and hydroxyl moieties were present in the final
polymer structure (Figure 2A). FTIR analysis before and after
star formation provided further evidence of the high proportion
of OH groups in the star in addition to demonstrating the
presence of the methylene(bis(acrylamide)) linking groups in
the star core (Figure 2B). Specifically, the emergence of peaks
associated with amide CO stretch (1,645 cm−1) and amide
N−H stretch (1,547 cm−1) provide clear evidence that the
amide cross-linking groups were successfully incorporated into
the star structure.
Modulation of IAPP Fibrillization by PHEA Polymers.

The thioflavin T (ThT) assay utilizes the amyloidophilic ThT
dye to provide a measurement of both the extent and kinetics
of amyloid fibrillization over time. The control IAPP was shown
to fibrillate with a nucleation period of ∼2 h followed by an
exponential period of ∼12 h before reaching saturation at 14 h
(Figure 3A). Incubation of PHEA with IAPP at molar
concentrations of 1:5 and 1:25 had a promotional effect on

IAPP fibrillization both for the star NPs and their constituent
subunits, referred to as “arms” (Figure S1), with the largest
increase in ThT fluorescence observed at 1:5. Following the
trend of increasing fibrillization with increasing concentration
of PHEA, the energetically unfavorable nucleation period was
also shown to significantly decrease with increasing concen-
tration of PHEA, falling from ∼3.5 h in the IAPP control to less
than 30 min with the highest concentration of PHEA. The
reduction in IAPP lag time was also demonstrated through
circular dichroism (CD) spectroscopy, wherein the presence of
PHEA to IAPP at the 1:5 ratio notably promoted the
amyloidogenic conversion of random coil content to β-sheets
(Figures 3B and Figure S3). Over 2.5 h, β-sheet conversion in
IAPP:PHEA 1:5 (25−34%) was 2.3× more rapid than that of
IAPP alone (29−33%), and concordantly, IAPP contained 25%
higher β-sheet content at 24 h in the presence of PHEA (55%)
compared to that of IAPP alone (44%). This shift in
prototypical IAPP aggregation kinetics, in addition to the

Figure 2. (A) 1H NMR spectrum of purified PHEA stars recorded in DMSO-d6 (400 MHz). The phenyl end-groups are evident at δ = 7.2−7.3 ppm.
(B) FTIR-ATR spectra for the PHEA arm (orange) and star (blue).

Figure 3. (A) ThT fluorescence of IAPP in the presence of PHEA stars over 24 h. Dotted lines represent sigmoidal curve fitting (least-squares fit);
error is SEM (n = 2). (B) Secondary structure transitions in IAPP mapped by circular dichroism at 0, 2.5, and 24 h time points. Lines are intended to
guide the eye. The concentration of IAPP in all experiments is 25 μM.
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promotion of fibrillization overall, presents a case for rapid local
sequestration of IAPP seeds by PHEA, whereas a lower PHEA
concentration ratio would isolate aggregation “hotspots” and
thus limit fibril elongation but promote coaggregation and thus
enhance fibrillization at higher PHEA concentrations.
Stelliform Amyloid Formation and Amyloid Remodel-

ing by PHEA. Transmission electron microscopy (TEM)
imaging complemented ThT and CD analyses for fibrillating
IAPP, allowing further analysis of persistence and contour
length of amyloid fibrils generated after 24 h in aqueous
solution in the presence and absence of PHEA. After 24 h,
IAPP amyloidogenesis reached the saturation phase, and long,
semiflexible fibrils can be observed by TEM with some shorter
species still present (Figure 4A). Once fibril elongation and 3D
cross-linking occurred at >5 days of amyloidogenesis, amyloids
formed in-solution hydrogels, and generally, shorter species
were absent.45 “Stelliform amyloids” were observed when
PHEA was incubated with IAPP at a 1:5 molar ratio (Figure
4A). These amyloids were characterized by a central nucleation

“core”, ranging from smaller clusters of 50−150 nm to
micrometers in diameter. Fibrils of low persistence (average
of 891.9 nm compared with that of 2,885 ± 60 nm for the IAPP
control6,7) and contour length (<1,350 nm) were additionally
observed radiating out from the core, forming the full stelliform
structure of ∼0.5 μm in diameter for smaller cores and
micrometers in diameter for larger cores with some macro-
scopic aggregates visible in solution (Figure 4A).
With lower concentrations of PHEA, the fibrillization

products generally trended toward matching the structural
morphology of IAPP alone (Figure 4B). IAPP amyloid fibrils
with significantly reduced contour lengths were produced with
increasing PHEA concentration, indicating polyphenol-like
stabilization of growing fibrils through H-bonding; hydrophobic
and π−π interactions by PHEA46 may have terminated fibril
elongation, resulting in a fibril population with predominantly
low contour lengths. As fibril elongation is mediated by amyloid
seeds, the extensive exponential periods observed in the ThT
assay (Figure 3A) could be indicative of the PHEA-IAPP

Figure 4. (A) TEM imaging of fibrillating IAPP (IAPP) and mature IAPP amyloids (Amyloid) in the presence and absence of PHEA stars after 24 h
incubation. Stelliform amyloids are seen at PHEA:IAPP 1:5. Scale = 100 nm. (B) Structural analysis of amyloid fibrils visualized in (A). IAPP
concentration in all experiments is 25 μM.
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complex rapidly sequestering amyloid seeds to render large
populations of shorter fibrils, thus depleting the available
seeding population to perform elongation. Interestingly,
however, the shift in fibril persistence length induced by stars
versus arms varied greatly; stars induced softer fibrils, whereas
those generated in the presence of arms were notably stiffer.
The capacity of PHEA to remodel IAPP amyloids was also
assessed after coincubation for 24 h and demonstrated a similar
trend. Amyloids were reduced in persistence length upon
exposure to PHEA stars with the most notable effect seen as
soft, limp fibrils “bundling” at PHEA:IAPP 1:5. Conversely,
negligible amyloid remodeling was observed in the presence of
PHEA arms. These observations could be attributed to the
differences in morphology and surface physicochemical proper-
ties of the stars and arms.
Stelliform IAPP Amyloids Are Cytoprotective in Vitro

and ex Vivo. IAPP-mediated cytotoxicity was assessed in an
insulin-producing pancreatic β-cell line over a 24 h period
(Figure 5A) and ex vivo in mouse islets after 48 h (Figure 5B).
PHEA stars were completely biocompatible at all concen-
trations tested. In vitro, IAPP alone typically began to induce
cytotoxicity at ∼6 h post-treatment with cell death progressing
exponentially up until the 20−24 h mark to an end point
toxicity value of 38%. When incubated with IAPP at 1:25 and
1:125 ratios, PHEA stars delayed the progression of IAPP
toxicity by ∼2 h and reduced IAPP-mediated toxicity overall
compared to that of the IAPP control. However, with PHEA
stars:IAPP 1:5, cells were 94% viable after 24 h, and low levels
of cytotoxicity were only observed more than 15 h post
incubation. Per their aromatic structures,31 PHEA arms

successfully mitigated IAPP cytotoxicity at all concentrations
tested (Figure S2). The cytoprotective capacity of PHEA stars
at a 1:5 ratio to IAPP was also seen ex vivo, where mouse islets
treated with IAPP in the presence of the highest concentration
of PHEA stars (∼8% relative cell death) demonstrated a
significant reduction in toxicity compared to that of IAPP alone
(64%) after 48 h treatment.
The near-complete mitigation in IAPP-mediated toxicity

observed both in vitro and ex vivo when IAPP was incubated
with PHEA stars correlated with stelliform amyloid formation
at the PHEA:IAPP ratio of 1:5, as observed in Figure 4A. Likely
the key to the cytoprotective nature of stelliform amyloids lies
first in their mechanism of formation and additionally in terms
of the structure itself. First, oligomeric and low-order
protofibrillar species formed as intermediates during IAPP
amyloidogenesis are widely considered responsible for the
majority of IAPP-mediated cytotoxicity3 with far less toxicity
attributed to amyloid fibrils.28 Seeding of IAPP oligomers to the
plasma membrane of pancreatic β-cells resulted in destabiliza-
tion of the lipid membrane47 and cell death through “lipid
stripping”.48 Concordantly, rapid sequestering of toxic low-
order IAPP species through the formation of stelliform
amyloids mediated by PHEA stars would reduce the local
population of toxic species around the cell membrane.
Lastly, it has also been purported that the cytotoxicity of

amyloid fibrils is mediated through partitioning of the
hydrophobic, stiff fibrils into the cell membrane, leading to
disruption of the membrane and production of radical oxygen
species.47,49,50 The structure of stelliform amyloids, with a
compact core and vastly reduced persistence and contour

Figure 5. Protective effect of PHEA stars against IAPP-mediated cytotoxicity in pancreatic beta cells and islets. (A) In vitro cytotoxicity of fibrillating
IAPP and mature IAPP amyloids in the presence and absence of PHEA in βTC6 cells over 24 h. Error = SEM (n = 3). (B) Ex vivo cytotoxicity of
fibrillating IAPP and IAPP:PHEA at a 1:5 molar ratio in mouse islets after 48 h incubation. Flow cytometry data is representative of n = 5
experiments summarized in the graph. Error = SEM. ****p < 0.0001, one-way ANOVA with Tukey’s correction.
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lengths of radiating fibrils, would be unable to effectively
partition into the lipid bilayer51 and would also readily form a
protein corona52,53 within the extracellular milieu through
electrostatic and hydrophobic interactions, further limiting any
amyloid contact with cellular membranes. Importantly, we
observed complete protection from IAPP-induced cell death in
primary mouse islets treated with PHEA stars at a 1:5 molar
ratio.
In Silico Study of the PHEA Polymers and Their

Effects on IAPP Aggregation. To complement the

experimental findings, we examined the structural properties
of model PHEA polymers by all-atom DMD simulations35 (see
Experimental Methods, ESI). We first studied 2-arm PHEA
polymers (Figure S4A) with different degrees of polymerization
(DP) and computed their corresponding radius of gyration
(Rg) values (Figure S4D). The data revealed an approximately
linear dependence of Rg on DP (up to ∼40, Figure S4D),
suggesting that the PHEA stars were rather rigid. The
autocorrelation analysis of the polymer dynamics in simulations
resulted in an estimated Kuhn length of ∼36 repeats (Figure

Figure 6. Aggregation free energy landscapes of IAPP without (A) and with (B) PHEA. Three-dimensional potentials of mean force (PMFs) with
respect to IAPP oligomer size and degree of fibrillization were used to derive the free energy landscapes in front and top views. Snapshot structures
with IAPP in cartoon and PHEA polymers in stick are shown to illustrate the basins and saddles of the energy landscapes.
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S4E), which confirmed the rigidity of the PHEA stars. To
evaluate the structure and dynamics of PHEA stars, we studied
an 8-arm PHEA model with molecular compositions
resembling the experimental data (Figure S4C) in all-atom
DMD simulations. A rapid equilibration in terms of Rg and
ellipticity was observed (Figure S4F). The average Rg of the 8-
arm polymer was ∼4.5 nm, consistent with the experimentally
measured hydrodynamic radii (Figure 1C). The high ellipticity
value (close to 1) suggests that the 8-arm PHEA adopted a
nonspherical conformation as illustrated by a typical snapshot
3D structure (e.g., the inset of Figure S4F). Because of the high
rigidity, the interactions between different arms were found
minimal beyond the covalent cross-links. Therefore, the all-
atom DMD simulations revealed a different morphology of the
PHEA stars from that of PAMAM dendrimers, which feature a
micellar structure with a porous interior for encapsulating small
molecules54 and IAPP peptides.26

To provide molecular insight into IAPP-PHEA binding and
its effect on IAPP self-association, we performed DMD
simulations on two sets of molecular systems with one
containing six IAPP peptides along with a 6-arm PHEA
polymer (Figure S4B) and another of six peptides alone as the
control (see Experimental Methods in the ESI). We first
monitored the size of the largest IAPP aggregates as a function
of the simulation time and noted that the presence of PHEA
indeed accelerated the self-association clusters in silico (Figure
S5A). On the basis of the last 25 ns of the simulations where
the largest IAPP aggregates were formed, the binding
probability of each IAPP residue with PHEA indicated that
both polar and nonpolar residues of IAPP could bind PHEA,
though hydrophobic and aromatic residues showed a slightly
higher binding propensity (Figure S5B). As a result, the
generally nonspecific attraction between IAPP and PHEA led to
the accumulation of peptides on PHEA arms, and the increased
local peptide concentration accelerated the aggregation of IAPP
consistently with a previous coarse-grained computational
study.55 We also examined the secondary structure of IAPPs
and their binding with PHEA along the simulation trajectories
(e.g., one of the independent simulations shown in Figure S6),
where a general trend of correlation between IAPP-PHEA
binding and β-sheet formation in IAPP aggregates was evident.
Comparison-average secondary structure contents of the last 25
ns between simulations with and without PHEA (Figure S5C
and D) suggest that the PHEA binding did not significantly
affect the structures of the aggregates other than accelerated
IAPP self-association (Figure S4A).
Next, the kinetics of β-sheet formation were analyzed for

simulations of IAPPs with and without PHEA. The total
number of IAPP residues in the β-sheet conformation followed
sigmoidal-like kinetics (i.e., a lag phase followed by rapid
growth/elongation and saturation as in Figure S7A) resembling
experimentally observed aggregation kinetics. As expected for a
nucleation-dependent process, each of the independent
simulations rendered different lag times and elongation rates
(see the fitting analysis in the Experimental Methods). The
presence of PHEA significantly reduced the aggregation lag
times (Figure S7B) and broadened the distribution of the
elongation rates (Figure S7C), further suggesting that PHEA
binding accelerated the nucleation of β-sheet aggregates and
induced heterogeneity in β-sheet elongation, respectively.
Additionally, the potential of mean force (PMF; i.e., the
effective aggregate free energy landscape in Figure 6) was
computed with respect to the size of IAPP oligomers, noligomer,

and the degree of IAPP fibrillization, Qfibrillization (for details, see
Experimental Methods in the ESI). Two major basins, one
corresponding to IAPP monomers and oligomers with little β-
sheets (e.g., highlighted as a,b in Figure 6A and α,β in Figure
6B) and the other denoting IAPP aggregates with high amounts
of β-sheets (e.g., e,f in Figure 6A and ε,ζ in Figure 6B), could be
observed in both IAPP aggregation free energy landscapes with
and without PHEA stars. The saddles connecting the two
basins corresponded to the aggregation pathways and
intermediates (e.g., c,d in Figure 6A and γ,δ in Figure 6B).
The presence of the PHEA star rendered the non-β-sheet basin
shallower and the saddle broader (i.e., more pathways/routes
toward final β-rich aggregates in Figure 6B), which accounted
for the reduced aggregation lag times (Figure S7B) and
heterogeneity in β-sheet elongation rates (Figure S7C).

■ CONCLUSIONS
Inspired by the mechanism of Pmel17 amyloidogenesis, we
have developed and established that a polymeric star nano-
particle, PHEA, is capable of mitigating IAPP-mediated toxicity
both in vitro and ex vivo through PHEA-mediated promotion
of IAPP aggregation and formation of a unique “stelliform
amyloid” morphology. Unlike the porous PAMAM-OH
dendrimers, which inhibited both IAPP aggregation and toxicity
through peptide sequestration,26 the possession of high rigidity,
long arm length, and rich aromatic moieties of PHEA stars
facilitated rapid deposition and fibrillization of IAPP monomers
into amyloid fibrils. Subsequently, this amyloid structure
elicited significantly reduced toxicity in a pancreatic β-cell line
and in mouse islets when compared to the long, semiflexible
fibrils typically formed by IAPP. In light of the observation that
both PHEA arms and stars elevated IAPP aggregation while
mitigating IAPP toxicity, whereas dendrimers and hyper-
branched polymers have been predominantly shown in the
literature to inhibit amyloid protein aggregation,11−18,21−26 it is
plausible to attribute the observed phenomenon chiefly to the
structure and physicochemical properties of the PHEA.
Nonetheless, the shape/morphology of the PHEA stars was
likely a contributing factor in the IAPP-PHEA interaction, as
reflected by the difference in IAPP fibril stiffness associated with
PHEA stars versus arms. Shortening of the oligomer lifetime
through amyloid aggregation promotion represents a potential
strategy to be explored within the larger context of amyloid
research,56 although implementation of such a strategy in vivo
remains a challenge given the stochastic nature of secondary
nucleation of amyloid proteins. This study has shed new light
on the IAPP structure−toxicity relationship and presents an
alternative blueprint for the design of polymeric nanomedicines
against amyloidogenesis.
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