

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/94683

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/94683
mailto:wrap@warwick.ac.uk

Imitation Learning in Artificial Intelligence

by

Alexandros Gkiokas

Thesis

Submitted to the University of Warwick

for the degree of Computer Science.

Supervisor: Alexandra I. Cristea

Doctor of Philosophy

Department of Computer Science

September 2016

Contents

Acknowledgments v

Declarations vi

Abstract vii

Abbreviations viii

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Human Intelligence . 1

1.2 Imitation in Humans . 2

1.3 Imitation in Artificial Intelligence . 3

1.4 Cognitive Artificial Intelligence . 4

1.5 Icarus Engine . 5

1.6 Research Scope & Biological Plausibility 6

1.7 Contributions . 8

1.8 Thesis Overview . 9

Chapter 2 Background and Literature Review 10

2.1 Alan Turing and the intelligent machines 10

2.2 Imitation in Nature . 11

2.2.1 What is imitation? . 11

2.2.2 How does imitation work? . 12

2.3 Symbolic Artificial Intelligence . 13

2.3.1 Knowledge Representation . 14

2.3.2 Criticism and Limitations of Symbolic Artificial Intelligence . 18

i

2.4 Connectionistic Artificial Intelligence 19

2.4.1 Artificial Neural Networks . 19

2.4.2 General Purpose Computing on Graphic Processing Units . . 24

2.4.3 Deep Learning . 24

2.4.4 Reinforcement Learning . 28

2.4.5 Deep Reinforcement Learning 31

2.4.6 Connectionism Criticism and Limitations 32

2.5 Cognitive or Synthetic Artificial Intelligence 33

2.5.1 Bach and Synthetic Intelligence 33

2.5.2 Haikonen and Cognitive Intelligence 34

2.5.3 Five Cognitive Agent Criteria 36

2.5.4 AI Architectures . 37

2.6 Programming by Example . 40

2.6.1 PBE: Theory and Models . 40

2.6.2 PBE: Application Domains and Criticism 43

2.6.3 PBE: Differences from Imitation Learning 44

2.7 Parsing and Understanding . 44

2.7.1 Semantics . 44

2.7.2 Distributional Semantics . 45

2.7.3 Relational Semantics . 46

2.7.4 Part of Speech Tagging . 48

2.7.5 Semantic and Syntactic Parsing 48

2.7.6 Implementing Parsing and NLU 50

2.7.7 Models and Algorithms in NLU 52

2.7.8 NLU Performance and Issues 53

2.8 Background Conclusion . 54

Chapter 3 Theory and Agent Design 56

3.1 MDP as a Template for Learning . 57

3.2 Paradigm Decomposition and Training 58

3.3 Rewarding and Evaluation . 62

3.4 Episode Iteration and Inference . 63

3.5 Decision Making and Policy Approximation 64

3.6 Statistical and Probabilistic Approximation 67

3.7 Semantic and Heuristic Approximation 68

3.8 Neural Approximation and Distributed Encoding 70

3.9 Deep Neural Approximation and Sparse Encoding 72

ii

3.10 Semantic Approximation and Sparse Encoding 74

3.11 Conceptual Graph Output . 75

3.12 Metalearning and Knowledge Compression 76

3.12.1 Metalearning on Learnt Knowledge 76

3.12.2 Grouping by Similarity . 76

3.12.3 Generalising Cluster Graphs 77

3.12.4 Optimisation by Belief Evaluation 78

3.13 Conclusion . 78

3.13.1 Bandura and Imitation in Humans 79

3.13.2 Haikonen and Cognitive AI 79

3.13.3 Bach and Synthetic Intelligence 80

3.13.4 Five Cognitive Agent Criteria 81

3.13.5 Icarus and Cognitive AI . 81

3.13.6 Discussion on Icarus Implementation 82

Chapter 4 Conceptual Graph Dataset 83

4.1 Datasets for NLU and NLP . 84

4.1.1 Creating a New Dataset . 85

4.1.2 Partitioning the Dataset . 86

4.1.3 Translating and Converting Datasets 87

4.2 Conceptual Graph Complexity . 88

4.2.1 Graph Columns and Linearity 89

4.2.2 Graph Branching and Grouping 90

4.2.3 Graphs and Operators . 90

4.3 Dataset Conclusion . 91

Chapter 5 Experiments, Methodology and Results 92

5.1 Methodology and Experiment Design 92

5.1.1 Randomised Block Design . 93

5.1.2 Experiment Logs . 93

5.1.3 Accuracy Measures . 95

5.2 Semantic-Heuristic Experiments . 97

5.2.1 Implementation . 97

5.2.2 Results and Discussion . 99

5.3 Probability-based Experiments . 101

5.3.1 Implementation . 101

5.3.2 Probability Space Analysis 103

5.3.3 Results . 106

iii

5.3.4 Discussion & Conclusion . 109

5.4 Shallow Neural Experiments . 110

5.4.1 Implementation . 110

5.4.2 Results . 114

5.5 Deep Learning Experiments . 118

5.5.1 Implementation . 118

5.5.2 Results . 122

5.6 Experiment Conclusions . 126

Chapter 6 Conclusions and Future Work 129

6.1 Conclusions . 129

6.2 Criticism and Limitations . 132

6.3 Future Work . 133

Appendix A Penn Treebank POS tags 135

Appendix B Conceptual Graph examples 137

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor Alexandra Cristea,

without whom this thesis and research would never have taken place. My parents

George and Maria, for never giving up on me and always believing. My current

employer Stratos Arampatzis and Ortelio Ltd, as well as my previous employer

Matthew Sewell and Athium Ltd, for their support, funding and understanding.

Karen Stepanyan and Panagiotis Petridis for putting up with my questions, offering

their support and advice, and guiding me through this adventure. Finally, Mina

Makridi for putting up with me and for the past four years, and entertaining the

notion that one day we’ll witness true AI.

v

Declarations

This thesis is submitted to the University of Warwick in support of my application

for the degree of Doctor of Philosophy. All experimental data presented and sim-

ulations were carried out by the author, except in the following cases: Daedalus

experiments were done on-line after being approved by the BSREC with refer-

ence REGO-2015-1529. All experiments for Daedalus were carried out on the web

and they represent anonymous data. Chapter 3 contains theoretical formulations

[Gkiokas et al., 2014] carried out in cooperation with Matthew Thorpe from the

Mathematics Institute in Warwick. Parts of this thesis have been published by the

author, including submitted papers:

- Training a Cognitive Agent to Acquire and Represent Knowledge from RSS

feeds onto Conceptual Graphs [Gkiokas and Cristea, 2014a].

- Unsupervised neural controller for Reinforcement Learning action-selection:

Learning to represent knowledge [Gkiokas and Cristea, 2014b].

- Self-reinforced meta learning for belief generation [Gkiokas et al., 2014].

- Cognitive Agents and Machine Learning by Example: Representation with

Conceptual Graphs [Gkiokas and Cristea, 2016a].

- Deep Learning and Encoding in Natural Language Understanding: Sparse

and Dense Encoding Schemes for Neural-based Parsing [Gkiokas and Cristea,

2016b]

vi

Abstract

Acquiring new knowledge often requires an agent or a system to explore, search and

discover. Yet us humans build upon the knowledge of our forefathers, as did they,

using previous knowledge; there does exist a mechanism which allows transference

of knowledge without searching, exploration or discovery. That mechanism is known

as imitation and it exists everywhere in nature; in animals, insects, primates, and

humans. Enabling artificial, cognitive and software agents to learn by imitation

could potentially be crucial to the emergence of the field of autonomous systems,

robotics, cyber-physical and software agents. Imitation in AI implies that agents

can learn from their human users, other AI agents, through observation or using

physical interaction in robotics, and therefore learn a lot faster and easier.

Describing an imitation learning framework in AI which uses the Internet as

the source of knowledge requires a rather unconventional approach: the procedure

is a temporal-sequential process which uses reinforcement based on behaviouristic

Psychology, deep learning and a plethora of other Algorithms. Ergo an agent using a

hybrid simulating-emulating strategy is formulated, implemented and experimented

with. That agent learns from RSS feeds using examples provided by the user; it

adheres to previous research work and theoretical foundations and demonstrates

that not only is imitation learning in AI possible, but it compares and in some cases

outperforms traditional approaches.

vii

Abbreviations

ADABOOST Adaptive Boosting

AGI Artificial General Intelligence

ANN Artificial Neural Networks

AI Artificial Intelligence

BFGS Broyden-Fletcher-Goldfarb-Shanno

BPROP Back Propagtion

CA Cognitive Agent

CE Cross Entropy

CG Conceptual Graph

CNN Convolutional Neural Networks

CRF Conditional Random Field

DARPA Defense Advanced Research Projects Agency

DNN Deep Neural Networks

FOL First Order Logic

FSM Finite State Machine

GP2U General Purpose Compute on Graphics Processing Units

viii

GOFAI Good Old Fashioned Artificial Intelligence

HOL Higher Order Logic

KR Knowledge Representation

LBFGS Limited storage Broyden-Fletcher-Goldfarb-Shanno

LMA Levenberg-Marquardt Algorithm

LSTM Long Short Term Memory

MBSGD Mini Batch Stochastic Gradient Descent

MDP Markov Decision Process

ML Machine Learning

MRL Meaning Representation Language

MSE Mean Squared Error

NLP Natural Language Processing

NLU Natural Language Understanding

PBD Programming by Demonstration

PBE Programming by Example

POS Part Of Speech

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RPROP Resilient Propagation

SMT Statistical Machine Translation

ix

SVM Support Vector Machine

UI User Interface

x

List of Tables

2.1 State of the Art NLU Software Tools. 50

4.1 Common NLP Datasets . 84

5.1 Accuracy Metrics Equivalence. 97

5.2 Statistic & Probability Oriented Research. 109

xi

List of Figures

2.1 Simple MRL structure. 15

2.2 MRL with Edges. 16

2.3 Annotated MRL with Edges and Meta-data. 16

2.4 Conceptual Graph example. 17

2.5 Conceptual Graph Directed Edges. 17

2.6 Example of a Neural Network. 20

2.7 Example of a deep fully connected neural network. 25

2.8 Reinforcement Learning Episode. 28

2.9 Reinforcement Learning Agent Interaction with Environment. 29

2.10 Rewarding the Terminal State . 29

2.11 Example of a Policy. 30

2.12 Epicentre of Multiple Episodes. 30

2.13 Deep Reinforcement Learning Agent & Environment. 31

2.14 Knowledge sharing by agent and user 42

2.15 WordNet Semantic Tree Graph. 47

3.1 Icarus Engine Blueprint. 56

3.2 Agent Observes Example . 59

3.3 Agent Recreates Example . 59

3.4 Agent Decomposes Example . 60

3.5 Shift-Reduce Graph Polulation . 61

3.6 Shift-Reduce Edge Creation . 61

3.7 Agent as a Decision Maker. 65

3.8 Decision Making Process. 66

3.9 Semantic Graph Union. 69

3.10 Deep Learning Cascade. 73

4.1 A CG example . 83

4.2 Dataset Info and Distribution. 87

xii

4.3 Clustering Coefficient: CG rhombus versus KR triplet 89

5.1 Semantic-Heuristic Accuracy. 100

5.2 Probability Histograms. 104

5.3 Probability Value Map . 105

5.4 Probability Accuracy and Action Ratios. 107

5.5 Filtering with θ . 108

5.6 Cyclic Process: MDP to Statistics to ANN 113

5.7 ANN Classifying and Mapping Search Space. 115

5.8 ANN Accuracy. 116

5.9 Sparse POS and Distributed Term Classifiers 123

5.10 Sparse-Encoded POS and Term Edge Classifiers 124

5.11 Sparse-Encoded Term Edge and Distributed-Encoded POS Classifier 125

5.12 Distributed Term Edges and Distributed POS Edges 126

5.13 Complexity Mapping to Accuracy PCA 127

B.1 Synthetic marijuana is made with shredded plant material coated

with chemicals designed to mimic THC psychoactive compound found

in marijuana. 138

B.2 Artificial magnetic bacteria turn food into natural drugs. 139

B.3 Ataluren Phase 3 trial results in nonsense mutation cystic fibrosis. . 140

B.4 UK drug company AstraZeneca rejects improved final £69 billion

takeover offer from US firm Pfizer. 141

B.5 Lewy body dementia is most misdiagnosed dementia affecting 13 mil-

lion Americans. 142

B.6 Action star has got himself tank and destroys piano and birthday

cake with it. 143

B.7 Plan to offer better care and treatment for 500000 patients living with

neurological conditions. 144

B.8 Each cell uses particular schemes of molecular interaction which psy-

chologists call intercellular signaling pathways. 145

B.9 Branching with Column Graphs . 146

B.10 Branching with Column Graphs . 147

1

Chapter 1

Introduction

In the never-ending quest for Artificial Intelligence (AI), we take example from our-

selves and our own intellect, since we are what we believe to be the most intelligent

species on the planet. Intelligence however, did not spontaneously come into ex-

istence, but was the result of a painstaking process of evolution [Bjorklund, 2006;

Wynn, 1985; Sternberg, 1982]; even more interestingly, scientists argue that there

exist multiple intelligences and not just one [Gardner, 2011]. How those intelligences

arose is a topic biologists, geneticists and psychologists researching human intelli-

gence have been working on for more than a century; yet their beliefs and theories

directly affect computer scientists working on AI. Our focus are machines: robots,

software and hardware, artificial artifacts, upon which humanity is trying to instill

intelligence and make them as smart as humans. Yet we cannot dismiss how hu-

man intelligence arose as outside the scope of AI, not only because it may be very

relevant to the actual processes we’re trying to recreate, in that there may be cru-

cial information in the emerge of intelligence in Homininae, information that could

make Artificial General Intelligence (AGI) a reality (AGI as in, an irrefutably in-

telligent, sentient and self-aware technological singularity [Goertzel and Pennachin,

2007; Kurzweil, 2005]).

1.1 Human Intelligence

Nowadays we know that one of the pieces of the puzzle that aided the emergence of

intelligence is imitation [Dautenhahn and Nehaniv, 2002b]. Not only did imitation

aid human intelligence, but there is overwhelming evidence in nature which suggests

that imitation is one of the core mechanisms behind intelligence in animals, insects

and Homininae [Fritz and Kotrschal, 2002; Herman, 2002; Visalberghi and Fragaszy,

1

2002; Galef Jr, 1988]. It is human intelligence that interests us the most, and there

have been speculations that the ”great leap forward”, a period 200,000 years ago

when our intellect exploded and we started creating tools, is mostly attributed

to our ability to imitate [Ramachandran, 2000] in combination with our tendency

to congregate and socialise. Thus it appears that the two driving factors of the

leap forward were the development of communities and the ability to learn from

others. By doing so, the knowledge of previous generations was passed down to the

next generations, and thus individual knowledge, and by extension the collective

knowledge began accumulating [Jones, 2009]. Through imitation, human societies

taught their offspring how to create tools, how to farm, and most importantly how

to survive. It thus becomes apparent that learning and imitation are closely knit

together [Heyes, 2002]; we can’t have imitation without the ability to learn, and,

vice-versa, being able to learn is of questionable use when there exists no mechanism

through which to acquire learning material.

1.2 Imitation in Humans

Imitation is a very broad term but appears to be a low-level to mid-level ability

of identifying examples, and learning from peers either via direct demonstration

or from observation [Dautenhahn and Nehaniv, 2002a]. Contemporary researchers

argue that imitation is a unitary competency, a behavioural process that could have

evolved as a unit and can be inherited as well as shared across a species [Myowa-

Yamakoshi et al., 2004; Ferrari et al., 2006]. The implication of this argument is

that in AI an imitation process is something that can be learnt ; an algorithm, a

heuristic or a cybernetic system.

Other researchers add that a neurological mechanism enables imitation in

humans [Iacoboni and Dapretto, 2006; Iacoboni, 2005; Grèzes et al., 2003; Decety

et al., 2002; Iacoboni et al., 1999] known as the ”mirror system”. Whilst the neuron-

based imitation in humans is not fully understood, such a hypothesis could imply

that an artificial neural-based imitation system could in theory be implemented.

However, it is not currently known if the mirror system enables higher cognitive

functions, or only sensor-motor functions [Bonini and Ferrari, 2011], although there

exists evidence to suggest that social and higher level functions are indeed partially

attributed to the mirror-system.

There exist many types of imitation: high-level, physical, hierarchical, struc-

tured and more [Dautenhahn and Nehaniv, 2002a]. Imitation may be supervised

when a tutor or teacher provides paradigms and rewards, or it can be unsupervised

2

when observation is the only means of acquiring learning material.

1.3 Imitation in Artificial Intelligence

Artificial imitation research has mostly focused on Robotics, in order to achieve a

similar process to how infants learn movement and sensormotor abilities [Suleiman

et al., 2008; Nakaoka et al., 2007; Breazeal et al., 2005; Breazeal and Scassellati,

2002]. Artificial imitation in applications not related to robotics deals mostly with

programming by example (PBE) also known as programming by demonstration

(PBD), the only imitation-related topic in non-robotic AI [Lieberman, 2001, 2000;

Halbert, 1984]. Research in PBE/PBD is more than 15 years old, and was mostly

concerned with programming and focused on user interfaces (UI). Regardless of the

advent and subsequent sunset of PBE, imitation as a learning mechanism for AI,

and more specifically for software agents, has been ignored and is to this very day

an esoteric and perplexing topic.

The transition from PBE to AI agents is not an easy one; whereas PBE was

concerned only with programming, AI agents are focusing on autonomy, learning,

self-organisation, knowledge representation, logic and reasoning. An imitating AI

agent is an even more peculiar entity: it does utilise the aforementioned topics, but

it revolves around the combination of learning via imitation.

The notion that imitation is not learning is often perplexing, the reason

being that learning is the main focal point of an agent without describing how the

training material or samples have been acquired and used. Imitation thus focuses

on acquiring learning material, training samples, data or information which is of use

to the agent, and serves the purpose of acquiring new behaviours, performing new

tasks or procedures [Dautenhahn and Nehaniv, 2002a]

Whilst learning and imitation are sometimes used interchangeably in AI and

machine learning (ML), fundamentally they are different. The way in which the

model, agent or algorithm acquires information and translates it into knowledge, is

what differentiates learning from imitation [Dautenhahn and Nehaniv, 2002a].

A neural network being trained and evaluated by a user displays no form of

imitation; yet an autonomous, self-trained and self-evaluating agent requires that it

is able to identify paradigms from which it can extract samples, pre-process them,

and then use them appropriately so that learning may occur. Before acquiring

learning material an imitating agent must be able to extract or decode some kind of

a paradigm which relates to what is being learnt. Post learning the agent should be

able to reuse newly acquired knowledge, re-organise it, and transmit that knowledge

3

to other agents [Lawniczak and Di Stefano, 2010].

1.4 Cognitive Artificial Intelligence

Due to the cognitive nature of such agents this research further explores cognitive AI

and AI architectures. The term cognitive agent (CA) interchangeably used with the

term ”cognitive AI”, requires that the agent must meet certain criteria [Lawniczak

and Di Stefano, 2010].

- perceive information in the environment provided by other agents

- reason about this information using existing knowledge

- judge the obtained information using existing knowledge

- respond to other agents

- learn and augment current knowledge if newly acquired information allows it.

The above basic criteria set the bar for a cognitive agent, but an imitating agent

has additional requirements, which are discussed in detail in Chapter 2.

This thesis sets the imitation requirements by taking into consideration the

cognitive nature of such systems; the core premise of the imitative ability being

the acquisition of knowledge by the agent and by drawing parallelisms from the

observable, ostensible and discernible processes of the human cognitive system,

thereby recreating the outcome of that process. Whilst the goal is not to produce

a biologically-plausible system, the agent is driven by biomimicry since it demon-

strates how AI might mimic human intelligence.

From the background research and work carried out in the last two decades,

it can be asserted that imitation is not a unitary model, a finite-state machine

(FSM) or an algorithm, nor is it a theoretical abstract; it is in fact a group of

models, algorithms, a fusion or cascade of existing and new models into a software

middle-ware, an agent. However imitation in AI and in robotics has not delivered its

promises; PBE has eclipsed as a field, and robotics to this very day still depend on

heuristic controllers. High level cognitive functions are usually programmed rather

than learnt and few state-of-the-art experimental research have so far focused on

learning by imitation. The main research question is therefore:

How can cognitive agents learn by imitation?

4

Due to recent developments in deep learning and cognitive AI and because of

the complexity of such agents, this thesis implements an agent using an AI existing

architecture: the Icarus cognitive model developed by Stanford University [Lang-

ley et al., 2003]. Icarus is a hybrid cognitive AI architecture, funded by Defence

Advanced Research Projects Agency (DARPA) Information Processing Techniques

Office, United States Office of Naval Research, and the Unites States National Sci-

ence Foundation. It incorporates various models from across computer science, and

it mainly focuses on action and perception over cognition.

Furthermore, Icarus separates categories from skills, uses a hierarchical struc-

ture for long-term memory [Langley et al., 2004] and uses correspondence between

short-term and long-term memory [Langley et al., 2009]. Those four fundamental

notions of Icarus are the basis upon which we draw comparison with the biological

counterpart and the human imitation mechanisms and implement the set of those

mechanisms in software. The advantages of implementing Icarus as a software cog-

nitive agent are that it allows to examine the abilities, algorithms, processes and

qualities that an artificially imitating learning agent should or may poses, formulate

a theoretical model, examine the hypotheses via experimentation, and consolidate

our conclusions through evaluation.

1.5 Icarus Engine

The Icarus implementation (called hereinafter Icarus engine) is greatly inspired by

PBE which has its roots in Henry Lieberman’s work [Lieberman, 2001]. However

in stark comparison to Lieberman’s PBE (described in Chapter 2.6), in this thesis

Icarus is deployed as a stand-alone autonomous agent with the sole purpose of

acquiring knowledge from the Internet.

The reason for aiming at acquiring knowledge from the Internet is its ubiq-

uitous nature. According to the United Nations Telecommunications development

Sector (ITU-D) around 40% of the global population has Internet access [Peña-

López et al., 2009], and most of those users generate content, information, news,

knowledge and data. Most of the human knowledge is being accumulated on the

Internet, either in open and public sites such as Wikipedia or in specialist platforms,

such Quora or StackExchange. Other knowledge engines (such as Wolfram Alpha or

DBpedia) offer tailored meta-data, and last but not least, the blogs, new-sites, RSS

feeds and social networks all provide free information and knowledge. Hence, the

core research question is rephrased as:

How can an AI agent acquire knowledge from the Internet via imitation?

5

Using the largest knowledge pool in the history of the human civilisation is

a promising source from which future AI agents can mature and reach higher-levels

of intelligence. Thus the Icarus engine aims to acquire knowledge extracted from

widely and freely available information found on the Internet. The Icarus engine is

the first step towards an agent which learns by being taught ”how to read and under-

stand” the Internet data thereby transforming information into knowledge. Albeit

the domain is natural language, it is not constrained by algorithms or models tai-

lored for natural language processing (NLP) and should be able to parse and acquire

knowledge from other domains. Its main purpose is to project textual information

found on the Internet onto a knowledge representation (KR) structure. It does that

by satisfying all the cognitive agent (CA) criteria set by [Lawniczak and Di Ste-

fano, 2010], but it is not limited by finite-states or heuristics. Furthermore, the

way the memory is organised adheres to the Icarus specifications of a hierarchical

and structured knowledge index, with corresponding short and long term memory.

The Icarus engine is in a sense a parser, which instead of being programmed how

to parse, learns how to parse by example. By doing so, this thesis researches and

experiments into the specifics of imitation learning and extracts conclusions about

the suitability of such agents and systems for cognitive AI functionality.

1.6 Research Scope & Biological Plausibility

Choosing to implement such a CA as a parsing agent is due to the fact that such

an ability is considered to be one of the high-level developmental steps in humans:

learning to read and understand information [Stuart and Coltheart, 1988]. The

approach taken is that of simulation: the process of mimicking the outwardly ob-

servable behaviour of children who learn how to read by being shown repeatedly

text inputs of various (usually increasing) sizes. This thesis focuses on the third

and fourth state of reading development [Seymour, 1999] due to the fact that those

are the stages where decoding and hierarchical structuring develops. However, the

work reported in this thesis draws no parallelism to the human brain, nor does it

claim to simulate the same processes. Yet the choices of machine learning (ML) are

all biologically-inspired, some based on behaviourist psychology, others use artifi-

cial neural networks, and only a handful are mathematical or heuristic components.

This approach is thus indirectly based on the human information processing models

[Berger et al., 2013], but does not implement them or as a whole; it only appears

to be functioning in a similar way, in order to achieve similar goals, however as a

cognitive hybrid model.

6

The advantage of taking this approach outweighs the effort of designing and

implementing what can seem to be a complex agent: first and foremost the work is

focused on an artificial agent which does not rely on pre-programmed logic but on

learnt logic. This agent’s learning is not constrained by the logic embedded in the

program, but is adaptive and flexible. The implementation and experimentation of

the Icarus engine theory is based upon the following rationale: not programming

an agent, only teaching it. Whereas the actual implementation does indeed require

to be programmed, it is done via a neuro-dynamic agent [Bertsekas and Tsitsiklis,

1995] using a behaviourist approach, similar to how humans learn from reinforcement

Thorndike [1901]; Galef Jr [1988].

The advantages of imitation in AI are the same as the premise of imitation

in nature; allowing agents to acquire knowledge and information from their peers,

their social structure and our society, as well as surviving and evolving into capable

entities. The implied novelty of imitating agents (cognitive or not) is promising: AI

software which can seamlessly and effortlessly acquire and manipulate knowledge

and information from humans directly or indirectly (through the internet), robots

which can learn how to reason and use logic by example and through observing

human interactions, and much more. A comparison between traditional software

systems and imitating agents can thus provide the incentive to further explore imi-

tation and support the usage of such agents in real-life applications. The advantages

of enabling autonomous agents and systems to acquire and evolve their knowledge

base only recently have been explored as corporations are gearing towards AI as-

sistants, such as Microsoft’s Cortana, Apple’s Sirii, and Amazon’s Alexa. It is a

fact that such AI agents require imitation because it is the only known mechanism

through which passive observation and proactive teaching enables information and

knowledge to be acquired and manipulated. Therefore less central but still impor-

tant research questions are:

- What are the differences between learning by imitation and programming by

example [Lieberman, 2001]?

- What are the advantages of agents which learn by imitation? [Dautenhahn

and Nehaniv, 2002a]

- How do artificially imitating agents compare to traditional software systems?

Other questions related to the imitation learning literature [Dautenhahn and

Nehaniv, 2002a], such as ”what makes a good teacher?” are still inherently relevant,

but not as central to the work presented in this thesis. The field of imitation learning

7

in AI has numerous applications and can be applied in a variety of ways with the

potential to change high-level cognitive functions, such as learning, reasoning, logic,

decision-making, etc. Although all those areas are relevant and applicable to the

work described hereinafter, it would be impossible to include them all, experiment

with a broad array of applications, or address all the entailing issues from each of

those fields. Therefore, our only scope is learning and not logic, reasoning or other

cognitive abilities. However, the Icarus engine sets a basis upon which logic and

reasoning can take place in addition to learning using our theoretical model and

software engine.

1.7 Contributions

- The main and foremost contribution to the field of AI is the formulation and

combination of a Markov decision process (MDP) in a temporal-spatial fashion

through which learning of symbolic KR structures (conceptual graphs) takes

place [Gkiokas and Cristea, 2014a].

- This novel approach enables reinforcement learning [Sutton and Barto, 1998]

to manipulate as an episodic process the creation and representation of a KR

structure learnt by example.

- The importance of this contribution is explained in detail in Chapter 3 and

challenges the way in which symbolic and connectionistic AI deal with data

and knowledge, due to it demonstrating how those two foundational approaches

in AI can be bridged.

- Furthermore, I address ”learning by imitation” at the highest possible level in

AI, that of symbolism, but learn it via reinforcement and deep learning.

- The imitation paradigm is given by a human user and is decomposed based

on observations, similar to visual decomposition in the brain [Biederman and

Gerhardstein, 1993], and inspired by the decoding process of the 3rd and 4th

reading developmental stages in infants [Seymour, 1999].

Furthermore I created new algorithms and used them in experiments; de-

composition heuristics, relational and attribute semantics and statistical inference.

Those algorithms were implemented as parts of the Icarus CA, and used in order to

examine both accuracy and suitability of such agents in AI [Gkiokas and Cristea,

2016a] and simulate the imitation process in humans, thereby formulating, evaluat-

ing and providing results and conclusions to the research questions aforementioned

8

earlier. The cascade of various learning models used within the Icarus CA included

artificial neural networks (ANN) and restricted Boltzmann machines (RBM) in com-

bination with the reinforcement learning algorithm, as an action-selection mecha-

nism for KR construction [Gkiokas and Cristea, 2014b], thus addressing observa-

tional qualities of the agent and off-policy exploration as well as inference. I also

employed sparse and dense encoding with deep learning in Icarus in order to examine

how it compares to more traditional shallow networks, drawing conclusions on the

advantages and the complexity involved when using sparse non-processed encoding,

whilst formulating alternatives to dealing with unknown input [Gkiokas and Cristea,

2016b]. In addition to experimenting with natural language understanding (NLU)

in the Icarus CA, this work expanded into the field of meta-learning by formulating

a new model based upon the same principle of MDP knowledge graph construction.

We used abstraction of existing KR graphs and theorised it is possible to compress

and generalise knowledge into beliefs; autonomously generated meta-KR constructs

which represent a group or cluster of highly related KR instances [Gkiokas et al.,

2014].

The contributions therefore are numerous and address imitation as a mecha-

nism in AI and cognitive agents, all the processes involved, such as decomposition or

decoding of paradigms, the main learning mechanism and models used to both learn

and associate paradigms with understanding of the input (both semantically and

syntactically) as well as a variety of learning models, algorithms and sub-processes

required by the ad-hoc Icarus engine. I have expanded all research questions and

mapped the characteristics and attributes that govern them and describe possible

solutions to previous questions raised in the imitation learning literature [Dauten-

hahn and Nehaniv, 2002a].

1.8 Thesis Overview

This thesis is organised in the following manner: in Chapter 2 is described what has

been researched in the past, all related fields, models and systems. The theoretical

agent model is formulated and analysed in Chapter 3, and correlated to both the

biological mechanisms and the Icarus CA design. Following the theoretical descrip-

tion, the data-set created to evaluate the Icarus engine is presented and analysed

in Chapter 4. Chapter 5 analyses experiments carried out using the Icarus engine,

describes in detail the components and algorithms, and reports on results and find-

ings. The last Chapter 6 discuss in detail various findings, conclusions and future

work.

9

Chapter 2

Background and Literature

Review

In this chapter the background literature is detailed and an analysis and presentation

on the work on which this thesis is based is examined. This aids in justifying the

arguably unconventional - but highly utilitarian - approach taken.

2.1 Alan Turing and the intelligent machines

One of the forefathers of Artificial Intelligence was Alan Turing, amongst others such

as Allen Newell, J.C. Shaw, Herbert Simon, John McCarthy and Marvin Minsky.

Turing envisioned AI not just as an an intelligent machine, but as an artificial

child, a synthetic entity which has to go through a developmental process to achieve

intelligence [Turing, 1950]. How Turing had imagined that specific progression and

development of AI is matter of speculation or scientific debate [Muggleton, 2014],

but we can deduce from his paper that he believed AI would have to follow a

developmental phase similar to that of infants. And as aforementioned, two of the

most important developmental phases in infants revolve around imitation learning,

symbol decoding and hierarchical representation [Seymour, 1999].

The brief history of computer science showcases that modern AI has not

indulged Turing’s original thoughts and ideas. Two different schools of thought

have existed since the birth of AI: Symbolic AI, also know as good old fashioned AI

(GOFAI), and Connectionism or Connectionistic AI1. Whereas Symbolism takes a

modelling or a programmatic approach, Connectionism takes a pseudo-biological or

1Also known as sub-symbolic AI, albeit that term may have been coined by the symbolic school
on purpose.

10

network -centric approach [Smolensky, 1987]. It is not clear if Turing had intended

to take any of the two approaches or combine them; in fact although it was in

the that the first artificial neural networks were theorised, actual implementations

and models were published later, in the late 1950s, after his death. Therefore,

Turing’s approach was mostly theoretical and albeit based on biomimicry, it did

not explicitly specify how those intelligent machines would be created, since when

he wrote Computing Machinery and Intelligence [Turing, 1950], Connectionism was

still in its infancy.

Around the same time, the field of Cybernetics [Wiener, 1948] was described

as a interdisciplinary field for examining systems, their structures and organisation.

Whereas Norbert Wiener differentiated Cybernetics from AI, there was a clear ten-

dency of describing AI systems and agents in a cybernetic fashion: as well defined

and modelled systems. The late 1940s and 1950s therefore saw the genesis of modern

AI, which was for the largest part based on symbolic approaches: models, theorems,

well defined processes and programs.

2.2 Imitation in Nature

2.2.1 What is imitation?

The exact nature of imitation has been studied only in modern sciences; it wasn’t

until the early 20th century that Edward Thorndike begun studying imitation in

animals [Galef Jr, 1988; Thorndike, 1901]. The study of imitation in humans was be-

lated; only after the modern field of Psychology started advancing (e.g., Jean Piaget

and developmental theory, Raymond Cattell and crystallised intelligence, Burrhus

Skinner’s behaviourism and reinforcement, Erik Erikson and developmental psy-

chology, and Albert Bandura and social cognitive theory) was imitation given some

attention. The field of developmental psychology and in specific the development

of children is what mostly interests us. As discussed in Chapter 1, Sections 1.1 and

1.2, one of the core mechanisms which enable human intelligence to develop and

progress into what Cattell refers to as crystallised intelligence [Cattell, 1963], is the

ability to learn from others, our environment, our parents and peers.

That development enables us to acquire knowledge through subjective ex-

perience, what Haikonen refers to as qualia [Haikonen, 2009]. However, that ex-

perience is in effect a knowledge transference, either sensorimotor, or more general

and abstract. Verbalisation and learning by description plays a role (such as a

teacher explaining things), but even higher level learning (such as learning how to

write and read) are in fact imitation. The imitative counterparts are both phys-

11

ical and non-physical: the hand learns how to draw and write, yet the brain is

conditioned into learning representations of letters, and then words. Psychologists

suggest that imitative learning is a mechanism inherited and shared across humans

[Myowa-Yamakoshi et al., 2004; Ferrari et al., 2006] and one which is the product of

evolution; a hypothesis supported by the fact that not only humans are capable of

imitation, but so are homininae, primates, animals and insects [Fritz and Kotrschal,

2002; Herman, 2002; Visalberghi and Fragaszy, 2002; Galef Jr, 1988], thus making

imitation a cognitive function shared across multiple species (but not necessarily of

the same competence level). Imitation therefore is the ability to acquire knowledge

from peers or others either via active demonstration, or passive observation.

2.2.2 How does imitation work?

Not taking into account the neurological and morphological properties of the brain,

and how those have evolved or how they enable imitation, Albert Bandura explicitly

states (direct quotation):

”Attentional processes regulate exploration and perception of modelled

activities; through retentional processes, transitory experiences are con-

verted into symbolic conceptions that serve as internal models for re-

sponse production and standard for response correction; production pro-

cesses govern the organisation of constituent sub-skills into new response

patterns; and motivational processes determine whether or not observa-

tionally acquired competencies will be put to use.” [Bandura, 1986]

Analysing the above quote we can deduce a few key components and prop-

erties of imitation and its overall structure:

- Perception produces a model (or a modelled activity)

- A process retains a symbolic conception (through experience)

- The internal models serve the purpose of providing responses (or correcting

responses)

- Motivation determines if a competency (skill) will be re-used.

Thus, and similar to how Thorndike [Galef Jr, 1988] and others have demon-

strated, imitation uses rewarding (either via motivation or reinforcement) in order

to learn a competency. The subjective experience (qualia) must perceive a temporal

sequence (physical or non-physical) and then model it. That model is stored and

12

uses some form of symbolism or conceptualisation and serves the purpose of being

reused, either so that the agent can provide responses, or correct its responses. The

key components are a model or structure which uses symbolism to represent an

action, a sequence or behaviour, an episode or sequence, the related reinforcement,

and the re-usability of the model.

The perceptive and cognitive abilities which relate to imitation have been

studied in human infants [Seymour, 1999] and involve a decomposition (or decod-

ing) of structures, objects or symbols and the internal hierarchical modelling (or

representation) of those within the short-term, and if rewarded or reinforced, into

the long-term memory. Visual understanding also uses decomposition [Biederman

and Gerhardstein, 1993], thus it appears that the process of breaking down stimuli

or information into primitives or archetypes, prior to internally representing them

or modelling them, is a commonly occurring phenomenon.

2.3 Symbolic Artificial Intelligence

The symbolic school of thought has its roots in philosophical and centuries old beliefs

about what intelligence and cognition is, and many of those beliefs stem from Julien

Offray de La Mettrie and the L’homme machine (Man - Machine) [de La Mettrie,

1912]. The philosophical beliefs that followed suit of de La Mettrie’s medical ex-

periments, although revolutionary for his time2 set the path for future research and

development in Medicine, Psychology and eventually Artificial Intelligence. Those

beliefs described the human mind as a complicated machine, a notion which sup-

ports Artificial Intelligence; it did however indoctrinate later research in Psychology,

Cognitive sciences and AI to the effect where mental and cognitive abilities were be-

lieved to be definable as a process or a model, such as in the case of Allen Newell and

the Logic Theorist [Newell and Simon, 1956] or the General Problem Solver [Newell

and Shaw, 1959].

This belief still echoes in modern AI: many designs for cognitive systems

take a purely programmatic approach, identical to a finite state machine (FSM)

[Gill et al., 1962; Minsky, 1967] and thereby limited by its very finite nature and

the logic enabling it. Admittedly, Symbolism and FSM are a necessity and part of

what is today the modern field of AI and Von Neumann computers operate on a

symbolic level. There are realistically many advantages to modern computing and

Symbolism which are not easily dismissed and a plethora of algorithms and models

2He was forced to quit his position with the French Guards, due to his materialistic and quasi-
atheistic conclusion that man is in fact a machine [Wellman, 1992].

13

with decades of research and a proven track record.

2.3.1 Knowledge Representation

One of the topics most important and relevant to imitation learning of Symbolic

AI is Knowledge Representation or KR [Sowa, 1999]. Representing knowledge is

a major field under AI, with close ties to Philosophy and Psychology. Whilst the

philosophical aspects of KR are outside the scope of artificial imitation (e.g., ”what

is knowledge”) the psychological attributes aren’t; since the research in this thesis is

using the developmental cycle of human intelligence as a reference point, employing

KR requires that this work is at least partially based on models which are perceived

to be plausible mental representation models.

It is not by chance that the issue of KR first arose during the development

of the General Problem Solver [Newell and Shaw, 1959], that was also the moment

when the symbolic school of AI underpinned the basis of KR. In the past three

decades, multiple KR models and schemes have been devised, ranging from the

family of KL-ONE [Woods and Schmolze, 1992], to Sowa’s conceptual graphs (CG)

[Chein and Mugnier, 2008; Sowa, 1999, 1984], and to more modern schemes such

as the resource description framework or RDF [Klyne and Carroll, 2005] and the

web ontology language or OWL [Bechhofer, 2009]. Most KR schemes feature similar

designs: an ontology and the relations required to describe the hierarchy; it is

intended to be used by computers (although it can be readable) and serves the

purpose of representation but may also enable reasoning [Sowa, 1999; Levesque

and Brachman, 1984]. KR can be used by first order logic or FOL [Fitting, 1990]

which operates on the actual KR structure, and may be combined with or represent

semantics [Fellbaum, 1998]. KR uses primitives (e.g., domain archetypes) which,

depending on the application domain, may change. Meta-representation (or meta-

data) is also used in most modern KR schemes such as RDF and OWL, which are

applied on top of or as extensions to the primitives.

The most important aspects or topics related to KR are:

- incompleteness or completeness (e.g., semantic, functional, refutation or syn-

tactic completeness associated with statement in the structure) [Lipschutz and

Judith, 1916; Duffy, 1991]. Fuzzy logic is one of the sub-fields of AI which deals

with a certain degree with incompleteness [Novák et al., 2012; Zadeh, 1996].

- definitions, universals, facts and defaults are general rules and patterns which

relate to specificity and offer quantification and generality employed by logic

operators [Leivant, 1994; Van Benthem and Doets, 1983].

14

- non-monotonic reasoning or hypothetical reasoning, asserts new hypotheses

based on rules or facts [Dung, 1995].

- expressiveness or functional completeness relates to the ability of adequately

expressing all truth tables when using first order logic (FOL) [Fitting, 1990]

expressions such as AND, OR as well as NAND, NOR.

- reasoning in general terms relates to the ability of the agent or system to

be updated, develop new inferences, and operate within reasonable time con-

straints.

From the above list it is possible to identify related material which overlaps

KR, logic, learning and imitation. Whereas KR serves the purpose of representation

and description, it is used by logic. For the intents and purposes of this thesis, I am

mostly concerned with KR and how it is to be used and manipulated by imitating

agents, rather than the logic enabled or applicable, which albeit relevant is outside

the scope of the work described hereinafter. There is a clear connection between

KR and logic, how KR enables or allows inference, hypotheses and propositions,

and more important how the agent may learn to form such hypotheses, assertions

and propositions. Yet my scope is focusing on creating KR and not logically ma-

nipulating it.

Another form of KR is the meaning representation (MR) or the most com-

monly used term meaning representation language (MRL). Those structures have

been widely used in parsing (see Section 2.7.5) and are mostly related to natural

language processing (NLP). The phrase ”quick brown fox jumps over lazy dog” is

shown as a simple MRL in Figure 2.1, whereas the same phrase with directed edges

is shown in Figure 2.2.

quick brown fox

jumps

over

lazy

dog

Figure 2.1: Simple MRL structure.

Whereas the first Figure 2.1 is overly simplistic, the addition of directed edges

in Figure 2.2 demonstrates the importance of directionality in relations within a KR.

15

quick brown fox

jumps

over

lazy

dog

Figure 2.2: MRL with Edges.

In certain KR such as a Penn treebank tree[Marcus et al., 1993], direction is often

implied originating from the root label/node of the tree graph. Such structures can

often become esoteric or obscure, since they may include syntactic attributes mixed

with words and labels, making them hard to understand. A modern MRL form of

the same phrase which includes propositional and syntactic meta-data is shown in

Figure 2.3; in this example, the blue labels in capitals are syntactic attributes (part

of speech tags, see Section 2.7.4) with extra information including a rudimentary

propositional logic (edge labels in pink).

JJ
quick

JJ
brown

NN
fox

NNS
jumps

IN
over

JJ
lazy

NN
dog

amod

amod

nn

prep

pobj

amod

Figure 2.3: Annotated MRL with Edges and Meta-data.

The equivalent of that same phrase as a conceptual graph (CG) is shown

in Figure 2.4. In this instance and according to Sowa’s publications [Sowa, 1999,

1984], rectangles depict concepts and circles depict relations. Sowa’s CG contain

implied relations and not just relations extracted from the text such as relations

between concepts. That approach might be confusing; whereas the edges describe

the relations between the nodes within the graph, the graph is bipartite: concepts

16

and relations are of different types. The edge label (number) indicates the order

of the edges and some of the labels in the concepts are implied and not contained

within the phrase, such as the relations attr (attribute), act (actions), loc (location)

and rcpt (recipient).

quick brown

ANIMAL:
Fox

jumps

over

lazy PET: dog

Attr Act

1

2

1

Loc

2

Rcpt

Attr

1

1

1

1

1

11

Figure 2.4: Conceptual Graph example.

Furthermore, Sowa in his original publications provided contradicting exam-

ples such as the one shown in Figure 2.5. Those examples are called a display form,

which is a visualised conceptual graph. Figure 2.5 demonstrates the phrase ”a cat

on a mat”; the relation on is contained within the phrase, and is used to link the

concepts.

cat maton

Figure 2.5: Conceptual Graph Directed Edges.

Part of the reason why Sowa treats CG (in their display form) in such a

way may possibly be because he derives them from a logic form. The logic formula

of Figure 2.4 may be as shown in (2.1) when ignoring the attributes. The root is

the action jump which in the Figure is shown as a concept and based on a Pierce

formula from which Sowa derived the CG in the display form.

(∃x∃y)
(
Jump(x, y) ∧Animal(fox) ∧ Pet(dog)

)
. (2.1)

The linear form of (2.1) would be as shown in (2.2).

17

[Fox]− > (Jump)− > [Dog]. (2.2)

Similarly, Sowa describes Figure 2.5 as having a linear form, as shown in

(2.3).

[Cat]− > (On)− > [Mat]. (2.3)

The conceptual graphs interchange format (CGIF), which was developed sim-

ilar to the ISO Common Logic Project, would represent the linear form of (2.2) as

(Jumps[Fox][Dog]) and the linear form of (2.3) as (On[Cat][Mat]). Therefore, Sowa

did not attribute importance to either the order of appearance, nor to the direc-

tion of edges. He hypothesised that, albeit those forms may appear different, their

semantic foundations translate to the same predicate calculus. Later, researchers

in CG have used a better defined approach [Obitko, 2007; Amati and Ounis, 2000],

in which the order of the graph is drawn from the first appearing node (concept

or entity), and the direction of the edges is important, as it demonstrates the logic

continuation of the phrase being represented.

Furthermore, whereas Sowa used relations in an implicit manner (e.g., ex-

tracting roles of concepts), there is no rule or limitation as to why relations (the

nodes within the graph) must be implied entities; Sowa in his examples also used

relations explicitly obtained from the original phrase.

2.3.2 Criticism and Limitations of Symbolic Artificial Intelligence

When researching imitating agents, we expect a form of KR structure to be produced

which is identical or highly similar to the one the teacher, paradigm or demonstrator

provided to the agent. That process, when described using symbolic AI, is a well-

defined model, an algorithm, a program or a heuristic process, as that is the nature of

Symbolism. Therefore, that process is in fact a finite state machine or a combination

of FSM, described by a program or agent operating on the information on a symbolic

level. In the history of AI the two cornerstones supporting the suitability of symbolic

AI for our intents and purposes are the Church-Turing thesis [Searle, 2001] and the

Myhill-Nerode theorem [Ignjatović et al., 2010]. The Church-Turing thesis states

that a function is computable by a human following an algorithm, if it is computable

by a Turing machine. Church-Turing thesis implies what can physically be computed

by a computer [Piccinini, 2011] or what could realistically be computed, however

multiple researchers in the past have argued for or against it [Goldin and Wegner,

2005; Cleland, 1993; Kalmár, 1957].

18

The Myhill-Nerode theorem offers insight into what can and cannot be done

when using FSM: it suggests that any language can be recognised by a model, by

mapping strings in the language to unique accepting states, and strings not in the

language to unique non-accepting states. However, not all languages are regular,

that is they do not correspond to the language accepted by any FSM, and equiva-

lently, there may be no regular expression to represent that language. Furthermore,

natural languages contain ambiguity and contradictions [Gorrell, 2006], which cre-

ate exceptions to rules and the logic enabled by the FSM. Finally, the FSM may

suffer from the halting problem [Stannett, 1990], and therefore the use of FSM, al-

beit advantageous, due to decades of research and the existence of multiple models,

theories and algorithms, does have the aforementioned drawbacks.

2.4 Connectionistic Artificial Intelligence

Connectionism takes a black-box approach and is based on Neuroscience and the

observation that our own intelligence emerges from neural networks in the human

brain. Neuroscience and modern medical imaging have allowed us to observe and

analyse the neuronal network mechanisms which enable cognitive functions and in-

telligent behaviour. It is from Neuroscience that artificial neural networks (ANN)

were inspired, and in 1943 McCulloch described the first artificial neuronal model

[McCulloch and Pitts, 1943]. In the 1949 Donald Hebb first describes Hebbian net-

works [Hebb, 1949], but it isn’t until 1958 that the Perceptron is published [Rosen-

blatt, 1958], the precursor of modern ANN. In 1969 Minsky criticises Connectionism

and neural networks [Minski and Papert, 1969] due to their computational limita-

tions in training and deploying them, but most important due the fact that they

couldn’t learn to perform an exclusive (XOR) on the input. Those issues were ad-

dressed in the 1980ies and 1990ies with the advent of the personal computer, and

multi-layered networks in combination with back-propagation [Werbos, 1974] show-

cased that they could process complex input. At the same time GOFAI lost interest

from the research community, yet connectionism and the related ANN did not make

any considerable breakthroughs until the late first decade of the third millennium

with deep learning.

2.4.1 Artificial Neural Networks

An artificial neural network is a non-biologically plausible, yet bio-inspired network.

It works upon the premise of associative memory and learns to associate input

with output, or classify it, approximate it, perform regression, predictions, etc.

19

n1

n2

n3

n4

n5

n6

Input

hidden

output

w1

w2

w3

w4

w5

w6

w7

w8

w9

Figure 2.6: Example of a Neural Network.

[Picton, 1994; Hertz et al., 1991; Hopfield, 1988]. There are multiple types of neural

networks, but we’ll only examine and present the most typically used, the fully

connected feed-forward neural network, also known as the single-layer or multi-layer

perceptron. From the Figure 2.6 we observe what a neural network is: layers of

nodes (or neurons) which are connected by synapses, or weights. In that figure

above, there are three layers: the input layer with nodes n1 and n2, one hidden

layer with nodes n3, n4 and n5 and an output layer with a single node n6. The

premise upon which the feed-forward perceptron relies is forward propagation: an

input vector of two values is fed into the input nodes, and is the activated, using

an activation function, most often a logistic function, with the most popular shown

below.

f(x) =
1

1 + e−x
. (2.4)

f(x) =
ex − e−x

ex + e−x
. (2.5)

The above functions are the sigmoid shown in (2.4) and hyperbolic tangent

shown in (2.5); others less popular are the sigmoid bipolar in (2.6), the scaled hy-

perbolic tangent [LeCun et al., 2012] in (2.7), and the soft-sign in (2.8).

f(x) =
−1 + 2

1 + e−x
. (2.6)

f(x) = 1.7159 ∗ tanh(
2

3
x). (2.7)

20

f(x) =
x

1 + |x|
. (2.8)

A characteristic of the logistic functions is that they produce a S shaped

output. Non-logistic functions such as the Gaussian have been used but are not as

popular. Common criticism for such networks, is that logistic activation functions

cannot be used in deep networks; often there is no need for such networks, and

one hidden layer may suffice to learn the task at hand. However, logistic activation

functions often lead to saturation [Heaton, 2015], an issue which has been addressed

by using linear activation functions.

The forward propagation in neural networks is a task of accumulating the

input Ij multiplied by the weights Wi for each node and activating it via f(Ii). The

most commonly used approach is to do vector and matrix arithmetic: we obtain

previous layer node output denoted as Oj where subscript j is the previous layer.

For input layers, Oj is the input value Ij whereas for hidden layers we substitute

Oj with Ii, e.g., the output of the activation function f(x) from the previous layer

j. Multiplying each node output Oj ·Wi with every corresponding weight Wi is

a vector-matrix product, we then sum each input vector for the nodes in layer i:∑
(Oj ·Wi), e.g. reducing each produced matrix into a row vector of values, each

row corresponding to node input Ii in layer i. Finally, each value in that vector

is activated using one of the functions f(Ii) as shown earlier in (2.4,2.5,2.6 or 2.7).

The above step is repeated for all layers; that is in essence forward propagation.

Training neural networks is considerably more complex; one of the early

critiques on neural networks was the computational requirements, and the biggest

issue was that training was inefficient [Minski and Papert, 1969]. Nowadays, there

are many training algorithms, the most notable of which are the back propagation

(or BPROP); other methods also have been used, such as reinforcement learning,

the Levenberg-Marquardt [Moré, 1978], and the Broyden-Fletcher-Goldfarb-Shanno

algorithm [Shanno, 1985] abbreviated as (BFGS), amongst the most famous. The

most commonly used training approach for ANN and shallow networks throughout

the last two decades, has been the BPROP as described by Seppo Linnainmaa

[Linnainmaa, 1970], and was later demonstrated by application [Werbos, 1982]. The

basic mechanism behind BPROP, is that the observable error at the output layer,

is back-propagated to account for each weight adjustment, until the desirable, or

highly similar to the desirable output is produced by the network. We define the

error as E shown in (2.9), e.g., the squared difference for each output node, where

yi is the ideal node output and ŷi is the actual node output.

21

E = (yi − ŷi)2. (2.9)

We then proceed to reversely iterate all the layers, first we calculate the

output delta error, shown in (2.10).

δi = −E · f ′
(∑

(Oi)
)
. (2.10)

In (2.10) f ′ is the prime or derivative of the activation function and Oi is

the node input. The sigmoid and tanh derivatives are shown in (2.11) and (2.12).

f ′(x) = f(x) · (1− f(x)). (2.11)

f ′(x) = 1− tanh2(x). (2.12)

For hidden layers we calculate the value of the derivative on the node input

f ′(
∑

(Oj ·Wji)), e.g., the vector-matrix multiplication. Then those values are mul-

tiplied by the next weights Wik and the next layer’s delta error3 δk, which are called

node deltas, shown in (2.13).

δi = f ′
(∑

(Oj ·Wji) ·
∑

(Wik · δk)
)
. (2.13)

Finally, we calculate the weight gradient for layer i to k, as shown in (2.14),

with each gradient multiplying the next layer’s node delta and the observed node

output Oi.

∂E

∂Wik
= δk ·Oi. (2.14)

That gradient is then used in the update of the weight values. There are

different ways of updating weights; in batch training, the gradients are summed∑(
∂E
∂Wik

)
and then used to adjust the individual weights at the end of an epoch

(a training sample iteration), whereas in on-line training, the weights are updated

after propagating a single training sample. The update rule in BPROP for batch

training is shown in (2.15), the time-step t defines the index in time, and hence t−1

is the previous update, the learning rate α defines how large adjustments are made

and the momentum µ affects current adjustment using previous adjustments.

3Please note we swap δk with δi from formula (2.10). At every backwards iteration, we replace
δk in (2.13) with the next layer δi. Because this is a reverse iteration, we start at the output layer,
and proceed towards the first hidden layer.

22

∆W
(t)
ik = α ·

(
∂E

∂Wik

)
+ µ ∗

(
∆W

(t−1)
ik

)
. (2.15)

Other training algorithms have been based on BPROP, most notably resilient

back-propagation (RPROP) [Riedmiller and Braun, 1993], as well as many of its

derivatives. The RPROP uses incremental small weight adjustments, and is assumed

to be faster than BRPOP, as shown in (2.16).

∆W
(t)
ik =


−∆W

(t)
ik , if ∂E

∂Wik

(t)
> 0

+∆W
(t)
ik , if ∂E

∂Wik

(t)
< 0

0, otherwise

. (2.16)

The increments and decrements taking place are constant (or range bound)

and ∆W
(t)
ik increases or decreases by η, where 0 < η− < 1 < η+. Redmiller and

Braun published a kernel of the algorithm, and reported significantly better results

than BPROP [Riedmiller and Braun, 1993], since then newer versions have been

published.

Neural networks have various ways of calculating the error ; the most notable

being the mean square error (MSE): 1
n

∑n
i=1 (ŷi − yi)2 for n samples. Nowadays for

classification the cross entropy/log loss (CE) [Heaton, 2015, 104,120] is also used as

shown in (2.17) where yi is the ideal node output and ŷi is the actual node output4.

CE = − 1

N

N∑
i=1

(
yilog(ŷi) + (1− yi)log(1− ŷi)

)
. (2.17)

All the above networks are trained in a supervised manner where training

samples are obtained and associate input to specific output. Non-supervised learning

before the advent of deep learning was a peculiar topic; the few models able to learn

unsupervised were the self-organising maps (SOM) [Kohonen, 1990], the Hebbian-

inspired gas networks [Fritzke et al., 1995] and the K-means family of clustering

kernels [MacQueen et al., 1967].

Evidently, the field of neural networks had its ups and downs; in its infancy it

was heavily criticised, it appeared to not live up to the expectations of revolutionising

AI, and even after the 1980 developments they hadn’t been widely adopted.

4Some papers or authors sometimes replace the ideal with y or t and the actual with a.

23

2.4.2 General Purpose Computing on Graphic Processing Units

Part of the reason of the advent of deep learning has to do with advances and recent

changes from the traditional ANN to deep networks and activation functions, but it

is also attributed to the new GPU hardware. Most of the graphics processing units

(GPUs) on modern computers have hundreds of simple cores and even consumer-

grade GPUs nowadays have thousands of cores. At the early third millennium

researchers started using GPUs for general purpose computing [Thompson et al.,

2002; Pharr and Fernando, 2005], coined general-purpose computing on graphics

processing units (GP2U), once it was realised that GPUs favoured parallel algorithms

[Nickolls et al., 2008; Che et al., 2008; Owens et al., 2007] such as the training

algorithms which are used for neural networks.

The nature of the matrix form operations on the input Ij and weights Wi,

the vector-matrix multiplications during forward propagation or the back propaga-

tion such as (2.13, 2.14) as well as the training update rules such as (2.15, 2.16)

can execute a lot faster when using GP2U. Because GP2U kernels are able to run

asynchronous parallel operations on multiple training samples, weights and input

vectors, a resurgence in the research of ANN took place before and during the rebirth

of the field, now called deep learning.

2.4.3 Deep Learning

The pragmatic approach of using GP2U from the research community enabled deep

learning to advance into realistic applications dealing with computer vision, speech

recognition, pattern recognition, classification, prediction, regression, approximation

and auto-encoding.

Whereas the early ANN were mostly used for toy problems and trained using

small data-sets, deep learning is able to crunch big data and has proven usable in

real-life sceanrios and most important on par with human performance [He et al.,

2015; Taigman et al., 2014] thus having a profound effect to the adaptation of deep

learning in multiple fields and domains. Perhaps the most important breakthrough

was recently in 2016 by Google [Silver et al., 2016] when DeepMind beat the world

champion in the game Go by 5 - 0, thereby proving that deep learning and Connec-

tionism are capable of super-human performance. Modern ANN (hereinafter deep

networks or deep learning) differ from the traditional ANN in five distinct ways:

- Traditional ANN use logistic activation functions [Zadeh et al., 2010], e.g.,

sigmoid, tanh, arctan. Deep learning most often use linear functions such as

the rectified linear unit (ReLU) [Nair and Hinton, 2010] or soft-sign [Glorot

24

and Bengio, 2010].

- ANN normally use no hidden layers, or one to two hidden layers. In comparison

deep neural networks use multiple hidden layers, hence the term deep. In some

cases it is possible to stack different types of networks (e.g., as in the case of

auto-encoders).

- Although not limited to deep networks, node dropout, L1 and L2 regularisation

are new optimisation techniques which evolved as optimisation techniques for

deep learning [Dahl et al., 2013; Ngiam et al., 2011b,a; Bengio, 2009].

- Other types of deep networks such as convolutional neural networks (CNN)

are profoundly different from traditional ANN. They use max pooling and

convolution layers (often in alternating multi-layered fashion) and perform

classification at the final fully connected layer [Krizhevsky et al., 2012; Ciresan

et al., 2011].

- Development of deep learning saw the use of soft-max as the output layer

activation, instead of using traditional logistic functions. Whilst soft-max is

applicable in shallow networks, its use in deep learning proved very successful

[Glorot and Bengio, 2010].

The Figure 2.7 below showcases the difference between traditional and deep

networks. More often than not deep networks are harder to train [Glorot and Ben-

gio, 2010], they have more hyper-parameters which do not always warrant better

accuracy or performance, such as in the case of increasing hidden layers and amount

of nodes and quite often require more training iterations or epochs.

n1

n2

n3

n4

n5

Input hidden output

n6

n7

n8

n9

n10

n11

n12

n13

n14

hidden hidden hidden

n15

n16

Figure 2.7: Example of a deep fully connected neural network.

Other types of networks used for deep learning are the deep Boltzmann ma-

chines (DBM) [Salakhutdinov and Hinton, 2009] which are stacked restricted Boltz-

25

mann machines (RBM), deep recurrent neural networks (deep-RNN) and different

variations or combinations of the aforementioned networks.

The advent of deep learning was not restricted to supervised training but also

included unsupervised training [LeCun et al., 2015; Le, 2013; Lee et al., 2009], which

allowed discovery of structures from the network itself; coupled with the unlabelled

big data found on the Internet and the progress of GP 2U it was easy to accept the

use of deep learning as the cutting edge tool of Connectionism.

Using a linear activation function such as ReLU shown in (2.18) is very

common in deep learning. This is usually paired with a soft-max activation at the

output layer, shown in (2.19). Soft-max squashes the output within 0 ≥ f(x) ≥ 1,

and the sum of all outputs is 1, e.g., a probabilistic likelihood of output node Ox

belonging to a specific class or group of the K groups or classes.

f(x) =

0, if(x < 0)

x, if(x ≥ 0)
. (2.18)

f(x) =
eOx∑K
k=1 e

Ok

. (2.19)

The reason why that combination and usage is quite common, is because it

has been shown to be very effective and fast at learning [Tomczak, 2015; Dahl et al.,

2013; Nair and Hinton, 2010] and avoids saturation during training. This may be

explained by the fact that ReLU has a simple derivative shown in (2.20) with range

[0,∞].

f ′(x) =

0, if(x < 0)

1, if(x ≥ 0)
. (2.20)

Calculating the output delta error and gradient is shown in (2.21), with the

derivative of soft-max f on output layer i being fi(1 − fi), however the Jaccobian

takes the form yi − ŷi, e.g., the difference of ideal and actual output.

∂E

∂Wik
= f(1− f) = yi − ŷi. (2.21)

Another interesting update in deep learning is regularisation and its two

forms: L1 and L2. Regularisation deals mostly with over-fitting which becomes a

problem with modern large networks which are considerably larger than traditional

ANN. In theory it is accepted that over-fitting may be solved by increasing the

number of training data [Cawley and Talbot, 2007] but that may not always be

26

possible. Another way of dealing with over-fitting is reducing the size of the network,

which is done empirically, is time consuming and not always a good solution since

a large network may normally perform better than a smaller network.

The L1 and L2 regularisation (also known as l1 and l2) prevent the coefficients

from fitting perfectly to the training samples [Ng, 2004]. The L1 is shown in (2.22)

and is based on the least squares using the sum of weights. The parameter λ is the

regularisation parameter and N is the number of training samples, with 0 > λ ≥ 1.

λ
∑
i=1

|Wi|. (2.22)

L2 regularisation is slightly different and uses the sum of the square of

weights, shown in (2.23).

λ
∑
i=1

W 2
i . (2.23)

Some authors and researchers prefer to scale the λ parameter via the use of

the number of training samples, as shown in (2.24).

λ

2N

∑
i=1

W 2
i . (2.24)

The manner in which L1 and L2 are used is in combination with the cross-

entropy function (see formula 2.17), for example the use of L2 and CE is shown in

(2.25).

CE = − 1

N

N∑
i=1

(
yilog(ŷi) + (1− yi)log(1− ŷi)

)
+

λ

2N

∑
i=1

W 2
i . (2.25)

The benefits of using L2 are finding small weights and minimising the cost

function; L2 tends to be computationally efficient due to having analytical solutions,

yet it does not perform feature selection(which may or may not be an advantage)

[Ng, 2004]. In comparison the L1 is not efficient on non-sparse use cases but does

tend to perform feature selection. Both L1 and L2 may be used in tandem, albeit

anecdotal evidence suggests that L1 is more robust, but usage depends on the type

of network and training data.

In addition to L1 and L2, node dropout as described by Heaton et al [Srivas-

tava et al., 2014; Dahl et al., 2013], removes nodes from a network and its associated

weights, thus making the network smaller. Dropout randomly chooses a node to

27

dropout using a probability, and thus changes the network architecture and design.

Newer training algorithms, such as the Adaptive Boosting [Schapire and

Singer, 1999; Freund et al., 1999] (ADABOOST) which won Yoav Freund and Robert

Schapire the Gödel prize in 2003, or the mini-batch stochastic gradient descent

(MBSGD) [Li et al., 2014] promise faster training.

2.4.4 Reinforcement Learning

A rare exception to the otherwise homogeneous field of neural networks is reinforce-

ment learning (RL) [Bertsekas and Tsitsiklis, 1995; Sutton and Barto, 1998]. In gen-

eral it is considered dynamic programming [Bellman, 1957; Weiss, 1960; Sniedovich,

2010] but it its not limited by it: it uses neuronal principles inspired from be-

haviouristic Psychology, simulating how agents learn by associating a cumulative

reward with their actions [Watkins, 1989; Sutton, 1984; Galef Jr, 1988]. The learning

uses temporal differences and is described by a Markovian decision process (MDP)

[Howard, 1970; Bellman, 1957] such as the one shown in Figure 2.8.

statestatestateroot state

action action action action

t=1 t=2 t=3 t=4 t=5

Figure 2.8: Reinforcement Learning Episode.

The basic foundation of an MDP as used in reinforcement learning, is the

episode5. In the episode e = (st=1, st=2, . . . , st=n) we describe a temporal instance

using time step t. The state s or when indexed by the time-step denoted as st is

the core structure of reinforcement learning.

The true potential of RL can be achieved when we shift our preconception

of what a Markov state is; the common perception is that a state uses arithmetic

information but it can also be fuzzy, symbolic and use abstraction. The state is tra-

ditionally considered a descriptor ; it may be fully or partially observable or hidden

and can represent internal or external state of the agent, or a combination of both.

States are connected (or chained) by actions, actions performed by the agent,

and which lead to the next state the agent experiences (often denoted st+1). The

tuple st, at is the notation used which indicates that the agent has taken action at

5Episodes are used in episodic learning; there exists continuous learning which is a different
topic outside our scope.

28

when in state st. In some literature a transition matrix P =
(
p
(
s|s, a

))
is often

used; that transition defines the probability of transition from st to st+1 in non-

deterministic systems.

agent

environment

actionstate reward

Figure 2.9: Reinforcement Learning Agent Interaction with Environment.

An example of the interactive cycle with the environment is shown in Figure

2.9; however there is another component which is used: the reward. Rewards are

not obtained for all states but only for the terminal (or final) state which we denote

with r, so that rt ∈ R and rt = r(st, at). How the reward is obtained is subject

to each specific use case: it may be internally calculated (e.g., self-rewarding), it

may be observable in the environment, provided from another agent or entity, or

the product of a fitness function.

state state

action

(reward - discount)

fitness

reward

Figure 2.10: Rewarding the Terminal State

The reward is discounted using constant γ so that γ · rt (or γ · r(st, at)) back-

propagates a smaller value to previous states6. The reward is used to implicitly

calculate the value of a policy V π or in deterministic scenarios Q(st, at). Figure 2.11

demonstrates that a policy π is the decision to perform action at from state st.

6Please note, this is not neural network back-propagation.

29

state state

action

policy

Figure 2.11: Example of a Policy.

There are two general types of learning in RL: indirect which is based on

estimates (and probabilities) and direct where the optimal episode is learnt without

first obtaining an explicit model. In direct learning the agent first has to experience

and observe the episode, and then learn it via rewarding. We focus on the direct

learning approach which is what is used in Temporal Dynamic learning or TD(λ);

it offers the advantage of allowing full observability of states and the episode, and

thus allows meta-information extraction. When the agent explores new policies, new

episodes are experienced. In the case of starting from the same epicentre (the same

root state) a tree graph is created and every time the transition matrix is populated

with new or different states and actions, shown in Figure 2.12.

s=1

s=2 s=7

s=3 s=8 s=10

s=9 s=11s=5

s=6

s=4

t=1

t=2 t=2

t=3 t=3 t=3

t=4 t=4 t=4 t=4

t=5

a=1

a=2

a=3
a=4

a=5

a=6

a=7

a=8

a=9

a=10

Figure 2.12: Epicentre of Multiple Episodes.

When an episode is experienced the agent uses the best or max valued policy

V ∗(s) = max
π
V π(s) by looking forward to the next state’s policies V π

t+1. In the case

30

of TD(λ) and deterministic systems we substitute V ∗(s) = max
a
Q(st, a).

There are a variety of algorithms in TD(λ), one of the most widely used

being the Q-Learning algorithm [Sutton and Barto, 1998]. The update rule for Q-

Learning is shown in (2.26) and defines how values are calculated after having been

rewarded at the terminal state, with 0 ≥ r ≥ 1.

Q(st, at)← Q(st, at) + α ·
(
rt+1 + γ ·max

a
Q(st+1, a)−Q(st, at)

)
. (2.26)

In the above formula shown in (2.26), there are the following components:

the previous value Q(st, at) which is also updated, the learning rate α, the best

policy calculated using max
a
Q(st, a), the reward rt+1 and its discount γ. Another

algorithm in RL takes a similar approach: S.A.R.S.A the online TD [Sutton and

Barto, 1998, 145], and with Q-Learning the offline TD [Sutton and Barto, 1998, 148]

those two are the most famous and arguably the best to use.

2.4.5 Deep Reinforcement Learning

The emerging field of deep reinforcement learning [Mnih et al., 2015, 2013] from

Google has showcased better-than-human performance when playing old video-games

(Atari 2600). The idea behind deep-RL as described by Mnih et al is a fusion of

traditional RL and CNN; the CNN act as pre-processors of the raw pixels crafting

states and the RL learns the temporal sequence and the related policies; by doing

so, complex information, objects and information is learnt by the deep agent. The

overall idea is demonstrated in Figure (2.13) below [Mnih et al., 2015, 530].

agent

environment

action

raw data

rewardCNN

state

Figure 2.13: Deep Reinforcement Learning Agent & Environment.

This approach strongly demonstrates the multitude of uses of RL in com-

31

bination with other models, algorithms or networks; furthermore it supports the

notion that RL can act as the bridge between connectionism and symbolic AI. In

the case of Minh et al, the Q-learning based policy formula is shown in (2.27).

Q∗(s, a) = max
π

E
[
rt + γrt+1γ

2rt+2 + . . . | st = s, at = a, π
]
. (2.27)

Minh et al empasise the use of ANN for action and policy approximation

in RL, and albeit they support their choice based on the instability or divergence

of RL when using non-linear approximators [Mnih et al., 2015, 529], they set the

basis and notion of mini-batch random stochastic training of neural networks by

sampling action-policies. They describe their deep learning algorithm as using Q-

value updating periodically and from random mini-batches, thus smoothing over the

changes in data distribution.

It should be noted that the deep Q-Network (DQN) did perform better than

humans at specific games; in other old video-games it performed as good as humans

and at a few it did worse than humans [Mnih et al., 2015, 531]. Some of the linear

learners also performed better than DQN.

Regardless of the criticism of DQN and deep reinforcement learning, Google

showcased and supported a notion we mentioned earlier and which as shown later

throughout this thesis serves as the cornerstone of the Icarus engine. That notion

is that RL can serve as the back-bone, the template to which other AI algorithms,

symbolic or non-symbolic, are anchored. This allows for the fusion of machine

learning, neural networks and other approaches, with symbolic Algorithms.

2.4.6 Connectionism Criticism and Limitations

One of the known limitations and criticism for connectionism and neural networks

is their inability to operate on a symbolic level. Neural networks usually operate on

real valued input, most often scaled and normalised. Other networks such as RBM

are unable to operate on real values and use only binary values unless enabled by a

Gaussian-Bernoulli visible node layer [Krizhevsky and Hinton, 2009]. Whilst a lot

of uses of ANN are not confined by this limitation when exploring uses in NLP, NLU

or other domains where the information is encoded in text, symbols or tokens, the

inherent ability of ANN to work on numbers (prime or real) is a limitation. Another

of those limitations is that Semantics are lost once text is used as input, unless the

network is trained specifically to learn semantics on word observations [Dahl et al.,

2012] or semantic similarity between words [Mikolov et al., 2013a,b,c]. However,

doing so implies that multiple neural-networks must be used, each one tailored

32

for a specific task; whereas that may not be an issue it gives rise to a plethora

of disadvantages such as training and optimising multiple ANN, combining them in

order to effectively achieve the final goal, pre-processing the input, etc. Furthermore,

the researcher or developer faces various options: different models and architectures,

hyper-parameter optimisation, architectural design and parameters, a variety or pre-

processing choices when manipulating the information or data, each one affecting the

final outcome, often in an unpredictable way. Whereas the aforementioned options

are arguably not necessarily a disadvantage, they complicate agents and system

design when compared to the clear-cut and well defined nature of symbolic AI.

2.5 Cognitive or Synthetic Artificial Intelligence

Quite recent sub-fields of AI are the cognitive and synthetic AI fields, which focus on

the same topic: autonomous intelligent agents, systems or applications. A metaphor

which may be used for cognitive and synthetic AI is that of the building blocks

and the overall system; if symbolic AI and connectionism contain various types

of building blocks (Algorithms, models, neural networks, etc.) then the fields of

cognitive and synthetic AI describe the blueprint of how we may use those blocks

to build complex agents, systems or software.

The difference between synthetic and cognitive AI is the following: the field

of synthetic AI appears to cover a broad range of abilities [Bach, 2009] such as cogni-

tion, thought, perception, emotion, experience (just to name a few). In comparison,

cognitive AI seems to focus a smaller range of abilities [Kinsner, 2006], although

that is a supposition since current literature appears to cover similar abilities as

those described in synthetic AI. Albeit the terms cognitive and synthetic are used

interchangeably, in this thesis the preference is to use the word cognitive rather than

synthetic.

2.5.1 Bach and Synthetic Intelligence

A large amount of research setting the modern foundations of cognitive AI was done

by Joscha Bach who not only sets the basis for the transition from Psychology to

Computational modelling [Bach, 2009], but also avoids picking sides in the Symbolic

vs Connectionism debate. Bach appears to be mostly interested in Artificial Gen-

eral Intelligence (AGI) but sets a philosophical precedent when designing cognitive

systems: to avoid specifics and focus on the greater picture. One could say that

Bach indulges the readers to use a top-down (or stepwise design) approach which

should result in the exhibition of intelligent behaviour. In general, Bach’s advocacy

33

and the seven principles [Bach, 2008] are:

1. Create holistic architectures which are functional rather than focusing on par-

ticular aspects.

2. Avoid methodologism, e.g.: not to assert that intelligence must be thoroughly

explained by every single individual component.

3. Aim for the larger picture and avoid focusing on particular components or

experiments. This statement holds true for many modern systems and is

often a pitfall which prohibits the overall display of intelligence in favour of

heavy optimisation or description of sub-components.

4. Build systems which are not too narrow or which do not focus only specific

domains, also know as the symbol grounding problem [Harnad, 1990].

5. Robotic embodiment is not panacea. This statement is debatable and is likely

to not be found agreeable or acceptable by all readers, however the proposition

here is that cognitive AI should not be restricted only to physical systems, but

could be explored and developed for non-physical systems.

6. Focus on autonomous systems, e.g.: systems which may not be the best at

achieving their goal, but achieve that goal autonomously nonetheless when

compared to expert systems or software which are designed for a sole purpose

and highly optimised.

7. Emergence of intelligent agents won’t take place on its own. This is an opinion-

ated statement, yet it holds a certain gravity: AGI, AI or cognitive/synthetic

AI is currently an unknown and we don’t know how or when it will happen,

and furthermore it probably won’t happen in a day, but will be a long and

tedious process, similar to how Alan Turing envisaged it decades ago.

From the aforementioned seven principles it is clear that Bach sets the guide-

lines for the design of intelligent systems and agents. Whilst that list is opinionated

and perhaps slightly biased, it is useful because it serves as a starting point when

deciding on how to create cognitive agents.

2.5.2 Haikonen and Cognitive Intelligence

Bach is not the only researcher to have carried out work in the field, Pentti Haikonen

has done a tremendous amount of work on consciousness, robot brains and the

34

components that could (or should) enable AGI. Haikonen’s focal point appears to

be consciousness and describes the components which he surmises to be crucial

[Haikonen, 2007]:

1. Meaning and representation and their relation to information

2. Perception and recognition (visual, auditory, haptic, motor, objects, etc)

3. Association (and associative memory)

4. Motor actions (related to robotics and embodiment)

5. Cognition, understanding, memory (short-term and long-term) and models

6. Imagination and planning, deduction and reasoning

Moreover, Haikonen also analyses more challenging topics [Haikonen, 2012],

such as:

1. Property dualism

2. The identity theory

3. Subjective experience

4. Externalisation

5. Attention and its relation to consciousness

6. Feelings and emotions

The most important topic which Haikonen has researched and is directly re-

lated to imitation learning, is qualia [Haikonen, 2009] the subjective experience and

how it relates to objects (and therefore observation). Whereas the aforementioned

topics are related to cognitive AI, not all of them are within our scope; for the

Icarus engine the topics of most interest are the subjective experience, emotions and

rewards, meaning and representation, perception, recognition, decision making and

associative memory. Those topics directly relate to Imitation and are key compo-

nents as identified by Psychologists (see Section 2.2.1).

The insight and arguments Haikonen provides in his book ”The cognitive

approach to Conscious Machines” [Haikonen, 2003], albeit sometimes a bit general

and abstract, serve as one of the foundations upon which the presented research

has been based. Haikonen describes the same process, e.g., an emulation (rather

35

than a simulation) where the same process and the same output is expected. It

is debatable as to why one approach or another may be better suited for artificial

imitation. Furthermore, Haikonen summarises Gödel’s theorem [Haikonen, 2003,

24–25], and the proposition that some arithmetic truths are not provable using the

arithmetic system, as an argument against AI. He proceeds by asserting that the

human mind (e.g., a mathematician) is capable of understanding that statement and

theorem, and therefore Gödel’s theorem does not disprove AI. Another argument

against AI is that of determinism [Haikonen, 2003, 25–26]: since thinking is non-

deterministic, GOFAI and similar symbolic systems could potentially suffer. Non-

feasibility [Haikonen, 2003, 27–28], yet another argument against AI relates to the

inability of programming to deal with every single possible scenario, whereupon

Haikonen concludes that if programming is not a solution, then a solution would be

to employ machines which learn.

All the arguments against AI aforementioned indirectly imply that non-

symbolic approaches may in fact render that criticism mute: Connectionist designs

are non-deterministic, non-symbolic, and learn instead of being programmed. That

advocacy is found within all of Haikonen’s books, he implies that consciousness and

intelligence cannot be the byproduct of symbolic systems. Haikonen’s analysis and

persistence with associative learning and conditioning, as well as correlative learning

make a strong argument for the use of neural models in cognitive systems. He also

mentions imitation learning albeit briefly [Haikonen, 2003, 79–81], in support of its

use for learning and knowledge acquisition. Although he doesn’t expand he argues

that other types of learning, such as trial and error, or by verbal description, are not

as profitable to the system (or agent) as is imitation. Last but not least, Haikonen

analyses emotion and its significance; in fact much of his analysis [Haikonen, 2003,

116-118] supports the use of learning systems based on emotion or rewards.

2.5.3 Five Cognitive Agent Criteria

Another recent research is that of Anna Lawniczaka and Bruno Di Stefano, who

discuss in great detail about the specifics of designing cognitive agents (CA) and

the need for standardisation [Lawniczak and Di Stefano, 2010]. Lawniczaka and Di

Stefano mention the five CA criteria (mentioned in Section 1.4) which are deemed

necessary for the deployment of CA. Furthermore, Lawniczaka and Di Stefano sup-

port the notion that CA should use hybrid models (symbolic and connectionistic),

but propose to model CA similar to the OSI model [Stallings, 1987]. An argument

against their approach is that existing meta operating systems, such as the robot

operating system (ROS) [Quigley et al., 2009] take a computational graph approach

36

which appears to be better suited and has been extensively tested, in comparison

to their approach which is theoretical.

2.5.4 AI Architectures

A plethora of AI architectures exist yet some of them are outdated or were never

implemented but remained a theoretical framework. Following is a brief analysis of

the most significant and widely known AI systems.

4CAPS

This is a cognitive architecture by Just and Varma [Just and Varma, 2002] and it is

the successor of CAPS and 3CAPS. It aims to be a biologically plausible cognitive

AI and it relies mostly on Symbolic and less on Connectionism models. It has been

implemented in software.

SOAR

The forefather of modern AI architectures it was created and described by Newell

and Laird and aimed to model human behaviour and be a generic problem solver

[Laird et al., 1987]. It uses Symbolism, representations, procedural, episodic and is

declarative. It also uses reinforcement learning, imagery and emotional modelling.

It uses explicit production rules to govern its behaviour (if-then-else). It has been

used widelly and is still experimented with.

ACT-R

It was designed by John Robert Anderson and has evolved since then [Anderson,

1996]. Aims to reproduce the cognitive system and irreducible perceptual operations

that enable the human mind. It uses individual processing modules that produce

cognition inspired by Allen Newell and has perceptual-motor modules as well as

memory modules (declarative, procedural). All modules can be accessed by their

buffers; the contents of the buffers represent the state of the agent. Procedural

knowledge is represented in the form of productions (the informational flow from

the buffers to the cortex).

CLARION

This acronym stands for Connectionist Learning with Adaptive Rule Induction -

Online and is a recent addition to the family of AI architectures [Sun and Zhang,

37

2006]. It makes a distinction between implicit and explicit processes and focuses on

the interaction of the two. It has distinct subsystems each with implicit and explicit

representations such as (a) Action-centred subsystem, (b) Non-action subsystem for

general knowledge, (c) Motivational subsystem and (d) Meta-cognitive subsystem

(monitor, direct, modify all other subsystems). It uses learning, inference, categoris-

ing, processing, reaction and creativity.

CHREST

This is a Symbolic architecture based on limited attention, limited short memories

and chunking [Gobet et al., 2001]. It uses learning which is essential to the archi-

tecture, it is modelled as a network of chunks/nodes which are connected in various

ways. Critics say that it has more similarities with Connectionist models than with

Symbolic traditional models. It parametrises time which is an important key factor

in its operation.

DUAL

This is a general cognitive architecture trying to implement both the Symbolic

and the Connectionist approach at the micro level [Kokinov, 1994]. It is based on

decentralised representation and emergent computation. Computations emerge from

many micro-agents which are a hybrid Symbolic-Connectionist device. The agents

exchange messages and information and activation via links that can be learnt and

modified, thus forming coalitions which collectively represent concepts, episodes and

facts.

R-CAST

This is a group decision support system [Fan et al., 2005] which uses multiagenct

technology and a common shared knowledge space. It relies on the shared men-

tal model about context of decision making, and is sased on naturalistic decision

making.

LIDA

The acronym stands for Learning Intelligent Distribution Agent and is a model

proven to work using experiments and empirically grounded [Franklin and Patter-

son Jr, 2006]. It is neither symbolic or connectivist but a hybrid model which

attempts to cover a broad spectrum from low level to high level perception and

38

reasoning. It uses cognition functions by iterating interactions (cognitive cycles);

these cognitive cycles function as atoms for higher level cognition processes.

FORR

The acronym stands for FOr the Right Reasons [Langley et al., 2009; Epstein, 1992]

and was inspired by Nobel laureate Herbert A. Simon’s ideas on bounded rationality

and satisficing [Bearden and Connolly, 2008], a decision-making system based on

cognitive Heuristics. FORR Focuses on learning and problem solving, it is general

enough for problem solving and has been tested thoroughly in robotics and software

agents. It learns from experience how to solve problems and has 3 components: (a)

Descriptives: they describe the state/problem, (b) Advisers: advise for the problem

(rationales), and (c) Behavioural script: queries advisers and performs actions.

Icarus Architecture

The Icarus architecture [Langley et al., 2009; Langley and Choi, 2006; Langley et al.,

2004, 2003] which serves as my starting point and CA implementation takes a com-

partmentalised approach rather than a layered approach. Although it is intended

for physical agents, it uses an elegant and minimalistic design which simplifies the

amount of components and processes. I make no claim that the Icarus engine is on

par with the original intentions of the creators of Icarus; instead it is implemented by

focusing on imitation only and is intended to be a node of a computational graph

(ROS) offering NLU to the overall system or agent. The original goals of Icarus

architecture [Langley et al., 2003] are:

- The integration of perception, cognition and actions

- To combine Symbolic structures and affective values, e.g., social affective learn-

ing and knowledge representation

- To behave re-actively in tandem with problem solving

- To learn from experience whilst also using domain knowledge

Icarus uses a long-term and short-term memory which is further compart-

mentalised into long-term conceptual and long-term skill memory and the respective

short-term memories. It relies on rewarding, either past or expected rewards upon

which it bases its decisions. The original design of Icarus used primitive concepts

in the long-term conceptual memory: Boolean and quantitative values, yet it asso-

ciates objectives to skills and concepts. I analyse the implementation of the Icarus

39

engine in detail in Chapter 3, and explain how it differs from the original blueprint

and how it adheres to the aforementioned goals.

Other Architectures

Others AI architectures have been designed and used in the recent past: PreAct

engine7 which now appears to be defunct, OpenCyc8 a Semantic reasoning engine,

OpenCog9 an Artificial General Intelligence (AGI) framework [Hart and Goertzel,

2008], MicroPsi Project10 based on PsiTheory [Bach, 2012], and PRS (procedural

reasoning system) [Ingrand et al., 1992].

Choosing which AI architecture to use was a tedious task but ultimately I

opted for the simplest, most minimalistic and easy to use. Whereas many of the

aforementioned frameworks, engines and architectures offer a tremendous wealth of

functions, my focus has been on learning, representation and imitation; as such the

Icarus architecture is the best fit satisfying the criteria whilst remaining simple.

2.6 Programming by Example

The field most closely related to the research described in this thesis is program-

ming by example (PBE), also known as programming by demonstration (PBD); the

pioneers of the field being Henry Liebermann [Lieberman, 2000], Daniel Halbert

Halbert [1984], Mathias Bauer [Bauer et al., 2001], Brad Myers [Myers et al., 1995],

Francesmary Modugno [Modugno, 1996] and Richard McDaniel [McDaniel, 2001].

2.6.1 PBE: Theory and Models

In PBE programming is not done by the agent but by the user and the process

is in fact a form of inductive heuristic where the user’s paradigm contains hidden

states [McDaniel, 2001]. The user replicates an internal mental process which is then

transcribed and examples are extracted. Part of that process is hidden, implying a

partially observable Markov process [Smallwood and Sondik, 1973] from which the

agent is programmed. Smith et al describe it as the creator approach [Smith et al.,

2001] where rules are inferred by observing changes from before to after. They

describe the process, and assert that:

7http://artificial-intelligence.silk.co/page/PreAct
8http://sw.opencyc.org
9http://opencog.org/

10http://cognitive-ai.com/page2/page2.html

40

http://artificial-intelligence.silk.co/page/PreAct
http://sw.opencyc.org
http://opencog.org/
http://cognitive-ai.com/page2/page2.html

”Each inferred rule represents an arbitrary number of primitive opera-

tions, or statements in other languages.” [Smith et al., 2001, 10]

Smith et al declare the need and use of a representation, the process of

observing changes in the user examples from which they infer rules. They expand on

the need for a symbolic representation basing much of their work on the psychologist

Jerome Bruner who focused on the cognitive development of children and its relation

to education. According to Bruner there are three stages of development: enactive,

iconic and symbolic [Bruner, 2009]. Inspired from Bruner Smith et al propose that

the use of Symbolism governed by rules or laws, is a Fregean representation; they

named it the Runer’s approach, a Symbolic-enactive representation based on UI

interactions and visual, iconic and symbolic representations.

McDaniel describes passive observation as the passive watcher in an argument

against observation; he asserts that the passive watcher cannot request from the

demonstrator the hidden states and that the object (e.g., paradigm or teaching

material) may not be useful to the agent [McDaniel, 2001], without however proving

it.

An action-focused approach is the one taken by Bauyer et al, who viewed

the task of replicating the learnt process as a sequence of actions [Bauer et al., 2001,

100–102]. Although he did not expand much on the idea he named the processes

”recipes” indexed by a task library in the agent’s memory. Each recipe uses action

estimation based on a monotonic probabilistic training approach [Bauer et al., 2001,

101], shown in (2.28).

EU(a, u, n) = [ass(wa)− ass(wcurr)] · Pu(a)− annoy(u, n). (2.28)

The formula describes the expected use of an action a, for user u with an

already executed number of actions n. The descriptors ass(wa) and ass(wcurr) are

the assessments of the best policy, before and after executing the action a. The prob-

ability Pu(a) denotes user u carrying out action a and function annoy approximates

the user’s characteristics growing monotonically as the training increases. This is an

interactive approach using a UI and it penalises the agent when requesting actions

from the user.

Bauer et al further describe the issue of sharing knowledge between the

user and the agent. This is a fundamental approach which relates to how agents

are trained, the partial observability or hidden states, and how all aspects overlap

(shown in Figure 2.14).

The depiction in Figure 2.14 demonstrates the issues arising from sharing

41

Figure 2.14: Knowledge sharing by agent and user

knowledge with the trainee (e.g., the agent). This dramatisation is quite accurate;

since the agent subjectively experiences (e.g., qualia) the components shown above,

those are often hidden, undeclared, invisible, implied or even unknown.

- Structural knowledge relates to the internal properties of the domain.

- Procedural knowledge relates to understanding part or the entirety of the

processes involved.

- Visual and semantic knowledge relates to knowing and understanding relations

and ontologies.

- Domain knowledge, is specific knowledge (e.g., in the case of NLP, syntax and

grammar).

As evident from Figure 2.14, those categories often overlap; in some cases

they can be acquired by other means (e.g., a lexicon or an external process), and in

other cases they may be inferred.

Most of the PBE research uses simple inference, heuristics, rules and in-

ductive logic [Lieberman, 2000; Myers and McDaniel, 2001; Modugno, 1996; Myers

et al., 1995; Myers and Zanden, 1992; Zanden and Myers, 1990]. Machine learning

was absent from PBE research, with the only exceptions being [King et al., 1992]

and [Liebermann et al., 2001] albeit using rudimentary models. It wasn’t until 2013

that researchers from UCLA, the Weizmann Institute and Microsoft publicised work

[Menon et al., 2013] that combines the two fields; in this case, rules, probabilities

and associations are learnt so that predictions could later be made by the system.

42

2.6.2 PBE: Application Domains and Criticism

The majority of PBE focused on user interfaces (UI); most of the PBE research

used rule-based approaches in order to interact with the user and extract some form

of a program [Lieberman, 2000; Myers and McDaniel, 2001; Modugno, 1996; Myers

et al., 1995; Myers and Zanden, 1992; Zanden and Myers, 1990]. A few others were

interested in automating information acquisition tasks [Bauer et al., 2001], mostly

by transcribing interactions to queries. Bauer criticises PBE as having been overly

simplistic and admits it was not designed with AI in mind (or by AI researchers) in

what he calls level of intelligence [Bauer et al., 2001, 49]. Extracting rule definitions

from multiple examples was considered a novelty [Liebermann et al., 2001] and it

was applied in tasks such as text categorisation.

In hindsight, PBE took a minimalistic approach to enabling user-agent in-

teraction, mapping of knowledge, action prediction (or suggestion); it was in fact

focusing on programming and not learning. The early stage of UI and the graphical

UI of the OSes at the time (Microsoft Windows 95, 98, 2000, NT) in combination

with the fact that not as many people used computers back then as nowadays, may

have contributed to the sunset of PBE. The web was just starting to appear, and

personal computers were not as widespread as they are today.

PBE at that stage took a toy-problem approach and simplified the underlying

mechanisms. Whereas complexity of an agent is a different topic, in the case of PBE

it may have been detrimental to the abilities of the agents. No machine learning

was used11, few (if any) AI-related models or algorithms were employed; let us not

forget that its focal point was extracting a sequence from the UI being replicated

for the UI or operating system.

However, PBE set the foundations for much of what is imitation learning in

AI today: it described the example extraction process as a MDP, it emphasised on

the need for multiple examples, it showcased how visual generalisation (and visual

UI interactions with agents) can be flexible and easy to use [Amant et al., 2001] and

that PBE can be used for domain-independent tasks or use spatial representation for

languages [Paynter and Witten, 2001]. Furthermore and perhaps most important

it reinforced the notion of using Symbolic representation and requiring a temporal

structure for procedures, and including the use of Semantics, and domain attributes.

11With the aforementioned exceptions of King [King et al., 1992] and Liebermann [Liebermann
et al., 2001]

43

2.6.3 PBE: Differences from Imitation Learning

Evidently PBE was a subset of learning by example as it only focused on interfaces,

automation and programming. There are many similarities with the work presented

in this thesis, in fact we drew inspiration from Lieberman, McDaniel and Amant,

however imitation in AI is more than merely programming. PBE sets the basis on

using a visual interaction for creating examples, the need to use multiple examples,

the use of inference in transcribing user paradigms to an MDP, and raises the issue

of partial observability in the MDP/example.

Terminology issues aside (programming by example versus learning by ex-

ample) the major difference is that in Icarus engine (a cognitive agent) I focus on

learning which is enabled by deep reinforcement learning in combination with other

techniques; there is no focus on the UI, and the user-UI interaction is of little interest

to the field of AI.

2.7 Parsing and Understanding

The connection of NLP and NLU to CA and imitation is as follows. The exact task

which the CA is performing (the Icarus engine) is in fact parsing an input sentence

and projecting it to a KR, thereby creating a structured interpretation. The way

semantic and syntactic parsing works in Icarus is complex and will be analysed in

detail in subsequent Chapters. Notable research carried out in the fields of NLP and

NLU is described, in order to be able to compare and explain performance, accuracy

and design decisions.

2.7.1 Semantics

The word Semantics (from the Greek word ”sěmantikós”) is the field which studies

meaning of words, symbols, tokens, signs and phrases [Ullmann, 1959]. Semantics

are a closely related to the study of Semiotics, a meaning-making process [Carnap,

1948]. In general the topics related to semantics are:

- Semantics: the relation of symbols, words or tokens and their meaning.

- Syntactics: categorical or taxonomic relation between sets of symbols, words

or tokens.

- Pragmatics: relation between symbols, tokens or words and agents using them

or interpreting them.

44

From the above list it is evident that a cognitive agent deals with all three

items as well as Semiotics. However in order to avoid being epigrammatic I herein

refer to Pragmatics, Semiotics and Semantics as Semantics only. A distinction is

made from Syntactics since syntax is been treated differently in NLP and NLU12.

2.7.2 Distributional Semantics

The approach taken in distributional Semantics (also known as bag-of-words) offers a

point of view regarding phrases; this field has been governed by what is known today

as vector space models (VSM) and feature vectors [Turney et al., 2010]. The notion

behind feature vectors and VSM is based on attributes; the presence or absence of

words, tokens, symbols or pairs of those within a phrase or sentence. I denote a

sentence or phrase as a pattern p from herein, whereas use the word term t to define

tokens, words, symbols or signs. A VSM builds upon feature vectors; a feature vector

is a vector encoding the presence or absence of a term t from an index. The index

is a set of all known terms, words and symbols: S = {. . .},S 6= ∅. The cardinality

of that set |S| defines the lexicon or index size m; feature vectors use that size to

calculate the index or position of a term within the vector. The hypothetical index

vector shown in (2.29) indexes some names and the binary feature vector shown in

(2.30) denotes the presence or absence (in Boolean terms) of the respective name.

Sm =
[
Alex,Bob, Chris, John, . . . ,Xavier

]
. (2.29)

Vm =
[
0, 0, 1, 1, . . . , 0

]
. (2.30)

In the above example only the names Chris and John were present as encoded

by the vector Vm. Therefore feature vectors represent presence or absence and not

relation between terms such as words or symbols. The VSM builds on top of the

notion of feature vectors by creating a matrix, a vector of vectors. The matrix Am,n

where m is the lexicon size and n is the number of patterns p (phrases, sentences,

etc.) represents which terms t are present and which are absent, as shown in (2.31).

Am,n =



p1t1 p1t2 p1t3 . . . p1tm

p2t1 p2t2 p2t3 . . . p2tm

p3t1 p3t2 p3t3 . . . p3tm
...

...
...

. . .
...

pnt1 pnt2 pnt3 . . . pntm


. (2.31)

12For example, Semantic and Syntactic parsing are not the same process.

45

In the above matrix Am,n columns are terms and rows are patterns; we can

therefore retrieve attribute similarity between patterns, using the formula shown in

(2.32) as described in the VSM literature [Turney et al., 2010].

Sim(Vi|Am,n) =
Am,n · Vi
‖Am,n‖ · ‖Vi‖

. (2.32)

The equation shown in (2.32) results in a vector of cosines: degrees Θ of

similarity of the queried vector Vi respective to all other vectors (rows/patterns p)

in matrix Am,n as shown in (2.33).

Sim(Vi|Am,n) =
[
cos(Θp1), cos(Θp2), cos(Θp3), . . . , cos(Θpn)

]
. (2.33)

From equation (2.32) and the produced vector of similarities shown in (2.33)

it is evident that a VSM relies on the presence of terms, tokens, words, symbols in

order to calculate similarity. Fine tuning of VSM often uses term-frequency-inverse-

document-frequency (tf-idf) [Turney et al., 2010] by penalising frequently appearing

tokens and biasing towards infrequent ones. Other optimisation techniques include

lemmatising and stemming [Jivani et al., 2011], techniques which shift the morphol-

ogy of terms t by grouping them or reducing them to their inflicted forms [Jurafsky

and Martin, 2000].

2.7.3 Relational Semantics

Contrary to Semantics based on attributes (as discussed in 2.7.2), relational Seman-

tics take a taxonomic, categorical or structured approach, and examine relations be-

tween terms, words, tokens or symbols. The pronounced tool used for such research

is Word-Net [Fellbaum, 1998]; it is a lexical database which organises words into

tree graphs. Hypernyms are trees which are produced when querying specific words

and produce a tree going towards the most abstract or general term, the root of

the graph, e.g., super-ordinates or super-classes. Hyponyms are tree branches, and

are produced when querying words which are more specific, e.g., sub-ordinates or

sub-classes. Synonyms as the term implies, are other words which are synonymous

to the query.

In Figure 2.15 the query is shown in the centre of the graph. The graphs

acquired by WordNet are Hasse graphs: mono-directional and ordered. Each hy-

pernym, hyponym or synonym appear as blocks; in actuality WordNet groups those

words as layers, however multiple layers may exist at the same level, creating forks

46

hypernym

root

hypernyms
 #1a

hypernyms
#1b

hypernyms
#2a

hypernyms
#2b

hypernyms
 #2c

query

group

synonyms
#1a

synonyms
#1b

hyponyms
#1a

hyponyms
#1b

hyponyms
#1c

Figure 2.15: WordNet Semantic Tree Graph.

or branches semantically diverging from the same-level groups. The most abstract

and general root layer is also shown; those are the taxonomies decided by the lexi-

cographers who created WordNet [Fellbaum, 1998].

One of the limitations of this approach is that a lexicographer is needed;

a human user who will organise, categorise and place the words in their correct

taxonomies, in their respective positions. The implication which arises from the fact

that although a cognitive agent may use semantic graphs such as the one one shown

in Figure 2.15, is that the use of WordNet may be non-beneficial if it encounters

unknown words, particles which are not indexed in WordNet, or other neoterisms,

abbreviations, slang words or even words often used in Twitter or other online social

media.

Google recently offered word-2-vec [Mikolov et al., 2013a,b] a solution to the

aforementioned limitations, which uses CBOW [Mikolov et al., 2013c] (continuous

bag of words) and/or Skip-gram [Guthrie et al., 2006]. Furthermore, word-2-vec

assumes the role of the taxonomist; it observes and parses big data (extremely large

datasets of text) and infers Semantic similarity between words as a vector. Google

was not the first to offer this approach, earlier work [Dahl et al., 2012] has seen the

use of RBM with n-grams.

A distinction which must be made is that word-2-vec is not a lexicographer;

47

albeit a lot more flexible than WordNet, it also is fallible to the limitations of the

dataset used to train it, e.g., dealing with unknown words. The implied advantage

is that word-2-vec may be trained on data, and thus this could potentially be an

automated procedure which would not require a human user (the lexicographer)

since it relies on observing samples.

A hypothetical scenario in this case would be to combine WordNet and word-

2-vec in order to complement each-other, or even use multiple instances of word-2-

vec which are trained on multiple data-sets in order to obtain a better mapping of

Semantic relations in a domain.

The stark difference between them is that WordNet produces a graph which

we can traverse and iterate in order co calculate the semantic similarity [Agirre

et al., 2009; Jiang and Conrath, 1997; Rada et al., 1989] as we see fit; word-2-

vec insted creates vectors. The fact that a graph encodes that information for us

to explore allows the use of multiple approaches to quantifying the information of

similarity [Lin, 1998]. On the contrary, word-2-vec provides a vector of values for

the agent to consume; those vectors are classified by neural networks, obtained by

models using the distributional semantics hypothesis (see 2.7.2). The issue with this

approach is that a word-2-vec vector may encode or represent values in a different

scale or manner than the one we intend to use with WordNet.

2.7.4 Part of Speech Tagging

Syntactic processing in NLP often uses part-of-speech tagging (POS or POS-tagging)

which is a family of different algorithms and models with the aim of grouping words

into Tree-Bank grammars [Charniak, 1996]. That is a set of 36 POS tags identifying

specific categories of words and digits; it is a taxonomy based upon grammatical

properties. The complete list of POS tags is shown in the Appendix (A).

Throughout this thesis, I use laPOS [Tsuruoka et al., 2011] (look-ahead POS

tagger) which uses training models in order to predict correct POS tags. It is highly

accurate (97.22% on the WSJ corpus) and the only one written in C++ and open-

sourced.

2.7.5 Semantic and Syntactic Parsing

Parsing in NLP and NLU is a process; it usually processes text and produces some

kind of output [Socher et al., 2013a]. More often than not the output has been a

Penn Treebank tree [Charniak, 1996], and in most cases it is a KR structure such

as an MRL. It is often partitioned into two distinct categories: Semantic parsing

48

and Syntactic parsing. Often those two approaches are combined [Kambhatla, 2004]

mostly due to the well known problem of ambiguity [Gorrell, 2006] an issue en-

countered by us human beings [MacDonald et al., 1994] as well as AI algorithms

[Trueswell et al., 1994]. Parsing is often a task of relation extraction from the data

[Mintz et al., 2009; Culotta and Sorensen, 2004]; it may also be a task of concept

extraction [Villalon and Calvo, 2009] and in specific scenarios it can include both

[Abebe and Tonella, 2010].

From concept and relation extraction, the task of concept mining [Looks

et al., 2007; Bichindaritz and Akkineni, 2006] is closely related, whereupon algo-

rithms or models attempt to extract or discover concepts, concept maps, or knowl-

edge by using ontology [Lawrynowicz and Potoniec, 2011]. One of the most frequent

application scenarios of parsing is data-mining [Cabena et al., 1998], which when

targeting specific types of data becomes knowledge extraction. Parsing onto a KR,

MRL or other type of representation is often called dependency parsing, sentence

modelling, or machine reading but for our intents and purposes we use the umbrella

term NLU.

Other application scenarios vary: parsing may be used for sentiment analysis

[Liu, 2012; Wilson et al., 2005; Nasukawa and Yi, 2003], text classification [Bloe-

hdorn and Moschitti, 2007; Zhang and Lee, 2003; Cavnar et al., 1994], dialogue

systems [Vlachos and Clark, 2014], machine translation [Andreas et al., 2013; Wong

and Mooney, 2006] and many more. Furthermore, there exists shallow parsing and

deep parsing and the manner each one is implemented ranges by employing meth-

ods across the broad spectrum of modern AI. Regardless of the application domain,

there appear to be four core elements to parsing:

- Parsing based on Syntax.

- Parsing based on Semantics.

- Parsing for information retrieval or knowledge extraction.

- Parsing for classification or prediction.

The first two items are self-explanatory; various researchers argue about

their choices and often use one or the other, or even combine both approaches.

The latter two items are somewhat hard to distinguish; research often focuses on

extracting information or knowledge which later is re-used (such as when indexing

books [Zhong et al., 2011], data-mining health-related data [Croitoru et al., 2007],

parsing clinical data [Campbell and Musen, 1992], or simply text-mining [Montes-y

49

Gómez et al., 2002]). However, classification or prediction appears to aim towards

associating a parsed input to an output, as for example in the case of sentiment

analysis or dialogue systems, in which case the parsing mechanism serves the purpose

of enabling classification or prediction. Those application domains have to use

similar mechanisms and although the implementation model may vary, it is the

process we’re interested in, and not the domain itself.

2.7.6 Implementing Parsing and NLU

Current state-of-the-art only recently made significant breakthrough, some of it

attributed to deep learning. The most recent breakthrough is from Google [Andor

et al., 2016; Weiss et al., 2015; Zhang and McDonald, 2012] and the use of its

TensorFlow13 library as used by SyntaxNet14. Google relied mostly on POS tagging

(the Parsey McParseface POS tagger) rather than Semantics, yet achieved the best

F1 scores to date (F1 results range from 94.44% on news data, 95.40% on question-

answers and 90.17% on web data).

Other state-of-the-art is the research and platform by the spaCy [Honnibal

and Johnson, 2015] start-up in Germany. Current software, tools and platforms

considered state-of-the-art are shown in Table 2.1; for a full list and analysis Choi

et al [Choi et al., 2015] have gauged performance, accuracy, speed, etc., yet some

platforms have been renamed, and some appear to be unmaintained or deprecated

since then.

Name URL

Deep-Syntactic Parser https://github.com/talnsoftware/deepsyntacticparsing

MaltEval http://www.maltparser.org/malteval.html

NLP4J https://github.com/emorynlp/nlp4j

RedShift https://github.com/syllog1sm/Redshift

RBGParser https://github.com/taolei87/RBGParser

SNN http://nlp.stanford.edu/software/nndep.shtml

SpaCy https://spacy.io

SyntaxNet https://github.com/tensorflow/models

TedEval http://www.tsarfaty.com/unipar

TurboParser http://www.cs.cmu.edu/~ark/TurboParser

Table 2.1: State of the Art NLU Software Tools.

Dependency parsing (hereinafter NLU) has seen some very innovative re-

search using mechanisms which were tailored for computer vision such as CNN

13https://www.tensorflow.org
14https://github.com/tensorflow/models/tree/master/syntaxnet

50

https://github.com/talnsoftware/deepsyntacticparsing
http://www.maltparser.org/malteval.html
https://github.com/emorynlp/nlp4j
https://github.com/syllog1sm/Redshift
https://github.com/taolei87/RBGParser
http://nlp.stanford.edu/software/nndep.shtml
https://spacy.io
https://github.com/tensorflow/models
http://www.tsarfaty.com/unipar
http://www.cs.cmu.edu/~ark/TurboParser
https://www.tensorflow.org
https://github.com/tensorflow/models/tree/master/syntaxnet

[Kalchbrenner et al., 2014] or DNN [Grefenstette et al., 2014]. TensorFlow in Syn-

taxNet allows the use of both deep and shallow neural networks; Google’s work used

deep networks with sparse input [Weiss et al., 2015] in combination with Graph-

based parsing. They also compared shallow networks [Andor et al., 2016] with one

to two hidden layers to Long-Short-Term-Memory (LSTM) networks [Zhou and Xu,

2015], a special type of RNN often used in NLP. From Table 2.1 we’ve investigated

much of the research work and implementation methods: most researchers also focus

on Syntactic parsing rather than Semantic, a considerable amount of work relies on

tensors [Clarke, 2015; Lei et al., 2014], machine learning [Ballesteros et al., 2014;

Chen and Manning, 2014], whereas others use some form of inference [Zhang et al.,

2014b,a; Martins et al., 2010] often probabilistic, Heuristics [Martins and Almeida,

2014; Martins et al., 2013; Tsarfaty et al., 2011; Bohnet, 2010], Statistics [Tsarfaty

et al., 2012a], or a combination of the above [Rasooli and Tetreault, 2015]. Notable

research has been carried out by Standford University [Berant and Liang, 2014] using

paraphrasing and VSM on question-answer scenarios and recurrent neural networks

(RNN) on Treebanks [Socher et al., 2013b], albeit not as well performing as the

aforementioned work and tools.

More traditional approaches have used probabilistic or statistic approaches

such as statistical machine translation (SMT) [Andreas et al., 2013; Wong and

Mooney, 2006] often with some kind of Heuristic algorithm or kernel [David L. Chen,

2010; Chen and Mooney, 2008] or inductive logic [Tang and Mooney, 2001]. A large

amount of research has focused on ML-models [Pradhan et al., 2004] such as support

vector machines (SVM), RNN [Socher et al., 2011], neural-based conditional ran-

dom fields (CRF) [Durrett and Klein, 2015] a hybrid approach of statistics and ML,

whilst other hybrid approaches use neural networks, SVM and Semantics [Liang and

Potts, 2015] or tensors [Clarke, 2015] (e.g., feature vectors from detected patterns).

Older research in parsing was mostly based on programming: Algorithms,

Heuristics and logic [Shi and Mihalcea, 2005; Culotta and Sorensen, 2004], then mid

early 20th century a shift towards Statistics took place as evident by the develop-

ment of WASP [Wong and Mooney, 2006] and its later variants [David L. Chen,

2010] which combined statistical alignment with Heuristics, or other similar work

based on Statistic-Heuristics [Och and Ney, 2003], such as DAGGER [Davies and

Edwards, 2000], TextRunner [Yates et al., 2007; Etzioni et al., 2006], and DIRT [Lin

and Pantel, 2001a,b]. Older systems and Algorithms relied on alignment, inference

and rule extraction [Dinu and Wang, 2009; Szpektor and Dagan, 2008], and even

the latter systems which combined Statistics and Heuristics (such as WASP) were

prevalent until the end of the previous decade.

51

At the same time that research in NLU started focusing on ML and its mod-

els (late first decade of the second millennium) a plethora of new approaches started

appearing such as the use of reinforcement learning based on DAGGER [Vlachos and

Clark, 2014] on action-selection (predicting arguments, dialogues, etc), the use of

imitation learning for prediction and classification of entities and relations [Vlachos,

2012], and unsupervised learning [Vlachos, 2011] which were not as accurate as cur-

rent state of the art, but entirely outside the norm, thereby offering new approaches

even as proof of concept.

2.7.7 Models and Algorithms in NLU

Apart from all the aforementioned approaches (ML, Heuristics, inference, Statistics

and probabilities) there are four core items which are highly relevant to imitation

learning and NLU:

- Decomposition into parts [Martins et al., 2011; Koller, 2014].

- Higher-order graph parsing [Zhang and Zhao, 2015].

- Structured inference and graph factoring [Martins et al., 2010].

- Distance-based metrics [Tsarfaty et al., 2012b] dealing with segmentation

based on distance.

Decomposition in NLU usually refers to decomposing a MRL/KR into parts

from which the model can be trained, or from which learning can occur. There

have been proposed various techniques and approaches, such as dual decomposition

[Martins et al., 2011] which transforms combinatorial problems into convex hulls

[Martins et al., 2013].

Graph parsing is one of the two major approaches in NLU/dependency pars-

ing, the other being transition-based parsing. In transition-based sentences are

parsed using shift-reduce sequences [Sagae, 2009; Sagae and Lavie, 2006]; in graph-

based parsing, tree graphs are decomposed into factors [Zhang and Zhao, 2015;

Nivre, 2003; Yamada and Matsumoto, 2003], and recreated as tree graphs (MRL or

KR). Dynamic programming has been used in combination with graph-based pars-

ing [McDonald and Pereira, 2006; McDonald et al., 2005a] where the criticism was

that inference in those approaches suffered from sparsity [Zhang and Zhao, 2015],

in which case approximation via neural networks was considered preferable. Dis-

tributed representation (or encoding) of the information via feature vectors or word

52

embeddings, has been widely used to process sentences via neural networks [Morin

and Bengio, 2005] and deep learning [Collobert, 2011].

Graph factoring and structured inference is the process by which a hidden

structure of a graph is inferred [Martins et al., 2010], with multiple choices and ap-

proaches possible, such as the variational representations, approximating inferences,

and others. Distance metric as proposed and described [Tsarfaty et al., 2012b] deals

with the distance in tree graphs, and how it may be used for more accurate parsing.

Sub-problem solving [Martins et al., 2013] is the task of solving smaller problems,

rather than treating a sentence as a big problem.

A major component in parsing is shift-reduce [Sagae, 2009; Shieber, 1983]

which is deterministic, less accurate but usually a lot faster than statistic-based

approaches. A probabilistic-based shift-reduce [Sagae and Lavie, 2006] has also

been implemented, attempting to address accuracy. The shift reduce algorithm is

an operation which moves forward onto the text or graph, without reversing; at any

moment in time it creates trees or sub-trees of the graph. It may be using rules,

probabilities, precedence or other control methods and may be used in combination

with look-ahead, e.g., examination of future items, before making a decision at the

current item.

In comparison to shift-reduce, a beam search [Zhang and Clark, 2008; Lafferty

et al., 2001] is the exploration of a graph by expanding the most probable nodes and

edges; it may be based on best-first search [Korf, 1993] and it can be Heuristic.

Normally the parser stores a fixed amount β of best states as it explores the graph,

and it may be used in combination with shift-reduce [Zhu et al., 2013].

2.7.8 NLU Performance and Issues

One of the most severe issues in parsing and NLU is ambiguity [Gorrell, 2006;

Trueswell et al., 1994]. Ambiguity appears to be mostly encountered in syntac-

tic parsing, due to the fact that categories or taxonomies may contain words which

contradict other samples from the training data, and is not a phenomenon observed

only in NLU; human development also learns to deal with ambiguity [MacDonald

et al., 1994].

Other issues relate to the higher order of the sparse information encoded in

a graph; e.g., the structure, the representational complexity which when reduced

for parsing becomes more problematic at learning and mapping [Zhang and Zhao,

2015].

The performance of NLU is often measured using the F1 score [Brodersen

et al., 2010], although different variations of the formula shown in (2.34) do exist.

53

F1 = 2 · precision · recall
precision+ recall

. (2.34)

Actual F1 scores reported have steadily increased the past 5 years; whereas at

the end of the previous decade the state-of-the-art ranged within 80% to 90%, nowa-

days the scores range above 90% with SyntaxNet having achieved some of the highest

scores [Andor et al., 2016], 94.44% on news data, 95.40% on question-answers, and

90.17% on web data as mentioned earlier in Section 2.7.6. NLU accuracy is ap-

proaching POS tagging accuracy: Google’s Parsey McParseface achieved 97.77%

on news data [Andor et al., 2016], whereas the laPOS tagger [Tsuruoka et al., 2011]

was at 97.22%. There exists a correlation between NLU and POS tagging accuracy;

since NLU uses the syntactic attributes (syntactic parsing) it is plausible that a

propagation of errors from POS results in lower NLU scores. We’re also observing a

saturation of scores: more and more research work is pushing the scores upwards but

the increments are becoming smaller, it is thus possible that the field has reached

a plateau or a saturation point and there will be very little increase in accuracy in

the near future.

Other metrics are also relevant, such as parsing speed and training time,

Choi et al [Choi et al., 2015] offer a highly analytical review of the current tools and

provide plethora of information. Perhaps the most undervalued and simultaneously

most avoided topic in NLU is sentence length. It is reasonable that sentence length

would affect both performance and accuracy, but Choi et al demonstrate that all

parsers perform well with sentences under 10 words long, but accuracy declines

for all parsers when given sentences with large word count. Whilst the group of

examined parsers achieved F1 ranging from 93.43% to 95.50% for less than 10 word

sentences, for sentences with 20 words that range is 90% to 93%, for sentences with

30 words it is 87% to 92%, and for 50 words it is 81.66% to 86.61% [Choi et al.,

2015, 392].

2.8 Background Conclusion

In this Chapter I have described the history and related research to my work. Fur-

thermore, a logic continuation has been established with related sub-fields of AI:

Neural Networks, Deep Learning, Reinforcement Learning, Semantic, Syntactic and

Dependency parsing, Semantics and Cognitive AI.

The work presented hereinafter is both inter and intra-disciplinary. I have

used research contributions from the human child development, from imitation in

nature, as well as from across various AI fields and topics. Although such an ap-

54

proach comes with a certain risk, it was a necessity in order to address and recreate

certain attributes occurring in nature and humans and then use various AI models

forming pieces of a puzzle which simulates an imitating mechanism.

Other fields of AI which have not been described, such as Robotics or Ar-

tificial Life, are remotely related yet outside the scope of this thesis; whilst they

may be related to imitation they deal with either physical agents (robots) which are

focusing on sensorimotor imitation (learning of physical sequences) and Artificial

Life focuses usually on the evolutionary processes which could enable imitation. As

such, not much background research has been carried out in those fields.

The larger picture described in this Chapter follows a specific route, from

human Psychological development and epigenetic traits, to programming by exam-

ple, which is implemented using a cognitive agent through artificial neural networks

and reinforcement learning. The outcome is a cognitive agent which performs NLU:

Semantic, Syntactic and Dependency parsing. It should be noted that the field of

NLU experienced tremendous progress whilst this PhD was underway; from 2012 to

2016, dependency parsing explored the use of deep learning by corporations such as

Google, Yahoo, IBM and Microsoft, whereas performance of those systems steadily

increased.

However, the reader should not confuse the work described here as research

on NLU; it is research focusing on artificial mechanisms which enable imitation;

it was a conscious choice to implement and compare an agent doing NLU parsing,

because at the time it was a field considered extremely difficult and had the potential

to showcase the real applications of imitating cognitive agents.

In the following Chapter the theoretical basis and the actual design of the

Icarus agent and how each of the models, algorithms and technologies mentioned in

this Chapter are being used, are described in detail.

55

Chapter 3

Theory and Agent Design

In this Chapter, I present the theoretical foundations upon which the Icarus engine

was designed, and how each decision relates to either PBE, NLU, CA or human

developmental psychology and imitation. Furthermore, I describe in detail every

mechanism at its formulaic level and then refer to previous literature. Finally, I

show how each piece of the puzzle fits together, and what algorithms enable those

pieces to function in tandem. The Figure 3.1 shows the overall agent design in a

process-flow, its components and processes, and how they are pieced together to

enable the cognitive functionality.

Long-Term Short-Term

R

rewards

Dec

extracts

approximates

Statistics

Semantic
graphs

knowledge
graphs

shallow
networks

deep
networks

Prob

Enc

Miner

Vector Space
Model

D.P.
Episodic
memory

WordNet

Heur

Input

output

Learn Infer

uses

provides

creates

feeds

approximates

feeds approximates

classify

populates

process

produces

controls

trains
populates

updates

Figure 3.1: Icarus Engine Blueprint.

56

The left side of the figure demonstrates the long-term modules and processes

whereas the right side of the figure contains the short-term modules and processes.

Most of the modules, memory and processes deal with long term functionality, and

only the entities operating on the input and output are residing in the short term

partition of the agent. The short-term entities deal with episodic memory and

the algorithms associated with it: the decomposition (”Dec”), inference (”Infer”),

rewarding (”R”) and decision processes (”D.P”).

The learning process is shown as (”Learn”) in Figure 3.1 and relies on episodic

memory from which graphs are obtained; it uses the Q-learning update rule (see

equation 2.26) and data mines them (”Miner”) in order to extract samples. The

mining process also encodes samples for the deep and shallow networks which are

then used to classify actions. From the samples extracted the Statistics memory is

updated, which in turn uses probabilities (”Prob”) which are then given as input to

neural networks. The mining process also populates the VSM with input patterns in

order to enable approximation via attribute frequency. The agent also uses WordNet

from which it heuristically (”Heur”) extracts semantic graphs, those graphs are

encoded (”Enc”) for the neural networks, or used directly by the decision process

(”D.P”). Last but not least, the neural networks are used to classify or predict

actions for the (”D.P”).

The core of the Icarus engine uses reinforcement learning which relies on

MDP and other sub-processes; each one analysed in the Sections hereafter. The

overall trend is to move knowledge acquired from information using qualia, e.g., from

short-term to long-term memory, and then re-use that knowledge as information,

in order to enable the short-term processes perform better and more accurately.

3.1 MDP as a Template for Learning

As already mentioned in Chapter 2, an MDP (a Markov decision process) is a

chain of states linked together by actions. I use this fundamental structure as the

backbone of the Icarus engine; the qualia (subjective experience) of the agent are

stored using MDP. The temporal-sequential process used by Icarus serves as the

short-term memory experiencing a decoded paradigm. It is implemented as an

episode using Q-learning [Sutton and Barto, 1998, 148]. Decoding, learning and

experience indexing are implemented using a MDP; the reasons being numerous:

- Development in human children is partially based on behaviourism and rein-

forcement [Skinner, 2014], adding the bonus of artificial biomimicking.

57

- An MDP episode allows both internal as well as external rewarding; in turn

this enables the agent to both self-control reinforcement via observation or

accept 3rd party rewarding.

- Qualia [Haikonen, 2009] the subjective experience, maps observations, mean-

ing, knowledge via a Markovian state. It functions exactly as Haikonen de-

scribed it by encapsulating perception through the agent’s point of view.

- Meaning, representation, relation to information are also mapped to a state

[Haikonen, 2007], thus enabling perception and recognition in a temporal-

dynamic manner.

- Every criteria as described by Bandura [Bandura, 1986] is satisfied (discussed

in Section 2.2.2). The agent through perception and imitation produces a

model via the MDP, the process retains the symbolic concept, the internal

models may provide responses, and reinforcement serves as the motivation to

re-use models.

- PBE has already established the use of MDP even partially observable as a

process which can learn from the demonstrator [McDaniel, 2001]. We expand

on that notion and showcase that partial observability and hidden states can

be infered accurately.

- Enactive representation becomes possible [Bruner, 2009] via both passive ob-

servation and external feedback.

- Google has demonstrated [Mnih et al., 2015] through deep RL/DQN that

human-level performance is possible when combining RL with Deep Learning.

Albeit this was not my original motivation, it supports the adoption of RL as

the template mechanism.

3.2 Paradigm Decomposition and Training

The basic functionality of the high-level imitation mechanism is shown in Figures

3.2 and 3.3. In the first one the agent is acquiring or observing the example, and

in the second the agent is recreating the example. This process forms the qualia

as it is a subjective experience, constraint by the agent’s long-term knowledge and

perceptive abilities.

The observation-recreation via paradigm forms the training phase; a form of

learning using inferred episodes from the observed example. This must be noted:

58

cat matonobserves

Figure 3.2: Agent Observes Example

recreates

Figure 3.3: Agent Recreates Example

the actual example provided by the demonstrator may differ from the one the agent

internally perceives, that is the key factor making the experience subjective.

As per the PEB and NLU literature, the example must be analysed, de-

composed and factored into the constituent primitives of the domain (in this case,

words or terms and their relations). The process of decomposition via inference has

been explored in both PBE and NLU and is a logic-heuristic sub-process; it may be

taught or it may be genetically enabled such as primitive decomposition in humans

[Pirri, 2005; Biederman and Gerhardstein, 1993]. For my intents and purposes I

did not invest in evolutionary computation to evolve a program that performs de-

composition, so that it would have been evolved similar to the imitation mechanism

in nature. Because decomposition may not rely solely on behavioural development

we opted to heuristically program it; arguably a more elaborate approach would

have been to learn to tokenize and decompose in an unsupervised manner [Wrenn

et al., 2007], however such an approach would induce and propagate additional er-

rors from tokenization to part-of-speech tagging and parsing. In Icarus engine, the

decomposition process is shown in Figure 3.4 for the example phrase ”cat on mat”.

The current decomposition in Icarus is a white-space tokenization of the

sentence [Jurafsky and Martin, 2000] and a decomposition of the observed graph G

into its primitive constituents: nodes and edges. The observed graph is analysed

into three sets: concepts C, relations R and edges E.

Gt =


Ct =

{
Cat,Mat

}
Rt =

{
On
}

Et =
{

[Cat,On], [On,Mat]
} . (3.1)

We use the subscript/index t which is a time-step; because a state st is

59

cat maton

Figure 3.4: Agent Decomposes Example

described by a graph G, each graph instance within the episode is also indexed by t.

The graph Gt is a bipartite directed graph [Sowa, 1999] G = (N,E) where N are the

nodes and E are the edges. I denote the graph as Gt = (Ct, Rt, Et) and therefore

by extension the state st = (Ct, Rt, Et).

The order of the node pairs forming an edge e defines the direction, e.g.,

e = [Cat,On] is different from edge e = [On,Cat]. The order of the edges in

the Edge set is equally important; in this example the edge set order must be

E =
{

[Cat,On], [On,Mat]
}

and not E =
{

[On,Mat], [Cat,On]
}

. In comparison,

the node sets are unordered sets and I do not attribute importance to their order of

appearance, e.g., C =
{
Cat,Mat

}
and C =

{
Mat,Cat

}
are the same.

There are other benefits in using a Markovian state and the MDP as the

foundations of a cognitive agent. The most important aspect is the fact that I may

combine Symbolism such as the KR with ML seamlessly in a temporal manner. The

manner in which we combine a symbolic concept, in this case a KR and in specific

a conceptual graph (CG) is best demonstrated in Figure 3.5 where the phrase ”cat

on mat” is being parsed.

The process of populating each subsequent Markovian state st is done via

shift-reduce [Zhu et al., 2013]. A list of tokenised words from the input sentence is

reduced by the agent who is deciding if each word (hereinafter referred to as a term)

is a concept or relation as per the conceptual graph literature [Sowa, 1999], thereby

populating a graph with nodes.

Similarly, the process of creating edges (or arcs) between the graph nodes is

60

cat cat on cat on mat

t1 t2 t3

s1 s2 s3

a1 a2

Figure 3.5: Shift-Reduce Graph Polulation

cat cat on cat on matmaton mat

s3 s4 s5

t3 t4 t5

a3 a4

Figure 3.6: Shift-Reduce Edge Creation

a graph manipulation, whereby the agent decides which nodes in the graph should

connect with each-other, shown in Figure 3.6. Both Figures 3.5 and 3.6 form an

episode, and the terminal (last) state of that episode contains the product of that

process. All previous graphs in various time-steps t are ignored as short-term mem-

ory manipulations and although stored they only serve the purpose of subjective

experience. Long-term memory uses the terminal state’s graph, the final graph

which is stored in the knowledge base.

Therefore the MDP encapsulates a complex shift-reduce episode where the

actions at manipulate the state’s st graph Gt. In the event where the agent is

being trained, the actions at are inferred by having reduced the graph into its prim-

itive components; each component constitutes an action. Only during testing does

the agent evaluate and re-use its experience and knowledge where actions must be

decided by approximation and classification rather than inference. The following

differences are what make this agent an imitating entity:

61

- The agent learns by observing examples provided by human users. Thereby,

the agent requires decomposition of the paradigms, into a qualia MDP episode.

- The agent may explore graph creation trees similar to a beam search. In this

scenario, the agent can explore diverging states and actions and end-up at a

variable amount of terminal states.

- The agent rewards itself after training by observing if the re-created graph of

an episode is the same as the example given. Thus the imitation is in fact

observation and the agent must infer hidden or partially observable states.

- The agent, after being rewarded can follow existing policies, or approximate

them. Reuse of experience and knowledge enables the agent to satisfy the

cognitive agent criteria.

3.3 Rewarding and Evaluation

After the agent has re-created an MDP episode by decomposing an example, it

examines if the output graph is identical or isomorphic to the one that was provided

as the example. If those two graphs are indeed identical or isomorphic then the

agent proceeds to self-reward itself positively: it updates the generated episode

by reinforcing it with a reward rt = r(st, at) = 1. It then proceeds to update

the episode’s policies using the Q-Learning update equation (2.26). Should the

reproduced output graph not match the input example graph, then the implication

would be that the decomposition process failed.

Contrary to the training procedure, evaluation tests the agent by providing a

sentence input only and expecting a graph output which is isomorphic to the correct

graph1. The methodological approach assigns a correct graph to each sentence,

yet during evaluation the graph is not provided to the agent, until the agent has

produced an output graph.

This evaluation process is a non-binary classification task: the agent is given

an input pattern (sentence) pi and produces an output graph Gŷi representing input

pi, with i indexing the pattern and respective graph. The assigned and assumed

correct graph Gyi is compared to the produced Gŷi and thus it is possible to quantify

similarity between conceptual graphs.

The difference of the two graphs ∆Gi = Gyi −G
ŷ
i is used as a precision score;

the agent however infers its own performance in Boolean terms and rewards itself

1Correct as ascertained and described by the trainer or demonstrator.

62

with a 1 or −1 depending on the outcome, as shown in the pseudo-code in Algorithm

1.

Algorithm 1: Self-Rewarding Behaviour.

Input: Gŷi , G
y
i

Output: Boolean

1 ∆Gi ← Gyi −G
ŷ
i ;

2 if ∆Gi = 0 then

3 return True ;

4 else if ∆Gi 6= 0 then

5 return False ;

3.4 Episode Iteration and Inference

Creating an episode and then iterating it requires the use of deterministically infering

the next state st+1 when taking an action at for state st. Furthermore in this scenario

the agent is being evaluated ; should it have experienced this episode before it would

already have been taught which policies to follow. Because the episode is new the

agent has to find similar state(s) and action(s) and approximate which is the best;

we refer to this function as the decision-making process. If the agent decides that

no further actions are possible or should not be carried out, then no new states can

be created, and thus the episode has ended.

Algorithm 2: Agent Episode Iteration.

Input: pi
Output: Gŷt (pi)

1 st=0 ← Root(pi) ;

2 while ∃(at)← Decide
(
max
a
Q(st, a)

)
do

3 st+1 ← Infer(st, at) ;
4 st ← st+1 ;
5 t← t+ 1 ;

6 return Gt ;

The episode iteration and graph generation process is shown in pseudo-code

in Algorithm 2. In this case the agent keeps generating states after deciding on an

action at for the current state st. It does not diverge into a beam search[Zhang and

Clark, 2008] or following multiple graph exploration, but instead tries to maximise

63

the best possible policy max
a
Q(st, a). Whereas the result of the agent’s action at

leading to st+1 is deterministic, the decision to take an action may not be; that is one

of the advantages of combining RL with other models: the manner in which decisions

are made may be heuristic, semantic, statistics-based, machine learning-based, etc.

3.5 Decision Making and Policy Approximation

The part of the agent that performs action-selection is a process of the agent which

can be implemented using different algorithms. Its sole purpose is to estimate or

approximate the best policy max
a
Q(st, a) when the episode is new and has not been

experienced before.

In cognitive agents and autonomous systems alike there is a need to re-use

experience and background knowledge, whether it is qualia or information acquired

through trial-and-error. Basing future action-selection on previous experience is

crucial to autonomous agents [Lawniczak and Di Stefano, 2010; Haikonen, 2009,

2007].

For our intents and purposes we assert that approximation is used during

exploration; during that phase the agent is processing unknown or partially unknown

input and re-use of previous knowledge and experience is highly desirable. Exploring

the entire state and action space is avoidable; previous Q-policies of similar episodes

can indicate future actions, ergo the agent may infer those actions using a variety

of models and algorithms.

Similar to Google’s DQN and their combination of RL and CNN, the Icarus

engine uses a sub-routine approach in addition to reinforcement learning. The core

notion behind the decision-making sub-routine is as follows:

- A new episode is generated (if not previously experienced).

- States are created (as described in Section 3.1 using shift-reduce).

- Actions are approximated (if no known policies exist).

Therefore the action creation process is differentiated from the state creation

MDP. Whereas the states st are manipulated on a symbolic level, actions are ma-

nipulated using Heuristics, probabilities, Statistics and ML. This scheme is depicted

in Figure 3.7.

The relationships described in Figure 3.7 are:

- State st is given as input to the decision making mechanism.

64

Decision
Maker

S1, S2, S3, …, St

a1, a2, a3, …, at

Long-Term
Memory

input

output

uses

Episode

Figure 3.7: Agent as a Decision Maker.

- Decision making relies/uses part of the long-term memory.

- Actions are the output.

- Actions are indexed and associated with the respective state st in the episode.

The long term memory (also shown in Figure 3.7) consists of statistical in-

formation and probabilities obtained and inferred from observations based on the

training samples. It also uses Semantic graphs to establish relations between terms

and nodes, as well as a VSM to find similarity between episode sentences. Last but

not least, the long term memory is made up of multiple deep networks used to control

the decision-making process. The agent is able to analyse the actions taken during

training and associate or index frequency of node conversions and edge creations.

Differentiating between short-term and long-term memory is described in

both the Icarus architecture [Langley et al., 2009] as well by Haikonen [Haikonen,

2003]. Arguably modern computers are not constrained by memory as it has become

cheap and abundant, therefore that differentiation is mostly done for optimisation

reasons (e.g., faster lookup and indexing). For our intents and purposes, short-

term is considered the MDP and the related episodes learnt or created, whereas

Statistics, probabilities, Semantics, neural networks and such are all part of the

long-term memory, as shown in Figure 3.8.

In the Icarus blueprint (Figure 3.1) a greater amount of detail was shown,

whereas in Figure 3.8 the components related to the decision making mechanism

are the only ones shown. The components involved within the decision making pro-

cesses, are the Semantic, Statistics, Vector Space and Neural (associative) memory.

Each one serves a distinct purpose, and is accompanied by a group of algorithms

responsible for populating, updating, training, manipulating and propagating in-

formation and meta-data from the long-term towards the short-term entities and

processes.

65

Statistics

Semantics

Vector Space

Neural
Networks

D.P.
Episodic
memory

Long-Term Short-Term

Input

Output

Figure 3.8: Decision Making Process.

Choosing to approximate the best candidate state at each moment in time t,

transforms the decision making process into a predictor, a classifier or an approx-

imator. Actions are generated by the agent without any external input; the agent

controls what it learns, we only parametrise the learning mechanisms, this has as a

result a faster parsing time and an autonomous agent.

Algorithm 3: Non-Greedy Behaviour.

Input: st
Output: at

1 Q(st, at)← Find
(
max
a
Q(st, a)

)
;

2 if @
(
Q(st, at)

)
then

3 Q(st, at) ∼ f
(
max
a
Q(st, a)

)
;

4 return at ;

5 else if ∃
(
Q(st, at)

)
then

6 if Q(st, at) > 0 then
7 return at ;
8 else if Q(st, at) ≤ 0 then

9 Q(st, at) ∼ f
(
max
a
Q(st, a)

)
;

10 return at ;

The pseudo-code in Algorithm 3 demonstrates how the agent iterates and

performs approximation; the term non-greedy implies that the agent will not greedily

66

decide to ignore policies, but as shown in Algorithm 3 (line #2 to line #4) if there

doesn’t exist a policy it will opt to use an approximation function f . That function

addresses the issue of predicting or approximating the most suitable action at based

on the agent’s previous experience; the state st or policies Q are unknown. Whilst

the exact nature of the approximation function f is discussed in later Sections, it is

important to note that the agent may also use the same approach if it knows that

the policy values are negative (shown in Algorithm 3, lines #8 and #9).

3.6 Statistical and Probabilistic Approximation

A large portion of the agent’s memory indexes observations made on meta-data

mined from its knowledge base. Those observations are based on both the term

label as well as the term’s POS tag (e.g., Semantic and Syntactic observations).

The probabilities are acquired by observing how frequently an action is taken and if

an action is possible or not. We define two probabilities: p(e) for edges and p(n) for

nodes. In both cases the same notion is implied, for p(n) the probability of a term

being a concept or relation node, and for p(e) the probability of two nodes (concept

to relation, or vice versa) being connected by an edge. The p(n) is binomial; either a

term is a concept or a relation. However the probability p(e) relies on observations of

frequency and presence: (a) the query of whether two nodes have ever been observed

to be connected by an edge, and (b) how frequently is a specific edge observed. The

realisation of p(e) is shown in (3.2).

p(e) =
E(nink)∑

nink
. (3.2)

In formula (3.2) nink defines an edge from node i to node k whilst taking

into account the node types (concept/relation). Therefore
∑
nink is the sum of all

the observations when such an edge could have been created, e.g., the conditions to

create the edge were met: both nodes ni and nk were present in the graph. On the

contrary E(nink) is the frequency of observations when this edge was indeed created

when the conditions were met. The implication of the aforementioned notion is that

nodes may exist but edges do not always connect them.

Those probabilities further observe peculiar aspects of the nodes: (a) their

POS tag, (b) the term, label or word, and (c) the distance between the nodes inside

the sentence. The probability of a pair of nodes having an edge based on the term

is a Semantic approach; it implies that the probability is calculated based on the

meaning of the actual nodes, hence we define it as p(eterm) = E(titk), where term

67

is a word, label, symbol or sign. Similarly, when the probability is based on a POS

tag it is in fact a Syntactic approach; ergo the probability is based on syntax alone

hence p(etag) = E(titk).

The last type of probability used depends on distance: we obtain the metric

distance between two terms inside the input sentence (pi) and using their respective

position the ∆ measures how far apart they are. Calculating the probability of an

edge based on the distance of the terms ti and tk respectively labelling the nodes ni

and nk, has a realisation similar to equation (3.2) as shown in equation (3.3) with

∆titk = tk − ti defining the distance between the terms.

p(e) =
E
(

∆titk

)
∑

∆titk

. (3.3)

Therefore the decision making on action creation can use a probabilistic ap-

proach; a large look-up table is computed after the agent is trained. That probability

look-up table enables a frequency/Statistic approximation based on prior observa-

tions; the observations being Semantic, Syntactic and distance metrics.

3.7 Semantic and Heuristic Approximation

As discussed in Chapter 2 and in Sections 2.7.2 - 2.7.3, Semantics have been used for

approximation: (a) finding similar episodes based on a VSM, and (b) finding similar

terms using WordNet [Fellbaum, 1998]. Indexing similar episodes uses the VSM as

described by the matrix in formula (2.31) and formulae (2.32) and (2.33). The

purpose of that VSM is to find highly similar episodes which should be considered

for examination, thereby cutting down search time.

The consideration process relies on Semantic relations (discussed in Section

2.7.3) and iterates in a breadth-first search [Lee, 1961] each Semantic tree-graph

layer accumulating the distance between graph layers. The iteration process aims

to discover that distance within the Semantic graph or graphs if intersecting them,

thus allowing the agent to quantify Semantic similarity between two terms ti and

tk.

The likelihood that a WordNet query will contain both terms is anecdotal and

empirically small, hence a solution is to use the union of two WordNet graphs, each

one produced by querying the respective terms/words. In Figure 3.9 two graphs are

queried, one for ti and one for tk.

Both terms have a common super-class node tr and thus their union creates a

new Semantic graph demonstrating how those two tree graphs are related. Iterating

68

t1, t2, t3, …, tn

t1, t2, t3, …, tn

t1, t2, t3, …, tn

t1, t2, t3, …, tn

tr

L2

L3

L4

t1, t2, t3, …, tn

t1, t2, t3, …, tn

t1, t2, t3, …, tn

t1, t2, t3, …, tn

L3

L4

L5

t1, t2, t3, …, tn L1

L2L1

t1, t2, t3, …, tnL2

G2

G1

Figure 3.9: Semantic Graph Union.

upwards from graph G1 and then downwards towards graph G2 in what is shown as

the dotted arrows, is the Semantic distance metric vtitk shown in (3.4).

vtitk = v〈L1, L2, · · · , Lk〉 =
∑

~LiLk. (3.4)

From equation (3.4) the vector/path vtitk = v〈 ~ti, tk〉 originating from term

ti which is inside layer Li and is directed towards Lk which contains destination

term tk; therefore the size of vector/path vtitk defines how far apart those two

terms are inside the graph union. The iteration search accumulates layers traversed

(denoted with L) with O(|N |+ |E|) complexity [Lee, 1961]. The terms are searched

inside one of the hypernym layers since that is the way in which WordNet organises

the Semantic graphs; the principle upon which this Heuristic search is based is

information relation and Semantic relation [Agirre et al., 2009; Lin, 1998; Jiang

and Conrath, 1997; Rada et al., 1989].

Because WordNet returns senses ordered from most frequent to least frequent

Semantic graphs, the use of the sense index allocates a probabilistic importance as

to which Semantic relation path is most likely to be valid, as shown in (3.5). The

actual sense is a Semantic graph out of an ordered set of Semantic graphs, therefore

si(vtitk) is the sense graph indexed by the set subscript i.

69

v̂titk =
si(vtitk)−min

max(si(vtitk))−min
· vtitk . (3.5)

The scaling uses the index of the first Semantic graph as a bias or weight

thereby resulting in a normalised and scaled measure which takes into account both

sense order and graph union vector/path distance. The minimum values are indexed

by setting max the size of the sense set, and min as the last sense graph, thereby

biasing towards the first graphs which appear more frequently as Semantic graphs

[Fellbaum, 1998].

The above approach enables the use of Semantic relations in a taxonomic

method via Heuristics, so that terms in input sentence/patterns may be swapped.

The proposition as in most Semantic/Heuristic algorithms was that by discovering

similar episodes using a VSM and Semantic relations, the agent would be able to

infer similar Q(st, at) policies, based on substitution of highly similar terms. These

algorithms are described in detail in Chapter 5, as is their accuracy and performance.

3.8 Neural Approximation and Distributed Encoding

Using raw values from probabilities or Semantic similarity requires some kind of

filtering; simply put the agent does not a-priori know which values approximate an

action. In this scenario the probability values p(e) for edges (see 3.2) and distance

(see 3.3) are given as input to a shallow neural network, a network with one hidden

layer (Figure 2.6) two or three input nodes and two output nodes. The input nodes

use p(eterm) based on term probability, p(epos) based on POS tag and the normalised

and scaled distance (3.6). The actual distance is normalised using min-max normali-

sation, as shown in (3.6). The max(∆) is the maximum possible distance dictated by

the size of the sentence/pattern pi, whereas min is the minimum distance between

two terms (always set to 1 since term self-distance is zero).

∆̂titk =

(
k − i

)
−min

max(∆)−min
. (3.6)

The miner process iterates the knowledge base e.g., the correct conceptual

graphs, and examines valid edges based on the aforementioned observations; thus it

generates samples which associate a probability to an edge action p(e) ↔ at to an

network output yi. The network input is thus a vector I of those values for sample

i, as shown in (3.7).

Ii =
[
p(eterm), p(etag), ∆̂titk

]
. (3.7)

70

Using a shallow network has certain advantages: it is a simpler, smaller

network, fast to train. For the agent’s intents and purposes it is trained once and

evaluated multiple times; yet in realistic scenarios the user decides on which network

to use. An automated procedure can train and cross-validate the shallow network

multiple times, before selecting on which one to use. The shallow networks used are

two: (a) one which uses only p(etag) and ∆̂titk because the terms or one of the edge

terms are unknown e.g., never encountered before, and (b) one which uses all three

values as shown in (3.7). This form of encoding is distributed and non-categorical

[Picton, 1994]; the input values do not represent the presence or absence of a feature,

but distribute the probability value of an edge based on posterior observations.

The agent internally trains and uses those networks for the decision making

process. During evaluation all candidate edges for a state st are examined and the

networks filter each possible one at a time, resulting in a list of possible actions.

Algorithm 4: Neural-based Action Selection.

Input: st
Output: at
Data: candidates = []

1 for ni ∈ concepts(st) do
2 for nk ∈ relations(st) do
3 candidates[] = E(nink);

4 for ni ∈ relations(st) do
5 for nk ∈ concepts(st) do
6 candidates[] = E(nink);

7 for Ei(nink) ∈ candidates do
8 Ei = nink;
9 p(etermi) = P (nink);

10 p(etagi) = P (nink);

11 ∆̂titk = normalise(i− k);

12 Ii =
[
p(eterm), p(etag), ∆̂titk

]
;

13 ŷi = propagate(Ii);
14 if ŷi[0] ≥ ŷi[1] then
15 return at ↔ Ei(nink);

What the pseudo-code in Algorithm 4 showcases is how the edge selection

process (part of the D.P.) takes place; first all possible edge combinations are created

(called candidates) and then the neural networks act as classifiers deciding on which

71

actions to filter and which not. The result is a MDP using neural networks for

the action selection; networks which are trained by the agent after it has acquired

the examples from the user. The only actual external involvement is the hyper-

paramaterisation of the networks. Therefore the neural network maps meta-data

acquired after learning and from that mapping it learns to classify actions.

The reason why the shallow neural networks are used as filters is their abil-

ity to approximate and classify the given input probabilities as suitable and non-

suitable. This approach is related to the meta-data obtained by the miner: it is

non-linearly separable [Elizondo, 2006], and thus a multilayer neural network is an

optimal model for indirectly detecting which input values to disregard and which

ones to use.

3.9 Deep Neural Approximation and Sparse Encoding

Contrary to the shallow networks described in Section 2.4.1 and Section 3.8, the

agent was also implemented using state of the art deep feed-forward neural networks.

The background and characteristics of deep learning were discussed in Section 2.4.3,

and hereinafter their use within the Icarus agent is analysed. Deep networks have

been researched extensively in the past 6 years, and an overwhelming amount of

publications suggest that they can be used for NLP, NLU and similar processes (see

Section 2.4.3 for a thorough analysis and citations).

The deep networks in Icarus form a cascade, meaning that networks propa-

gate their output to other networks. Whilst the outer networks perform an encoding

and classification function, the succeeding inner networks learn to classify likely-hood

output from previous networks.

The deep networks are capable of processing probabilities in a distributed-

encoding scheme similar to how the shallow networks function (see Section 3.8)

but have also been implemented by using a sparse encoding scheme, where a feature

vector is extracted by each conceptual graph. That approach has become a standard

in NLP and NLU, and as showcased by Google word2vec [Mikolov et al., 2013a] as

well as the research in the human neurobiology [Olshausen and Field, 1997], human

sensory processing [Olshausen and Field, 2004] and the human brain in general [Rolls

and Treves, 1990], it is generally admitted that sparsity offers advantages, such as

better pattern recognition and larger storage capacity. The field of deep learning was

inspired from the visual cortex [Cadieu et al., 2014; Lee et al., 2008] where hidden

layers are often more than 10 and some times up to 20, with millions of nodes and

billions of weights. Linearly and sparsely encoded scheme has demonstrated that

72

even shallow networks can perform a lot better [Montalto et al., 2015] instead of

using distributed encoding.

The agent uses sparse binary feature vectors which are obtained by indexing

all nodes (concepts and relations) into separate lexicons; those networks deal with

classification of those node combinations and thus a network is used to classify

concept to relation edges, and another to classify relation to concept edges, and yet

another to classify POS tags to POS tags. The feature vector V is therefore as big

as the lexicon is: Vt indexes the Boolean representation of a term t and is σ long

where σ defines the magnitude/size of the vector. In order to encode both concepts

and relations, σ = ‖C‖ + ‖R‖ where ‖C‖ is the cardinality of the set of concept

nodes and respectively ‖R‖ is the cardinality of the set of relation nodes. Because

order of the terms defines the edge (see formula 3.1 and Section 3.2), inherently

the order of the sets also defines the edge classifier; when Vt encodes using the sets

‖C‖ + ‖R‖ this is a concept to relation edge, and vice versa when using the sets

‖R‖+‖C‖ it is a relation to concept edge. A POS tag to POS tag classifier does not

account for the Semantic meaning of the term t but only uses the tag set, therefore

only one deep network is used and the size of the set of the PENN tags is multiplied

by two. The cascade of deep networks is shown in Figure 3.10.

Deep Net
Concept/Relation

Deep Net
Relation/Concept

Deep Net
Tag/Tag

Deep Net
Edge Classifier

Deep Net
Edge Classifier

Δtitk

at

st

Figure 3.10: Deep Learning Cascade.

The advantages of using a cascade rather than a single network are the

following:

73

- Any of the classifiers can be re-trained when the lexicon increases, without

requiring to re-train the rest of the networks

- Each classifier can be further optimised or replaced, without significantly af-

fecting the rest of them

- Outer classifiers learn to associate sparse encoded feature vectors with the

likely-hood of an action, respective to a specific edge order (concept to relation,

or relation to concept) ignoring distance and POS tags

- Inner classifiers are unaware of edge order or lexicon changes; instead they

learn to classify network output as appropriate actions

- Inner classifiers process the normalised distance of nodes/terms irrespective of

the lexicon size or edge order

Detailed analysis of how deep networks were implemented and how they

performed, are discussed in Chapter 5.

3.10 Semantic Approximation and Sparse Encoding

One of the large problems in neural networks dealing with NLP is the fact that

they need to be re-trained whenever the lexicon increases or changes. Accounting

for unknown terms (words, tokens, symbols, signs, etc) is not a straightforward

practice: either the network will not process unknown or new input, or it has to

be re-trained in order to expand the input vector in order to accomondate for the

newly indexed term or terms. A solution to this issue has been created; similar to

how Heuristic algorithms work using WordNet and the theoretical basis described

in Section 3.7, a Semantic distance metric kernel was developed in order to replace

sparsely encoded terms within a feature vector.

Ordinarily and as described in Sections 2.7.2, 3.9 and shown in formulae

(2.29) and (2.30), a feature vector is a vector of binary values. Reusing the notion

of similarity and information [Agirre et al., 2009; Lin, 1998; Jiang and Conrath,

1997; Rada et al., 1989] via the formula (3.5) a similarity metric is obtained for an

unknown to the network lexicon term ti, and a known to WordNet term tk. In order

to squash the value of v̂titk the largest paths from both Semantic graphs Gi and

Gk are required. Using the maximum values max(Gi) and max(Gk) enables the

squashing of the normalised and scaled value to be obtained, as shown in (3.8).

ṽtitk =
v̂titk −min

(max(Gi) +max(Gk))−min
. (3.8)

74

Whilst the scaled and normalised similarity metric v̂titk accounts for sense

bias, we transform the feature vector from a binary vector to a real-valued vector,

with a value of 1 indicating absolute similarity between terms, and a zero value

indicating no similarity at all, therefore the similarity value is min-max normalised

and scaled in a range of zero to one so that 0 ≥ vtitk ≥ 1 and vtitk ∈ R. In order to

convert the range of value so that it matches the directionality of non-similarity at

0, and full similarity at 1, we invert the squashed value from formula (3.8) as shown

in (3.9).

vtitk = 1− ṽtitk
= {vtitk ∈ R‖0 ≥ vtitk ≥ 1}.

(3.9)

Thus the term swapping can be performed online after having trained a

network; instead of providing as input to the network the binary feature vector,

a Heuristic algorithm finds the most similar term tk to the unknown term ti and

categorically represents it using the vtitk in the deep network classifiers previously

shown in Figure 3.10. Therefore this approach uses WordNet to alleviate the problem

of dealing with unknown words without requiring the agent to train the deep network

again.

3.11 Conceptual Graph Output

Throughout this thesis CG are used as the medium of KR because they are the most

visually appealing; those graphs when demonstrated as a paradigm to the agent, are

generated on a web-UI from a human user (a knowledge engineer) and as such one

of the critical requirements was the use of a structure which was simple and easy to

manipulate. Furthermore, CG are simplistic and minimal models without an excess

of meta-data, such as RDF or OWL. Other advantages are the simple nature of

representing relations through nodes rather than edges, their expressiveness which

is similar to natural language and their accuracy and highly structural information

[Rasli et al., 2014; Zhong et al., 2011]. Researchers state that conceptual graphs

are intuitive and semantically sound means of knowledge representation [Croitoru

et al., 2007]. Last but not least, conceptual graphs have been demonstrated to offer a

computationally tractable and sound way of representing text and natural language

[Montes-y Gómez et al., 2002].

75

3.12 Metalearning and Knowledge Compression

The Icarus agent was designed to do more than parsing and understanding of lan-

guage onto KR. During the development my cooperation with Matthew Thorpe from

the Warwick Mathematics Institute saw the development of a theoretical extension

to Icarus which would allow it to abstract conceptual graphs, compress knowledge,

offer summary of text and further enhance its performance. Unfortunately due to

time constraints this module was never implemented and experimented with, al-

though the blueprints were published [Gkiokas et al., 2014].

3.12.1 Metalearning on Learnt Knowledge

The hypothesis of metalearning in Icarus is that an agent after having acquired

knowledge, can further manipulate that knowledge, alter it by compression, gener-

alisation or abstraction (thus generating rules or extracting patterns) which may be

more useful than the specialisations, e.g., the specific knowledge represented by a

graph. This notion implies that an agent doesn’t need to store all knowledge spe-

cialisations and instances, instead it can opt to group them by similarity, thereby

saving space, decreasing time complexity (access, search and insertion) when ac-

cessing knowledge, but most important to optimise its own knowledge acquisition

behaviour.

3.12.2 Grouping by Similarity

The metalearning process functions using VSM (Section 2.7.2) and by clustering

the VSM matrix (shown in formula 2.31). It iterates every row (a pattern pi) and

comparing it to all the other matrix patterns using formula (2.32), thereby producing

a new symmetric matrix Bm,n which defines how similar is each pattern to all other

patterns. All values in matrix B are min-max normalised in order to ensure the

same scaled range of similarity between zero and one. The matrix Bm,n is square,

e.g. m = n and is shown in (3.10), and the diagonal is set to one since each pattern

is identical to itself.

Bm,n =



(p1 ∼ p1) (p1 ∼ p2) (p1 ∼ p3) . . . (p1 ∼ pm)

(p2 ∼ p1) (p2 ∼ p2) (p2 ∼ p3) . . . (p2 ∼ pm)

(p3 ∼ p1) (p3 ∼ p2) (p3 ∼ p3) . . . (p3 ∼ pm)
...

...
...

. . .
...

(pn ∼ p1) (pn ∼ p2) (pn ∼ p3) . . . (pn ∼ pm)


. (3.10)

76

We process matrix Bm,n using K-Means clustering [Hartigan and Wong,

1979], so that we minimise the distance to the cluster centres µi as shown in (3.11)

on derived dataset {xj}nj=1 where xi are the similarity values of pattern pn to all

other patterns.

n∑
j=1

min
i=1,...,K

‖xj − µi‖2 . (3.11)

The similarity group of patterns is therefore defined by associating each xj

with the centroid closest to it, i.e., ki = {xj : ‖xj − µi‖ ≤ ‖xj − µm‖ for all m =

1, 2, . . . ,K}. Estimating the number of clusters uses the number of dominant eigen-

values of the matrix B where B(i, j) = ‖xi−xj‖2. The result is a number of clusters

of patterns pi which group by attribute similarity and frequency, due to the fact that

the original matrix Am,n was a VSM.

3.12.3 Generalising Cluster Graphs

From the aforementioned procedure the input patterns can be categorised into

groups which are then generalised. Generalisation uses Semantic relational simi-

larity, as explained in Section 2.7.3, and using a variation of the formula (3.4). In

this instance the query is not from one specialisation to another (e.g., from one term

ti to tk) but from two different terms ti and tk to their common super-classes. The

algorithm generates new graphs which are based on two factors:

1. graphs must be isomorphic (e.g., have the same directed edges)

2. graphs must contain similar nodes

The premise is that by replacing the specialisation terms ti and tk labelling

nodes ni and nk in two structurally identical (same edges) graphs, then the newly

produced graph represents a belief, e.g., an inferred knowledge graph which has been

produced by abstracting node labels of very similar graphs.

The algorithm may produce multiple belief graphs but their population

should be smaller than the original number of graphs contained within the clus-

ter. Adjusting the distance metric or the number of clusters can result into smaller

groups within clusters which can be more similar, thus resulting in more homoge-

neous structural similarity (isomorphism) with more abstract beliefs.

77

3.12.4 Optimisation by Belief Evaluation

The purpose of the clustering and generalising procedure described in Sections 3.12.2

and 3.12.3 was that the Icarus engine would end up with graphs which would be

supported by multiple knowledge instances acquired either by training or during

evaluation. The amount of graph specialisations which supported a new graph belief,

would strengthen the notion that this belief, an inferred graph pattern extracted via

generalisation, would allow Icarus to acquire new knowledge more accurately. This

assertion is based upon the hypothesis that if multiple graph specialisations can be

isomorphically projected to a single graph belief, then that recurring pattern should

be preferable over individual graphs which have a structure that is not encountered

often. Due to time constraints and because the scope of the research work could

widen a lot whilst introducing additional risk, this algorithm was not implemented.

3.13 Conclusion

Icarus architecture was chosen as it is one of the most well-defined yet generic cog-

nitive architectures. Other CA architectures do exist, however some are theoretical

constructs and the rest are simply too complex for my scope. As with cognitive or

synthetic AI, the publications, research and work carried out is mostly theoretical

and serves as the foundation upon which agents are to be implemented. Taking

into consideration all the above, Icarus is an architecture which offers the long-

term/short-term differentiation, and allows for the juxtaposition of neural-temporal

short term entities and processes and long-term non-temporal entities and processes.

Furthermore, it has been tried and tested in physical agents [Langley et al., 2009;

Langley and Choi, 2006; Langley et al., 2004, 2003] in an event-driven approach,

with a clear segmentation of the memories and modules.

In practice, Icarus serves as a theoretical approach, just as Haikonen’s re-

search (Section 2.5.2) and Bach’s propositions (Section 2.5.1) serve as a theoretical

guideline. What is most important is how it is implemented, the functions it per-

forms, and the purpose the implementation may serve. Icarus engine is a standalone

agent developed in C++ and running as a single process under a Linux environ-

ment. It accepts incoming paradigms (examples) provided by a knowledge engineer,

pre-processes them, parses them, learns from them, and internally organises its

memory, look-up tables, knowledge base and episodic memory. It further supports

query from external agents and processes unknown input producing output graphs.

Thus, it serves the basic functional requirements of imitation (as discussed in Section

2.2.1). Furthermore, and most important, the current Icarus design as described in

78

this Chapter addresses the key components described by Bandura, Haikonen, Bach,

Lawniczaka and Di Stefano, and Langley (Icarus). How each theoretical approach

is addressed is described in the following Sections.

3.13.1 Bandura and Imitation in Humans

Bandura describes four key components [Bandura, 1986] (see Section 2.2.1) listed

below:

- A perceptive process that produces a model

- A Process which retains symbolic conception through experience

- Internal model serving the purpose of providing responses

- Motivation determining if a skill is reused

The Icarus design uses an MDP as a perceptive process (Section 3.1), which

produces a model of the input, a conceptual graph (Section 3.11) [Sowa, 1999].

That MDP process retains the symbolic conception (the conceptual graph) through a

rewarded/reinforced experience (the MDP via Q-Learning [Sutton and Barto, 1998]).

Its internal model serves many purposes, one of which is to provide responses to

input queries such as during evaluation (Section 3.3). Finally, the actual motivation

behind reusing an experience (which has since become a skill) is reinforcement and

rewarding, based on reinforcement learning, which as stated before, is inspired by

the human psychological rewarding processes [Watkins, 1989; Sutton, 1984; Galef Jr,

1988] discussed in this Chapter’s first three Sections.

3.13.2 Haikonen and Cognitive AI

Haikonen has provided multiple criteria for a Cognitive AI (Section 2.5.2) of which

the following are full-filled and addressed by the current design.

- A process which creates qualia (subjective experience)

- Meaning and representation and their relation to information

- Perception and recognition

- Association and associative memory

- Cognition, understanding, memory (short-term and long-term) and models

79

The first and foremost criteria is addressed by both the paradigm decomposi-

tion process (Section 3.2) but also from the MDP approach, evaluation and decision

making processes (Sections 3.1, 3.3 and 3.5). Meaning and representation and their

relativity to information are addressed by the Semantics, Statistics and probabilistic

approaches, whereas the ultimate goal of the agent is to acquire new knowledge and

re-use it. It does so through a (limited but highly accurate) perceptive recognition

cascade of algorithms, which rely on associative memory (Sections 3.8 and 3.9) with

the ultimate goal of cognition and understanding. Memory models are partitioned in

short and long-term as Icarus dictates, and the only criteria set by Haikonen which

is only partially addressed is ”Imagination and planning”. Whereas a rudimentary

form of reasoning is used for decision making and simple inference for paradigm

decomposition, Icarus does not deal with imagination or planning.

3.13.3 Bach and Synthetic Intelligence

Bach and his guidelines (Section 2.5.1) have been the basis upon which the Icarus

implementation was developed. Those guidelines are:

- Create holistic architectures which are functional

- Avoid methodologism

- Aim for the larger picture

- Build systems which are not too narrow or which do not focus only specific

domains (Symbol grounding problem)

- Robotic embodiment is not panacea

- Focus on autonomous systems

- Emergence of intelligent agents won’t take place on its own

The decision to make Icarus an agent (rather than a system or a tool) ad-

dresses the holistic aspect; albeit it may not be a holistic agent design it is functional

and takes into consideration many processes and memory requirements. It avoids

methodologism and aims for the bigger picture since it is an agent which in principle

is built to learn by imitation and is not constrained to a specific domain (in fact orig-

inally it was designed for learning how to understand computer programs). Whereas

it is somewhat bound to the Syntactic nature of NLP (due to the POS tagger) it is

not limited by it; it could in fact be used in other domains such as Mathematics,

80

Physics, Chemistry or any kind of domain which uses written language. It doesn’t

aim for robotic embodiment although it could be used within Robotics, focuses on

autonomy and relies on user-agent interaction as means to augmenting its knowledge

and experience.

3.13.4 Five Cognitive Agent Criteria

The five criteria for cognitive agents as described by Lawniczaka and Di Stefano

[Lawniczak and Di Stefano, 2010] are:

- Perceive information in the environment provided by other agents

- Reason about this information using existing knowledge

- Judge the obtained information using existing knowledge

- Respond to other agents

- Learn and augment current knowledge if newly acquired information allows it.

The Icarus agent perceives information in its (virtual) environment, information

related to the NLP (Statistics, Syntax, Semantics) which is extracted from the imi-

tative process (observation and decomposition). That information is reasoned with

and reused, it is also judging it (using the decision making process) and furthermore,

it is associated and stored. It is able to respond to other agents (via queries) and

most important it focuses on learning and augmenting its current knowledge from

others.

3.13.5 Icarus and Cognitive AI

The Icarus design principles [Langley et al., 2009; Langley and Choi, 2006; Langley

et al., 2004, 2003] are listed below:

- Integration of perception, cognition and action

- Combination of symbolic structures, knowledge representation and affective

values

- Behave re-actively in combination with problem-solving

- Learn from experience whilst using background knowledge

81

The implementation and theory described in this Chapter address the integration

of perception and cognition, and how action management (decison making) relate

to reinforcement learning and information acquired from the agent. Furthermore,

the MDP template enables the combination of KR and affective values in a novel

and unique manner; it combines Symbolism and Connectionism with Heuristics in

order to simulate the imitative process. The agent behaves re-actively, but problem-

solving is not programmed or embedded in the agent; instead the agent learns how

to solve specific problems or tasks, through imitation. Thus another novelty is

the way in which problem-solving capacities are acquired: through imitation. It

expands on the learnt behaviours using approximation and classification through

neural associative memory, and reuses its background knowledge (conceptual graphs,

Semantics, Syntax and Statistics) in order to further augment its experience and

knowledge.

3.13.6 Discussion on Icarus Implementation

The aforementioned functionality is enabled in order to gauge and establish if the

theory and design described in this Chapter, can empirically and methodologically

validate the hypothesis that cognitive agents and artificial imitation can use the

simulated processes to acquire knowledge indefinitely. The exact process that is be-

ing learnt by imitation is dependency, Semantic and Syntactic parsing, as a unitary

temporal sequence. In the next Chapter the dataset and its related complexity is

discussed in order to describe what the agent learns and is evaluated on.

82

Chapter 4

Conceptual Graph Dataset

Figure 4.1: A CG example

The Icarus agent is evaluated using a dataset which is randomly partitioned

into a training set and an evaluation set. The training set contains pairs of an

input pattern (sentence) pi and the associated conceptual graph Gi. Therefore the

projection of text onto a KR (the conceptual graph) is the task or problem which

the agent is required to resolve. The evaluation and experimentation process which

83

is described in the next Chapter 5 uses the dataset described in this Chapter.

The dataset described in this Chapter is from RSS feed data, which is rep-

resented using Conceptual Graphs, presumed sound and complete, and using the

approach of [Obitko, 2007; Amati and Ounis, 2000] as discussed in Section (2.3.1).

Hereinafter I briefly examine the existing datasets commonly used, following by how

this dataset was created and why as well as the option of translating other datasets

into a CG-set, and then provide an overview of its characteristics via statistical anal-

ysis. Last but not least, an analysis of the complexity contained with the dataset

is given and CG Figures (in Appendix B) are provided in order to demonstrate

possible issues and key factors affecting the Icarus engine.

4.1 Datasets for NLU and NLP

Name Train Size Test Size Average Sample Size

ATIS3 7,300 1,000 20.5
Penn-Treebank-3 2,499 unknown 25.6
BioNLP11ST 800 260 unknown
GeoQuery 600 280 6.87
RoboCup Data-set 300 unknown 22.52

Table 4.1: Common
NLP Datasets

A variety of data-sets for NLU and NLP exist, some are new, created as part

of a publication, whereas others are well established and have been used widely.

Because a complete list would be too large, the most widely used data-sets are

shown in Table 4.1. The ATIS3 dataset [Hemphill et al., 1990] has been used in

numerous studies and research work, and as such has been continuously updated

for decades. Similar to the ATIS3 the Penn-Treebank/Wall-Street Journal dataset

[Marcus et al., 1993] has also been developed and used for decades and is partitioned

in smaller sets 1. Another dataset is BioNLP11ST, which has been created for the

BioNLP shared task [Kim et al., 2011]. Similar datasets have been created from

RoboCup [Kitano et al., 1997] and used in parsing for robotics [David L. Chen,

2010; Chen and Mooney, 2008]. New datasets have been introduced in the past

years, some of which are not free, such as the English Web Treebank [Bies et al.,

2012], or the OntoNotes [Hovy et al., 2006], and others which are open-source and

free, such as the GUM corpus [Zeldes, 2016], or the data-sets hosted on Universal

1https://catalog.ldc.upenn.edu/ldc99t42

84

https://catalog.ldc.upenn.edu/ldc99t42

Dependencies2. To the best of my knowledge no conceptual graph dataset exists,

albeit one has been proposed [Campbell and Musen, 1992] in the past.

4.1.1 Creating a New Dataset

Due to the fact that conceptual graphs were used throughout this thesis and the re-

search carried out, I took the decision to create a CG dataset. The options presented

were to either create a tool which would translate a dataset from the existing ones

(see Table 4.1) into a CG dataset, or create a new one3. Translating existing ones

required some form of heuristic and probability based inference, so that concepts

and relations would be accurately extracted (similar to how the agent functions).

The risk seemed to be too high when considering how accurate such a translation

tool would have been, therefore the final decision was to create one manually.

The data used was from RSS feeds, since the secondary research question

relates to artificial imitation acquiring data from the Internet (see Section 1.5).

RSS articles are usually well formatted since they are written from news editors,

and are as such of better quality when compared to Web data. That observation is

reflected by the fact that all parsers perform better on news articles than they do

on Web data or utterances.

I chose RSS sites (BBC, Sky News, USA Today, Science Daily and Knox

News) in order to account for various topics, but mostly focused on health-related

news, celebrity news, scientific discoveries and lifestyle articles. From empirical

observation I deduced that those articles tend to be mostly factual rather than

opinionated or subjective, and range from simple and easy sentences (lifestyle and

celebrity news) to very complex ones (health articles and scientific discoveries).

The actual process of creating the dataset was implemented through a web-

portal using JavaScript; an input sentence was given, which then had to be converted

to a CG. This is the same process the agent has to learn and re-create, thus the

interaction with the web-portal is the actual MDP that the knowledge engineer is

providing as an example to the agent.

The MDP of creating the actual graphs is not recorded as a temporal-

sequence; doing so would imply that the agent is not decoding or decomposing

the example, but simply learning an existing MDP. Ergo, no hidden property of the

MDP would need be inferred, no decomposition would be required, and the actual

process would not be a qualia.

Instead, the only byproduct is the input pattern (sentence) and a graph

2http://universaldependencies.org
3For a summary on CG, please refer to Section 2.3.1

85

http://universaldependencies.org

serialised in a JSON format. Each example is saved within a SQL database, which

can then be queried by the agent. The dataset contains a total of 1,199 conceptual

graphs and sentences and was created over a period of 9 months. The actual data-

set is available on-line 4 saved in a JSON file, and a C++ library I created called

cgpp5 can parse them into memory. The patterns range from very small (4 to 5

words) up to 34 words, however the average pattern length is smaller than in other

datasets, with 10.92 words average pattern length. Creating a larger dataset with

bigger pattern lengths would have required a considerable amount of work with

additional time spent on creating it.

4.1.2 Partitioning the Dataset

The new CG dataset created for the Icarus engine was randomly partitioned into

smaller ones; the reason was that in order to gauge accuracy and the correspond-

ing effect of pattern size, as well as to enable sub-sampling techniques (stochastic

random sub-sampling) and faster training times. The pseudo-random generator, a

Mersenne twister implementation [Matsumoto and Nishimura, 1998] first prompts

the user to decide on the cut-off length of input (maximum sentence size) and then

filters graphs and corresponding sentences. Then, it proceeds to randomly partition

the dataset into 4/5 training set and 1/5 testing set as is usually the case with most

datasets. Repeating this process a few times creates different similar-sized random

datasets of a specific pattern size, thus the accuracy and performance reported in

the next Chapter is uniform, average and consistent.

As shown in Figure 4.2 multiple random subsets were used obtained from

the dataset. Those were used to train and evaluate the agent; the actual input size

varies in each one; some are smaller, others are larger. The top left plot shows

how minimum input size, maximum input size and average input size vary. The X

Axis denotes the actual subset index ID, and the data plotted are the stats of the

testing set (and not the training set). On average the input size for patterns pi has

a mean x̄ = 7.9733 terms and a standard deviation of σ = 2.459 term size, thus all

testing subsets are consistent and biased towards smaller to medium-sized sentences,

as shown in the top right plot. The minimum input size is very consistent with a

mean x̄ = 3.6667 terms and a standard deviation of σ = 0.4879 terms, shown in the

bottom left plot. Only the maximum input size varies, as shown in the bottom right

plot, with a mean x̄ = 15.20 terms and a standard deviation of σ = 10.571 terms.

4https://github.com/alexge233/conceptual_graph_set
5https://github.com/alexge233/cgpp

86

https://github.com/alexge233/conceptual_graph_set
https://github.com/alexge233/cgpp

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14

W
o

rd
s
 /

 T
e

rm
s
 I

n
p

u
t

Dataset Partition ID

Dataset Characteristics

Avg. Input Size pi
Max Input Size pi
Min Input Size pi

Input pi Range

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12 14 16

D
is

tr
ib

u
ti
o

n

Words / Terms Input

Average Input Distribution

-
x = 7.9733 σ = 2.4590

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16

D
is

tr
ib

u
ti
o

n

Words / Terms Input

Min Input Distribution

-
x = 3.6667 σ = 0.4879

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5 10 15 20 25 30 35 40

D
is

tr
ib

u
ti
o

n

Words / Terms Input

Max Input Distribution

-
x = 15.20 σ = 10.571

Figure 4.2: Dataset Info and Distribution.

4.1.3 Translating and Converting Datasets

Translating an existing dataset to a CG dataset would have required the partitioning

of the existing dataset into the bipartite nature of CG: concepts and relations. Doing

so manually would imply the transcribing of a non-CG dataset (e.g., MRL) to a

CG one, therefore taking a considerable amount of time for transcription, and a

questionable accuracy.

On the contrary, having created a CG dataset which in effect trained the

agent, it is now possible to transcribe other datasets because the mechanisms which

decide on concept or relation nodes have been implemented and trained. Further-

more, differences between datasets do exist regarding the edges and how those are

87

implemented. For example, a fully trained Icarus engine could in theory partition

ATIS3 or Penn Treebank WSJ into concepts and relations, and then learn the edges

by observing the edges contained in the transcribed datasets.

This process would function exactly the same way as the heuristic decompo-

sition works (see Section 3.2), with the only difference being that it would be done in

a two-pass procedure: once to convert the dataset into a CG, and then once to parse

each dataset sample into an MDP-qualia from which to learn. Implementing the

aforementioned process would require pre-training of the Icarus engine, therefore it

would add an additional overhead: pre-train the agent in order for it to be able to

transcribe a dataset before being able to be trained. Therefore the decision to opt

for a new CG dataset was justified during the research carried out and described in

this thesis. However, as future work it is possible to use Icarus to transcribe existing

MRL datasets into CG datasets.

4.2 Conceptual Graph Complexity

An issue often not addressed is the complexity of the underlying MRL, CG or knowl-

edge in general. Generally it is assumed that larger input will produce more complex

KR, the reason why all parsers’ accuracy deteriorates with increased input size [Choi

et al., 2015]. In the case of CG, complexity is measurable because it refers to graph

complexity and we can therefore use existing approaches to quantify it and map it,

and then deduce how input complexity relates to agent accuracy and performance.

Hereinafter the use of node to edge ratio |V |/|E| (also known as graph sparse-

ness) and average path length lG of a graph are used as indicators of the structural

complexity of a graph; other more complex measures such as betweenness, radius,

closeness, clusterization [Barooah and Hespanha, 2007; Wright, 1977] were not used

due to requiring more elaborate work on the CG without necessarily providing data

that could aid the study of knowledge complexity.

In addition to the above, the edge search space was used (e.g., how many

possible edge combinations exist in a graph) as a metric of defining the entire set of

possible edges. What was discovered (and discussed in detail in the next Chapter) is

that similar to other research in NLU, accuracy and performance deteriorates with

increased complexity.

Other metrics such as clustering coefficient or degree distribution could have

been implemented; however the focus of this Chapter is the dataset and not its

complexity metrics and analysis, which was an empirical byproduct. Furthermore,

the clustering coefficient for directed graphs uses triplets [Watts and Strogatz, 1998]

88

as shown in (4.1), where Ci is the cluster coefficient, ejk is an edge from vj to vk,

and ki is the number of neighbours to a node.

Ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
. (4.1)

However, the notion of a triplet in a CG is ill-defined; instead it should be a

quadruple since the use of a triplet is violated by the fact that concepts via relations

would connect to another concept thereby forming a rhombus/quadruplet instead of

a triplet. This difference is demonstrated in Figure 4.3, where the left-side rhombus

is a CG cluster, whereas the right-side triangle is the traditional approach described

by equation (4.1).

Figure 4.3: Clustering Coefficient: CG rhombus versus KR triplet

Through the creation process (Section 4.1.1) certain empirical observations

were made, based on visual analysis of the data; recurring patterns and common

rules were identified which have been recorded and are herein presented. In all

graphs presented in Section 4.2.1 the root node is always at the left side.

4.2.1 Graph Columns and Linearity

Certain patterns are associated with a column-like appearance, related to the linear

structure of the phrase. Such an example is shown in Appendix B.1. Those graphs

are assumed to be easier to re-create and learn since their structure is linear; fur-

thermore they produce simpler training material due to fewer contradicting nodes

and edges. A column like graph will have a single average path length, and the

specific graph in Appendix B.1 has |V |/|E| = 0.54 and lG = 8. Another column-like

graph is shown in Appendix B.2, with a |V |/|E| = 1.14 and lG = 4.

Some of the linear graphs are less column-like, and resemble more of a but-

terfly or tree branch, with large concept clusters, such as the one shown in B.3. In

this graph, the ratio is |V |/|E| = 0.62 and lG = 2.

A more complex graph is shown in Appendix B.4; this one has a large mid

centre cluster of concepts, which are connected by two relations before and after. In

89

this graph, the ratio is |V |/|E| = 0.78 and lG = 4. Other forms of column graphs

are identified by clustering of concept nodes, which are all connected to the same

group of relations. Relation grouping is also possible, but more rare than concept

grouping.

4.2.2 Graph Branching and Grouping

Branches of graphs increase complexity, especially when a graph contains multiple

branches. Appendix B.5 shows what a shallow graph with a high ratio of concepts

to relations, and a high ratio of nodes to edges looks like, especially when combined

with a very small path length. The actual ratio is |V |/|E| = 0.91 and lG = 2.

However, in this instance the graph has two groups, the first connecting the left-

most concepts through relation ”is”, and the second relation ”affecting” connecting

to the second group on the right.

This type of causality is represented by branching, which adds a level of

complexity. A measure which could potentially aid would be the clustering coeffi-

cient for directed graphs. Yet that would not suffice since the distinction between

groups based on edges is more difficult to calculate and would thus need to be com-

bined with degree distribution. The graph shown in Appendix B.6 which has a ratio

|V |/|E| = 0.51 and lG = 4.

Branching may include groups of column-like (linear) graphs, such as the one

shown in Appendix B.7. This type of graph is a peculiar entity: there appear to

exist two distinct column-like graphs, joined together by the relation ”for”, it has

a |V |/|E| = 0.63 and lG = 8. Those graphs are often hard to get right because

they are specialisations; they define a new rule (or often an exception to a recurring

pattern) which is an outlier.

Another column-like graph in Appendix B.8 shows how even small branches

may affect accuracy; it has a |V |/|E| = 0.93 and lG = 6.2. Similar to Appendix B.7

is Appendix B.9, only this one is more symmetric, has a smaller lG = 4 and a ratio

|V |/|E| = 0.84. Last but not least, there is Appendix B.10 which albeit having an

lG = 5.3 is characterised by a ratio |V |/|E| = 0.92, thus making it more sparse than

dense.

4.2.3 Graphs and Operators

Analysing graph patterns during their creation (empirically) provided some inter-

esting observations, most of which revolve around logic embedded in the KR and

relations/operators, such as ”for”, ”and”, ”or”, ”if-else”. Some hint towards cause

90

and effect, others hint state changes, and whilst there are exceptions they are very

rare. A clear connection between relations (in CG-terms) and operators exists; op-

erators are always relations and relations are always the node in a graph which

diverges into branches and leafs. For example, in Appendix B.7 it is a ”for” that

creates the downside branch, and in Appendix B.9 it is an ”or” and an ”in” that

act as the connecting branch nodes.

This form of reappearing patterns is what inspired the theoretical algorithm

in Section 3.12. Much of the premise of Semantic parsing in the agent relies on

the meaning of those terms which act as operators in the graph; therefore the

hypothesis is that Semantic-based parsing is preferable to Syntactic parsing, since it

can inherently provide greater accuracy; this hypothesis is examined later in Chapter

5.

4.3 Dataset Conclusion

In this Chapter the dataset being used and created was presented, as well as a

description of the most commonly used datasets in NLP and NLU was given. Fur-

thermore, certain attributes and characteristics of conceptual graphs have been em-

pirically analysed and presented, relating those attributes to complexity in the un-

derlying knowledge represented. The dataset described in this Chapter was created

out of the necessity to use a CG-set for training and testing the Icarus engine. Albeit

it is smaller than compared datasets often used (see Section 4.1.2) it sufficient to

evaluate the agent and serve as a measure similar to other datasets and research.

91

Chapter 5

Experiments, Methodology and

Results

In this Chapter I describe the experimental methodology and how in particular,

the Icarus agent was used and validated. The task Icarus was evaluated on is

processing unknown sentences and correctly projecting them on CG. Each Section

in this Chapter contains the implementation of an algorithm (or group of models),

and the corresponding results and is compared with other similar algorithms. As

described in earlier chapters, the development of Icarus started by following simple

implementations, and progressed towards more complex models (see Chapter 3).

Therefore, the experiments described hereinafter analyse the performance of each

model and algorithm implemented and tested, and not the best one or the overall

accuracy. Icarus was tested using the dataset created by projecting sentences on

CG (see Chapter 4), hence the input is a sentence and the output is a conceptual

graph. The primary measure of accuracy used is the Dice-Sørensen coefficient, for

reasons described in Section 5.1.3.

5.1 Methodology and Experiment Design

Careful consideration was put into the methodology; there is a clear need to provide

consistent, reproducible and quantifiable results [Winsberg, 2003] and experimental

data in order to assure the validity of the claims and conclusions made in this thesis.

It is important to note that the experiments were carried out on different versions

of Icarus using different algorithms, starting from the most simplistic and naive

ones, and then through constant evaluation and optimisation, progressed towards

more complex versions of Icarus.

92

5.1.1 Randomised Block Design

Because of the aforementioned criteria, I opted for a stochastic methodology, which

uses random blocks of experiments which are repeated multiple times [Cavazzuti,

2012] as a means to ensure constant accuracy, by averaging the performance of

randomised data samples. This approach is known as randomised block design (or

RBD) [Winer et al., 1971, p. 240] and uses multiple iterations and repetitions of

experiment blocks [Higgins, 2003]. Furthermore, because datasets are partitioned

randomly (see Section 4.1.2) this approach makes the methodology described herein

a stochastic mini-batch design, inspired from the mini-batch stochastic gradient

descent [Li et al., 2014].

In RBD, experiments are organised in blocks: for my intents and purposes,

every first block of experiments is organised using the preordained randomised

datasets from Chapter 4, which is called L1 (or level 1). The second level of RBD

refers to the Algorithm (or group of models) being used, in order to determine which

one functions more accurately; that is the L2 (level 2). The last level (or L3) is the

experiment itself: each experiment was repeated at least ten times, and then the

agent accuracy was averaged, instead of using the best one. This approach ensures

that results reported in this Chapter are reproducible, constant and robust, and not

an outlier of good performance, or based on random/PRNG performance. Because

many experiments were performed multiple times often the L3 is an average value of

more than 10 experiments. Each individual experiment has multiple episodes (asso-

ciated MDP with input and output graph), I denote this as L4. However, because

L4 is the most granular level and always averaged, the L4 episode scores are simply

ignored and averaged as L3.

5.1.2 Experiment Logs

Every experiment produces two log-files; one for the episodic memory data and one

for the action data. The log-file for the MDP episode data is described in the list

below.

1. Graph ID: a unique ID (UUID version 4)

2. Episode reward: a Boolean value obtained by examining if the output graph

is identical or isomorphic to ideal graph. Averaged for all graphs in the L3/L4

block.

3. Jaccard coefficient [Real and Vargas, 1996]: the difference of ideal and

actual graph output JGiGk
∈ R, 0 ≥ JGiGk

≤ 1. Averaged for all graphs in the

93

L3/L4 block.

4. Sørensen-Dice coefficient [Rijsbergen, 1979]: the difference of ideal and

actual graph output SGiGk
∈ R, 0 ≥ SGiGk

≤ 1. Averaged for all graphs in the

L3/L4 block.

5. Node similarity: min-max normalised percentage of the same nodes Svivk ∈
R, 0 ≥ Svivk ≤ 1. Averaged for all nodes of all graphs in the L3/L4 block.

6. Edge similarity: min-max normalised percentage of same edges (Seiek ∈
R, 0 ≥ Seiek ≤ 1. Averaged for all edges of all graphs in the L3/L4 block.

7. Pattern Size: how large is the input pattern/sentence pi ∈ N+
>0. Averaged

for all input samples in L3/L4 block.

8. Graph Sparseness: the ratio of nodes/vertices to edges/arcs |V |/|E| ∈ R.

Averaged for all graphs in the L3/L4 block.

9. Average path length: an average size of the continuous paths in a graph

lG ∈ R>0. Averaged for all graphs in the L3 block.

10. Edge Space: the cardinality of the possible edges for a graph, given its nodes

‖EG‖ ∈ N+
>0. Averaged for all graphs in the L3 block.

11. VSM Similarity: an array/list of similarities Spipk ∈ R, 0 ≥ Spipk ≤ 1 with

respect to other patterns.

Similarly, the action output log-files record information and meta-data rela-

tion to actions at taken by the agent, as shown in the list below.

1. Term value: ti on which action at operated e.g., ”cat”, ”on” or ”mat”.

2. POS Tag: the actual POS tag of the term ti when converting it to a concept

or a relation.

3. Type of action: what did the action at do, e.g., convert a term to a node,

or create an edge between nodes.

4. Description: a simple word describing if the action was random, heuristic,

semantic, neural-based, etc.

5. Value: the value that made the agent take the action (e.g., if it was based

on semantics, what was the value, if based on probabilities, what was the

probability, etc).

94

For every single experiment (L3), an episode file and an action file are created.

The L3 block is run using scripts in batches, and the L1 block (datasets) is also run

using batches. What changes therefore is the L2 block; which Algorithms execute

during a series of experiment batches. For every group of L1, L2 and L3 experiments,

another script averages all the values, thus extracting the average of each value

described above. Furthermore, every data in the agent’s memory is serialised in a

binary file (policies, graphs, probabilities, semantics, etc) for reuse.

Neural networks are trained once (albeit optimising them is a long and te-

dious process). In this way, the agent does not start in a tabula rasa state every

time, but contains some prior (long-term) knowledge, by having already pre-trained

the networks. On the contrary, probabilities and semantics are not loaded from

disk; they are populated during training. Whilst this may appear as non-beneficial,

it ensures that some of the experiments do not begin with background knowledge

which would skew or bias towards later experiments performing better.

From the produced log-files, other meta-data files can be created (complexity

data, state-action ratios, etc) which are then used to extrapolate dataset complexity,

identify potential issues and visualise the agent’s performance.

5.1.3 Accuracy Measures

The most commonly used measure for accuracy is the F1 score [Powers, 2011; Metz,

1978], as shown in (2.34) in Section 2.7.7. However, the notion of precision and recall

does not apply in the Icarus scenario: the precision only relates to how similar (or

dissimilar) the output graphs are, e.g., ∆G = Gy − Gŷ. Furthermore, there exists

no recall, because the agent is not performing classification. Since the notion of

similarity of graphs is based on their sets of concepts, relations and edges, I chose to

examine the two most famous set similarity measures, the Jaccard coefficient [Real

and Vargas, 1996] shown in (5.1) and the Dice-Sørensen coefficient [Rijsbergen, 1979]

shown in (5.2).

S(A,B) =
2 | A ∩B |
| A | + | B |

. (5.1)

J(A,B) =
| A ∩B |

| A | + | B | − | A ∩B |
. (5.2)

In both equations (5.1) and (5.2) A and B are sets. The above equations

are used for measuring the similarity coefficients between concepts, relations and

edges, because a graph contains those sets (3.1). When measuring the similarity of

an output Gŷ to the ideal graph Gy, the actual comparison is taking into account

95

the coefficient of concepts and relations as a unitary set (since they both are nodes),

and then treating both node sets V and edge sets E with the same weight, as shown

in (5.3). Each of the functions in the following formulae is replaced by the actual

coefficient in (5.1) or (5.2), where appropriate.

S(V y, V ŷ) =
S(C ŷ, Cy) + S(Rŷ, Ry)

2
. (5.3)

Replacing S(V y, V ŷ) from (5.3) in (5.4), there is no bias towards nodes, since

both node and edge sets are treated as equally important.

S(Gy, Gŷ) =
S(V y, V ŷ) + S(E ŷ, Ey)

2
. (5.4)

In the case of Jaccard, the result penalises differences in sets not only for

missing items of Gŷ in graph Gy, but also for additional items, which do not exist

in the target/ideal graph. Similar to the Dice-Sørensen coefficient, the coefficient

is calculated for each pair of sets (concepts, relations, edges), so that J(Cy, C ŷ),

J(Ry, Rŷ) can be averaged, and then J(Ey, Eŷ) is calculated and averaged. Then

the node coefficient is calculated by averaging as shown in (5.5) and finally the node

and edge coefficients are averaged, as shown in (5.6).

J(V y, V ŷ) =
J(Cy, C ŷ) + J(Ry, Rŷ)

2
. (5.5)

J(Gy, Gŷ) =
J(V y, V ŷ) + J(Ey, Eŷ)

2
. (5.6)

The Jaccard coefficient is a more strict measure which ideally would be used,

however the Dice-Sørensen coefficient has the same form as the F1 score [Intan

et al., 2015, p. 158] and therefore functions as the primary accuracy quantifier. It

is also important to note that similarity is respective to the first graph in Dice-

Sørensen: the formula quantifies only how similar Gŷi is to Gyi and its parameters

are non-anadrome.

In NLU and dependency parsing, some metrics often used are [Choi et al.,

2015; Zhang and Nivre, 2011; Liu et al., 2006; Nivre and Scholz, 2004]:

- Labelled attachment score (LAS): percent of correct labels and edges

- Unlabelled attachment score (UAS): percentile of correct edges

- Label accuracy (LS): correct labels

- Exact match (EM): exact tree/graph.

96

The LAS appears to refer to labels of edges/arcs, and as such it is non-

applicable (n/a) in this thesis. The agent has no way or mechanism to infer labels,

and CG literature does not use edge labels, but relations for this purpose. Compar-

ing those measures to the aforementioned formulae and metrics, Table 5.1 gives an

equivalence scenario.

NLU, NLP This Thesis

LAS n/a
UAS Jaccard & Dice-Sørensen coefficient
LS n/a
EM Boolean Graph Accuracy

Table 5.1: Accuracy Metrics Equivalence.

Other kinds of meta-data were obtained from a combination of the log-files:

state-action ratio, complexity, and hereinafter when a graph or plot is presented

a multidimensional matrix of data is normally reduced using principal component

analysis (PCA) [Wold et al., 1987]. Then a projection of the most significant Eigen-

vectors to a lower dimension (usually a 1D or 2D) is used. This approach is taken

when a data matrix has more than 3 columns and is consistent throughout the

thesis.

5.2 Semantic-Heuristic Experiments

5.2.1 Implementation

The first type of Algorithm implemented and used in Icarus is a Heuristic based

on VSM, relational Semantics and at action swapping. The core notion behind

the Algorithm is to approximate highly similar episodes and find potential actions

which could be re-used in an episode which hasn’t been experienced before. The

components involved are: VSM indexing similar episodes (Section 2.7.2), the Se-

mantic relation Algorithm (Section 3.7) and the MDP template, as described in the

previous Chapter 3. The Algorithm queries the topmost similar episodes (above

50% similarity) and then orders them starting from the most similar to the least

similar. It then iterates the similar episodes, finding identical actions which it can

reuse, and for the entities which do not exist in the similar episodes it attempts to

establish a semantic similarity. By finding the topmost similar label, it then re-uses

the action in the similar episode for the new episode. The pseudo-code in Algorithm

5 describes the aforementioned heuristic. The Algorithm takes as input the actual

pattern pi and returns a set of candidate actions Ai, each one associated with a score

97

which assigns a suitability value. The premise of suitability uses a linear equation

of the VSM similarity coefficient and for each term replaced the actual semantic

similarity value.

Algorithm 5: Semantic-Heuristic Decision Making.

Input: pi

Output: Ai

1 Q(Sk, Ak) = V SM(pi)

2 Q(Sk, Ak) = max{Sk, . . . }
3 for at ∈ Ak do

4 β(at) = Sim(Vpi |Ak);
5 if at(tk) ∈ pi then

6 if N(at) then

7 A+
i ; at(pi) = β(at) · 1

8 else if E(at) then

9 eij = at

10 if tj ∈ pi then

11 A+
i ; at(pi) = β(at) · 1

12 else if vtltj → tl ∈ pi then

13 A+
i ; at(pi) = β(at) · vtltj

14 else if vtitk → ti ∈ at(tk) then

15 if N(at) then

16 A+
i ; at(pi) = β(at) · vtitk

17 else if E(at) then

18 ekj = at

19 if tj ∈ pi then

20 A+
i ; at(pi) = β(at) · vtitk

21 else if vtltj → tl ∈ pi then

22 A+
i ; at(pi) = β(at) · (vtitk · vtltj)

First the similar policies are obtained by finding the similar episodes. The

list of similar policies Q(Sk, Ak) is sorted by most similar to less similar (ignoring

policy values). Then each policy is iterated and a score β(at) is used to calculate

how suitable this action is, so that for term ti in pi we can use at which is a

candidate action in the set AK obtained from another pattern pk. For simple term

to node shift-reduce there exist two scenarios: (a) ti is identical to tk, or (b) ti is

semantically similar to tk (using equation 3.9). In the first scenario, a straight-

forward calculation A+
i ; at(pi) = β(at) · 1 is used, suggesting that one should add

98

to the candidate action sets Ai the action at, because the terms are identical; in

the later scenario I reduce the value of the candidate by the amount of which ti is

similar to tk, e.g.: at(pi) = β(at) · vtitk .

Edge actions are a bit more complex: since both terms that connect an edge

are used, then both terms must either exist in pi or be approximated by similarity.

Therefore, the criteria are that either both nodes must exist in pi or that either

one or both of the nodes must have some relational similarity to a same-typed

node found in pi. In the event that both exist in pi, then the score is same as

before, e.g., at(pi) = β(at) · 1. If one of the nodes exists, but the other doesn’t,

then the score is biased by the similarity, so that at(pi) = β(at) · vtitk . In the

case where none of the nodes exist, but there are semantic similarities between the

edges, the score is further biased so that at(pi) = β(at) · (vtitk · vtltj). The actual

value of β(at) = Sim(Vpi |Ak) is the min-max normalised VSM coefficient, so that

0 ≥ β(at) ≤ 1. This group of Algorithms [Gkiokas and Cristea, 2014a] was inspired

from older research in parsing and PBE; they served as the starting point during

my research, from there a transition towards Statistics followed suit. It was used

because older research used somewhat similar Heuristic approaches, as such an easy

starting point was to implement such an Algorithm.

5.2.2 Results and Discussion

This was the first Algorithm implemented and tested; it offers a Heuristic approach

based on inference using Semantics. Such an approach was the norm [Carnap, 1948]

in the previous decades by many Heuristics-based and Algorithmic-based designs.

The testing process used only this Algorithm and a random action generated; the

random actions were used only when the Algorithm was not capable of inferring

actions.

The averaged recorded results were poor: only 52.55% F1 was recorded for

small input sizes, and medium to large input sizes ranged between 32% and 37%,

as shown in Figure 5.1. This is attributed to the amount of random actions as a

result of not approximating semantic actions. The amount of random actions was

very large, ranging from 94.35% to 59.96%, whilst at the same time the amount of

Semantics-based actions ranged from 5.65% up to 40.04%.

The conclusions drawn from observing the accuracy and action ratios are

mostly based on the deduction that Semantic-based actions are not always possible,

and when possible they still do not provide robust and accurate actions. The reasons

for those conclusions are related to the criteria which must be satisfied in order for

semantic actions to be possible.

99

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Semantic Action Accuracy

Dice / F1 Score

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Semantic Action Ratio

F1 Score
Random at

Semantic at

Figure 5.1: Semantic-Heuristic Accuracy.

First and foremost, similar episodes must exist and are thus used by the

VSM (see line 1 in pseudo-code 5) a condition which empirically I discovered is

rarely satisfied. Furthermore, when similar episodes do exist, then (a) there is no

guarantee that their graphs are structurally similar, and (b) a different context,

graph size or meaning does not imply that action substitution is a good action at.

Second, as seen in Figure 5.1 there is an unclear correlation between Semantic

actions and F1 score; it is impossible to identify if the random actions inhibit high

accuracy, or if both random and Semantic-based actions are inaccurate. The action

ratios are complementary to each other, and because of the large amount of random

actions, proper measures of Semantic actions are not possible.

Third, the Semantic actions are rarely available, and even if available, they

will be mixed with random actions within an episode. Due to their low availability

and action candidacy, Algorithms based on such principles appear to be flawed or

limited. The factors that limit their availability are:

- Similar episodes may not be exist.

- Identical terms may not exist.

- Similar terms may not exist.

Furthermore, Semantic-Heuristic Algorithms such as the one examined, are

usually fallible to the following issues:

- Low similarity episodes may hinder accuracy.

- Low relational similarity between terms may also hinder accuracy.

100

- Not all terms are mapped in WordNet, therefore not all terms can be used to

obtain relational similarity.

- Even if similar terms exist, semantically swapping them does not guarantee

graph cohesion.

From the above results and conclusions, it should be apparent that such

algorithms do not favour cognitive systems, even if they first appear to be tailored for

them. Furthermore, the grounding problem is an issue, since background knowledge

on which those algorithms often rely, is not available. That is not to say they should

not be used, but rather that they may be used as a fallback or back-up plan in order

to avoid random actions.

5.3 Probability-based Experiments

A large amount of research has focused on Statistics, probabilities and the Algo-

rithms that employ them. Therefore, following the Algorithm presented and tested

in Section 5.2, I designed and experimented with a Statistics and probability

based Algorithm, using the theory from Section 3.6. Specifically, the formulae (3.2)

and (3.3) were used to create a look-up table within the Icarus’ long-term memory,

as shown in Figure 3.1. This Section explains how that algorithm performed in

comparison to similar research, using the dataset from Chapter 4 and measuring

the accuracy with Dice-Sørensen (see Section 5.1.3).

5.3.1 Implementation

The core idea behind the action controller for approximation of actions at, given a

state st, is to use the known statistical probabilities, in order to decide on actions.

The actual probabilities are based on observations made during training, and during

testing those observations are used to generalise the problem of creating actions for

unknown states. Any state st given as an input may be known or unknown: known

if the episode has been experienced before, unknown if it is a new episode; in the

case of testing, episodes were always unknown, otherwise the agent would simply

be iterating policies. The probabilistic approach therefore generalises the entire

previous experience of actions at for all episodes, and the output is verbalised as

performing an action that is generally assumed to be correct.

The pseudo-code in Algorithm 6 demonstrates how a term ti is converted into

a concept or relation. Preferential combinatorial probability is used if both term

and POS tag probabilities exist and have been recorded. The agent uses the highest

101

Algorithm 6: Probabilistic-Heuristic Node Action.

Input: st
Output: at

1 if ∃
(
p
(
V (termi)

))
∧ ∃
(
p
(
V (tagi)

))
then

2 if p
(
C(termi)

)
· p
(
C(tagi)

)
> p
(
R(termi)

)
· p
(
R(tagi)

)
then

3 return at(C);
4 else
5 return at(R);

6 else if ∃
(
p(V (termi))

)
∧ @
(
p(V (tagi))

)
then

7 if p
(
C(termi)

)
> p
(
R(termi)

)
then

8 return at(C);
9 else

10 return at(R);

11 else if @
(
p
(
V (termi)

))
∧ ∃
(
p
(
V (tagi)

))
then

12 if p
(
C(tagi)

)
> p
(
R(tagi)

)
then

13 return at(C);
14 else
15 return at(R);

16 else
17 return random

(
V (termi)

)
;

probability to convert terms to nodes, and in the event that no term probability

exists, it falls back to using only the POS tag probability, whereas in the extremely

rare event where no POS tag probability exists but a term probability does exist, it

will use that instead. Only in the event that neither term nor tag probabilities are

known, will the agent use a random action. Unknown or unrecorded probabilities

are represented by −1, therefore the signed comparison remains valid.

Similar to the previous Algorithm 6, the pseudo-code in Algorithm 7 uses

the probability values from the realisation value of p(e), as shown in (3.2) to decide

if an edge should be created or not. The actual realisation can be based upon the

terms ti and tk acting as labels of the respective nodes (concept or relation), or

their respective POS tag values. Whilst a combinatorial probability is preferred, a

realisation of p(e) may not exist for terms, in which case the agent reverts to using

POS tag-based p(e).

The main difference is that in this scenario, in order to use a probability, it

must be over a threshold θ which is manually adjusted. The constant θ is required

because the agent has to ignore p(e) below a certain value as too small for edge

creation. Furthermore, the probability of an edge based on the normalised distance

102

Algorithm 7: Probabilistic-Heuristic Edge Action.

Input: st
Output: at

1 if ∃
(
p
(
Etermik

))
∧ ∃
(
p
(
Etagik

))
then

2 if p
(
Etermik

)
· p
(
Etagik

)
· p
(
E(∆termitermk

)
))

> θ then

3 return at
(
Etermik

)
;

4 else if ∃
(
p
(
Etermik

))
∧ @
(
p
(
Etagik

))
then

5 if p
(
Etermik

)
· p
(
E(∆termitermk

)
))

> θ then

6 return at
(
Etermik

)
;

7 else if @
(
p
(
Etermik

))
∧ ∃
(
p
(
Etagik

))
then

8 if p
(
Etagik

)
· p
(
E(∆termitermk

)
))

> θ then

9 return at
(
Etermik

)
;

10 else
11 return random

(
Etermik

)
;

as described by (3.3) is also employed. This type of probability ignores terms, POS

tags, their values and labels; it is only concerned with how far within a sentence

entities are connected by edges. This distance metric was initially not included, but

early empirical testing indicated that when using it, accuracy was increasing. The

distance metric is rarely unknown, in which case a −1 is returned, thereby making

the final p(e) fall below θ.

In the experiments where raw probability values were used, the FSM-styled

conditional statements actively decided if actions were to be performed or not. Be-

cause the above Algorithms are able to operate on a state-action level, they were

used frequently, by being given in a shift-reduce the terms of input pattern pi, and

then the entire set of possible edges based on concept to relation and relation to con-

cept combinations. This approach in essence examines the entire space of possible

edges and tries to filter the good actions using p(e) and θ.

5.3.2 Probability Space Analysis

The first and foremost observation when experimenting with this Algorithm was the

actual mapped probability values and their distribution. Analysing the distribution

and visualising the values aided in taking decisions about further development and

issues encountered.

As shown in Figure 5.2, all three histograms have a Y axis representing

frequency of observations and an X axis representing the actual probability value.

103

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u
en

cy

Term-based Probability p(eterm) = E(ti tk)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

POS-tag Probability p(etag) = E(ti tk)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Term Distance ∆ti tk

Figure 5.2: Probability Histograms.

The top histogram of p(e) = E(termik) demonstrates that edge samples based on

term value mostly indicate which edges are not valid edges, e.g., the high frequency

of very low p(e) values. This conclusion implies that the probability map acts as

a filter itself; through the statistical records it is possible to identify viable from

non-viable edges.

The p(e) = E(tagik) histogram (middle one) is the only one which has what

resembles a normal distribution bell curve with a positive skew. The actual distri-

bution of p(e) values based on POS tags is perplexing; the majority of edges appear

to have a mean x = 27.97% and a standard deviation σ = 11.79%. However, the

preliminary conclusion drawn from this histogram is that POS tag inferred edges are

104

of low certainty, e.g., that there exists a large amount of contradicting or conflicting

observations when using a POS tag as the identifier.

The last histogram contains the normalised and scaled distance metric prob-

abilities; it appears to be somewhat homogeneous, with the biggest mass around

the close to near close terms. The conclusion drawn is that edges tend to connect

nodes which are very close to somewhat close nodes, rather than the extremes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1

-0.5

 0

 0.5

 1

T
er

m
 D

is
ta

n
ce

Point Cloud

Term-based ProbabilityPOS-tag Probability

T
er

m
 D

is
ta

n
ce

Q-Norm Grid Surface

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

-1

-0.5

 0

 0.5

 1

T
er

m
 D

is
ta

n
ce

Point Cloud Convex Hull

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

-1

-0.5

 0

 0.5

 1

T
er

m
 D

is
ta

n
ce

Q-Norm Grid Surface Convex Hull

 0

 0.2

 0.4

 0.6

 0.8

 1

Term-based Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

POS-tag Probability

-1

-0.5

 0

 0.5

 1

T
er

m
 D

is
ta

n
ce

Figure 5.3: Probability Value Map

The Figure 5.3 shows a point cloud : recorded triplets/tuples of p(eterm),

p(etag) and p(e∆), when observing a single action at post-training. Because the

statistical material is obtained not during but after training, the agent is capable

of discovering which action at had the respective triplet values. Of those actions

105

at, some are by permutation and generate the ”bad” samples recorded as p(e) = 0,

whilst the ones found within the actual paradigm episodes are the ”good” samples

recorded as p(e) ≥ 0.

All purple to black points used a negative term distance and are thus always

invalid; red to orange points used a positive term distance and therefore may be

valid actions. The sample space of cloud points in Figure 5.3 shows: in the top left

corner, the point cloud; in the top right corner, a point cloud normalised as a Q-

Norm grid surface; in the bottom left corner, the point cloud separated by a convex

hull [Chazelle, 1993]; and in the bottom right corner, the Q-Norm grid surface,

separated by the same convex hull. What the Figure 5.3 really demonstrates is that

the probability triplets recorded post-training are non-linearly separable, as shown

by the convex hull [Toussaint, 1983]. Furthermore, the largest mass (and as shown

in the histograms earlier) is low-probability values associated with ”good” actions

at. This is mostly due to the contradictory nature of POS-tag based edges; isolated

peaks of actions can be seen along the ridges of 0.6 POS-tag probabilities moving

across the entire spectrum of term-based probabilities (mostly shown in the Q-norm

surface grid, the top right plot). Yet another ridge can be identified originating at

X: 0.2 and Y: 0.8 to 1.0, and moving along the X axis (where X axis is the POS-

tag values and Y axis is the term-based values). This is a reasonable observation,

since it implies that high term-based probabilities (Y Axis) persist regardless of the

POS-tag probability value (X axis).

Ultimately, what is shown by the cloud point is that a triplet of probability

values acquired from a single action at may define a suitable action in a new episode;

however each probability value may not be enough as it is a partial descriptor of an

edge under examination. Using only POS-tag based values may be too generalising

and reduces accuracy; similarly term-based probabilities are not always available.

Distance metrics on their own do not show the big picture are are used only as an

aid to further improve the agent. The largest mass of extracted probabilities belong

to the range of 0.2 ≥ p(etag) ≤ 0.6, whereas p(eterm) has a very broad spectrum.

5.3.3 Results

First and foremost it must be noted that experiments with probability-based action

selection were not carried out using only probability-based actions. A transition from

Semantic-based to Probability-based actions was examined; which type of action

should be preferred, what happens when the agent mixes different types of actions,

what is the ratio of Semantics to Probability based actions, how to best fine-tune and

optimise the θ parameters, and what are the results when compared to a random

106

walk. Hereinafter I provide a thorough analysis of the results and describe that

transition.

The first and most important factor is that all experiments carried out whilst

optimising and adjusting algorithm preference, probability value filters and other

parameters were carried out using the same sub-set of the dataset, with a limit of 6

input terms. The reason for taking this approach was that of practicality: training

and evaluating using a smaller data set was faster and easier in order to optimise

and draw conclusions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

A
c
ti
o
n
 R

a
ti
o

Dice coeff / F1 Score

Preliminary Algorithm

Accuracy
Random at

Semantic at
Probability at

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.55 0.6 0.65 0.7 0.75 0.8

A
c
ti
o
n
 R

a
ti
o

Dice coeff / F1 Score

Optimised Algorithm

Accuracy
Random at

Semantic at
Probility at

Figure 5.4: Probability Accuracy and Action Ratios.

First I used a random walk [Weiss, 2005], e.g., an action-selection mechanism

using only random actions at throughout every episode. The actual performance

when only random actions were taken ranged from 31% to 32%. During initial

experiments, as shown in the left plot in Figure 5.4, there was a lot of variance in

action ratios and accuracy was low, ranging from 31.56% to 72.62% accuracy. There

is a clear trend of accuracy increase when random actions are kept to a minimum,

but the effect of semantic actions in the left plot is inconclusive. It should be

noted that in the early experiments an edge count probability was also included;

the probability that a node would have a specific amount of edges, with more edges

than what was generally acceptable. This was recorded in a similar fashion as was

metric distance between terms.

Removing the edge count probability, using only the tripled values as afore-

mentioned and using probability-based actions before Semantic-based or random

actions increased accuracy and lowered uncertainty regarding action ratios. That is

reflected in the right plot in Figure 5.4 with an increase in accuracy from 50.08%

107

to 80.95%, and the reduction of random actions. However there is another trend

shown in the the right plot: as the amount of Semantic actions is reduced, so does

the accuracy increase; therefore it is sound to assert that Semantic-based action

selection is not as good as probability-based actions.

Deciding on the actual θ values for filtering p(e) values is a major task;

albeit it might first appear as a simple optimisation task, it in fact isn’t. The

probability space isn’t linearly separable and using actual p(e) values as described

in this Algorithm creates questions: (a) what should each θ for every p(e) value be?

(b) should it be a constant or an adaptive value, (c) does θ influence accuracy, and

if it does how exactly?

During initial investigation using permutations of θ values indicated that they

do affect accuracy. However, after careful examination I was able to determine that

they only acted as an indicator; this as shown in earlier Figure 5.3 is a non-linear

space, and thus using constant θ values is not a plausible solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Y
 F

ilt
e
r

X Filter

Effect of Θ on Edge Accuracy

X filter: p(e)
Y filteR: ∆
Edge Sim.

Figure 5.5: Filtering with θ

Because the p(e) value space appears do be non-linear (as discussed in Section

5.3.2), therefore there does not exist a parametric solution to the problem of finding

appropriate θ values. I did not use sophisticated separability identification methods

[Elizondo, 2006] because some of those involve the use of machine learning (ML)

models; therefore it appeared a better option to implement ML models instead of

using a set of θ parameters.

Furthermore, the values extracted are a triplet, a combination of values;

therefore the problem is not necessarily to filter individual values but their ensemble,

thereby justifying more complex real-valued processing models. For example, a large

108

portion of the samples obtained from statistical observation is spread across a range

of p(eterm) values, whilst combined with a more normally distributed range of p(etag

values (see previous Section 5.3.2). The implication thereby is that any system

dealing with such data should be able to identify specific patterns or features in

the input and adapt to it. In comparison to edge creation, node creation was very

accurate; it averaged 96.90% similar nodes, and relies on POS Tag accuracy (laPOS

has a claimed 97.22% on the WSJ corpus) and term-based node frequency.

5.3.4 Discussion & Conclusion

The results, albeit not directly comparable to other research due to differences

in scoring and datasets used, showcase that Icarus accuracy is relative to similar

statistical and probabilistic work, shown in Table 5.2. Older systems and research

is not shown, and albeit the Algorithm’s results ranged from 50.08% to 80.95% it is

important to note the vast differences between datasets.

Author System F1Score

Chen et al [Chen and Mooney, 2008] WASP 72.00%
Chen et al [David L. Chen, 2010] WASP 76.77%
Vlachos et al [Vlachos, 2012] DAGGER 78.90%

Table 5.2: Statistic & Probability Oriented Research.

The presented Algorithm is a generative rather than a discriminative ap-

proach [Jordan, 2002], and as such it generalises. A more pragmatic approach

taking into consideration conditional probabilities based on previous edges would

most likely increase the accuracy, albeit that assertion remains unproven. An is-

sue with the Algorithm presented here is that it does not take into consideration

previous probabilities. Continuous Bag of words (CBOW) [Mikolov et al., 2013c]

and Skip-Gram [Guthrie et al., 2006] do address such issues, but require a vastly

different Algorithm implementation (feature vectoring).

Using cascading action-selection did work as intended to a degree; however as

analysed earlier it is not a very good solution. Whereas Semantic-based actions are

worse than probability-based ones, it is questionable how much better than random

actions they actually are. Last but not least, the assumption that the triplet of

values contains enough information to make good decisions is not proven: whereas

at first I used four values: distance, edge count, p(eterm) and p(etag), eventually

edge count was removed. Other issues arise when p(eterm) is not available, when

nodes have been wrongly converted thus prohibiting creation of correct edges, and

from the contradictory nature of p(etag).

109

5.4 Shallow Neural Experiments

Following the probability-based experiments and the conclusions derived from the

results presented (Sections 5.3.3 and 5.3.4), I decided to use artificial neural networks

(ANN) in order to select actions for new episodes. That decision was taken in light

of the θ parametrisation issue discussed earlier; it appeared to be a classification

and approximation process which in line with the general cognitive agent theory

(discussed in Sections 3.5, 3.8 and based on the underpinnings of Bach, Haikonen

and Icarus, as concluded in Sections 3.13.2, 3.13.3 and 3.13.5) was an associative

memory task. To date the best associate memory models are neural networks, and

therefore the use of ANN for classification and approximation is justified.

The Icarus agent, was once again evaluated using the dataset described in

Chapter 4 and accuracy was measured with Dice-Sørensen (see Section 5.1.3). How-

ever, this set of experiments was compared to more recent research, some of which is

considered state-of-the-art. The research cited hereinafter uses different datasets, of-

ten with larger sentences; yet what is important is the underlying mechanisms used

are very similar (e.g., neural networks and parsing based on POS, Shift-Reduce,

etc.).

5.4.1 Implementation

The first implementation of ANN was done using the FANN1 library[Nissen, 2003].

I also developed a CUDA/GPU2 ANN library2 for my intents and purposes, but

abandoned it once I realised that it would require me to spend more than a year for

development. The final ANN implementation I used is OpenANN3 [Fabisch et al.,

2013], which is CPU-based but uses multi-core processing.

The action-selection mechanism when using ANN is non-cascading as the

previous Algorithms, but a standalone process; the agent relies only on the ANN to

select actions and does not fall back to other Algorithms. The actual input scheme

is a distributed encoder: the actual input Ij is a real-valued vector representing:

1 The term-based edge probability value p(eterm) = E(titk) as shown in (3.2).

2 The POS tag-based edge probability value p(etag) = E(titk).

3 The min-max normalised and scaled term distance value of ∆titk as shown in

(5.7).

1http://leenissen.dk/fann/
2https://github.com/alexge233/cuANN
3https://github.com/OpenANN/OpenANN

110

http://leenissen.dk/fann/
https://github.com/alexge233/cuANN
https://github.com/OpenANN/OpenANN

The difference in this Algorithm is that the agent does not use a probability

on distance observations, but the actual distance which is scaled and normalised

depending on the input pattern pi size.

δ̂titk =
∆titk −min(pi)

max(pi)−min(pi)
. (5.7)

Therefore the ANN input Ij =
[
p(eterm), p(etag), δ̂titk

]
is a distributed input

vector based on observations of a statistical nature. Furthermore, the input values

are all real values x, so that 0 ≥ x ≤ 1, and because the probability values are

within the same range they can be used directly.

In the event that a tuple of terms is unknown (e.g., one or both of the terms

have never been observed before) then a secondary ANN will decide on the action,

using as input Ij =
[
p(etag), δ̂titk

]
. This introduces the issue of training two neural

networks instead of one; the assertion that the same ANN could be used by replacing

p(eterm) = 0 is erroneous because it implies that an unknown probability for a pair

of terms is an action to be avoided (which may or may not be the case).

Algorithm 8: Neural Network Action Selector.

Input: e(titk)

Output: at

1 if
(
∃(p(etag) = e(titk))

)
∧
(
∃(p(eterm) = e(titk))

)
then

2 ŷi = f
(
[p(etag), p(eterm), δ̂titk]

)
·Wi;

3 if ŷi[0] > ŷi[1] then

4 return A+
t ; at = e(titk);

5 else if
(
@(p(eterm) = e(titk))

)
∧
(
∃(p(etag) == e(titk))

)
then

6 ŷi = f
(
[p(etag), δ̂titk]

)
·Wi;

7 if ŷi[0] > ŷi[1] then

8 return A+
t ; at = e(titk);

The pseudo-code in Algorithm 8 shows a summary of the process using a

shallow neural network to classify information as candidate actions at. It creates all

possible edges in a set Et such that it contains all the possible combinations between

ti and tk (as well as tk and ti). It then proceeds to classify each possible edge e(titk)

as a potential action.

Forward propagation is used, denoted as f(Ii) ·Wi) and replacing the output

of previous layers as
∑

(Oj) = f(Ii); this is a two-step process in a shallow network

with one input layer, one hidden layer and one output layer. The input layer is

made up of three input nodes (each one receiving as value one of the items in Ii)

111

or in the case of the second smaller network, of two input nodes, a variable amount

of hidden nodes (which has been optimised and discussed later on) and two output

nodes.

Each output node represents the likely-hood of either executing action at or

not executing it. The Algorithm 8 indicates that if the first value in the output vector

is larger than the second, then the agent should execute that action (by adding it in

the set of actions At). This is consistent across all neural network implementations

in Icarus; the first output node represents the action and the second an inaction.

The activation function f (as described earlier in Section 2.4.1) can be either a

sigmoid or a tanh function; the output action is a soft-max since they do best with

classification tasks [Glorot and Bengio, 2010].

Throughout the shallow neural network experiments I tried various network

architectures with a variable number of hidden nodes. An anecdotal formula cir-

culating the web [Stackexchange, 2015] as shown in (5.8) was used; the formula

itself appears to have been devised using findings [Sheela and Deepa, 2013] when

researching methods to find fixed number of hidden neurons. The task of hyper-

parametrisation of the ANN is a complex one and outside the scope of this thesis,

yet it directly affects the outcomes of the Icarus agent.

Nh =
Ns

alpha · (Ni +No)
. (5.8)

The above equation (5.8) simply serves as a starting point for finding the

amount of hidden nodes; Nh are the hidden nodes, Ni the input nodes, No the

output nodes and alpha is a constant for adjusting/discounting the hidden ones.

Other parametrisation factors are the activation function: I experimented using

both sigmoid and tanh and eventually ended up with sigmoid for shallow networks.

Training the ANN was done after the agent iterates and processes the set of

conceptual graphs used as paradigms from which to learn (see Section 3.2); first it

must data-mine the statistics as described in Sections 3.6 and 5.3, and only then

can it be trained using the data acquired.

Thus a cyclic process is formed: the agent learns via MDP and Q-learning,

it extracts meta-data and trains the ANN, and finally the ANN is used to explore

unknown policies for new MDPs for which no Q(st, at) exist. This group of processes

is shown in Figure 5.6 and is part of both the Icarus engine, as well as the core that

drives the use of ANN for Icarus: ANN can’t be trained without the MDP and

Statistics memory, and the MDP explores non-random actions by using the ANN

as classifier of actions. The Algorithm that produces the training samples for the

112

MDP Extract Statistics

EncodeNeural NetsClassify

Figure 5.6: Cyclic Process: MDP to Statistics to ANN

ANN is shown in the pseudo-code in Algorithm 9, with a similar combinatorial loop

as in Algorithm 8, lines 2 to 7.

That process is run after the statistics memory has been populated; it iterates

possible actions and known ”good” actions, and then creates a training sample which

associates the underpinning input data which produces an action at. Because the

sample space S contains both ”good” and ”bad” actions, it creates random actions

by trying various combinations of nodes ni and nk found within the ideal graph Gyi
created for input pattern pi.

Algorithm 9: Neural Network Training Kernel.

Input: pi

Output: S = {· · · }
1 Eik = {· · · };
2 for ni ∈ Gyi (pi) do

3 for nk ∈ Gyi (pi) do

4 E+
ik; e(titk);

5 · · ·
6 for Q(st, at) ∈MDP (pi) do

7 if ∃(at) ∈ Eik, at = e(nink) then

8 S+
i ; {Ii = [p(etag), p(eterm), δ̂nink

]→ yi = [1, 0]};
9 else if @(at) ∈ Eik then

10 S+
i ; {Ii = [p(etag), p(eterm), δ̂nink

]→ yi = [0, 1]};

11 return S;

It then proceeds to filter the known actions which exist in the episode of pi

and which are associated with edges. For each action found and associated with an

edge the sample S adds a new pair of vectors: Ii as the input and yi as the output.

This step is repeated for all episodes in memory, thereby creating a sample set which

113

is proportionate to the possible edge combinations for each output graph Gyi .

5.4.2 Results

Experimenting with a shallow ANN resulted in substantially better accuracy than

all previous Algorithms and experiments (Sections 5.2 and 5.3). However, prior to

reporting the actual results, a thorough analysis of why the ANN performed better

is given.

Classification

The ANN used acts as a classifier ; it has been trained on classification of ”good”

actions by receiving information which characterise them. As such, it has the ability

to filter what it has learnt to be appropriate actions, with a certain degree of error.

Generalisation is a useful attribute of ANN, and the most common issues relate

to under-fitting (generalising too much, thus reducing accuracy) and over-fitting

(adapting to the training material too much, thus being unable to generalise). The

amount of training samples directly affects the ANN; in the Figure 5.7 the actual

data space (probabilities and term distances) have been mapped by an ANN to

showcase how it operates.

The green areas of the plots showcase the ”good” (e.g., high value) actions

as defined by Q(st, at), whereas the yellow and orange areas are low value actions,

and red areas are negative value actions. The spikes seen in the plots are distance

increases between terms labelling nodes; they signify how certain large distance

quantities in the action information triplets/tuples (see Section 5.3.2) are valid ac-

tions, e.g., outliers in the otherwise homogeneous low quality action area surrounding

them. The inverse spikes (facing downwards) signify the opposite; that inverse edges

(e.g., from e(nkni) instead of e(nink)) are negative valued actions.

There are four different plots in Figure 5.7 in order to demonstrate how

ANN works in the Icarus scenario; it maps the data space described in Section

5.3.2 by being trained with meta-data samples. As the sample size increases (e.g.,

by using larger data-sets) then more information can be classified, and thus the

agent becomes more accurate. At the last plot (bottom right corner) with 30,933

samples the agent is able to deal with the information obtained during evaluation

using both classification, and the approximating nature of the ANN (e.g., classifying

highly similar values).

Therefore the ANN solved the issue of providing a non-linear solution to the

underlying meta-data of triplets/tuples characterising a decision which results in a

114

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

T
er

m
 D

is
ta

n
ce

270 Samples

p(eterm)p(epos)

T
er

m
 D

is
ta

n
ce

-1 +1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

T
er

m
 D

is
ta

n
ce

13,905 Samples

p(eterm)p(epos)

T
er

m
 D

is
ta

n
ce

-1 +1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

T
er

m
 D

is
ta

n
ce

21,915 Samples

p(eterm)p(epos)

T
er

m
 D

is
ta

n
ce

-1 +1

Output Action Q-Value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

T
er

m
 D

is
ta

n
ce

30,933 Samples

p(eterm)p(epos)

T
er

m
 D

is
ta

n
ce

-1 +1

Output Action Q-Value

Figure 5.7: ANN Classifying and Mapping Search Space.

good or bad action at. Whilst they require training and careful hyper-parameter

optimisation, they are indeed a viable solution. The actual ANN implementation

used 3 input nodes, 320 hidden nodes, 2 output nodes, and a Sigmoid activation

function. Variations were examined, such as networks using Tanh activation, a

different number of hidden nodes (see formula 5.8), and the ANN with the best

empirically obtained accuracy was re-used.

Accuracy

Using the metric of Dice-Sørensen coefficient/F1 Score, the recorded the L1, L2 and

L3 RBD results are shown in Figure 5.8 with all data averaged, as well as including

115

Jaccard coefficient, and the graph component accuracy: node and edge similarity.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Shallow ANN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

S
m

o
o
th

e
d
 A

c
c
u
ra

c
y

Avg. Input Size pi

Shallow ANN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 6 7 8 9 10 11

S
m

o
o
th

e
d
 A

c
c
u
ra

c
y

Avg. Input Size pi

Component Smoothed Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

Figure 5.8: ANN Accuracy.

The deterioration of edge accuracy due to a decrease in node accuracy is

shown, a key factor affecting the overall agent accuracy. Also, in-line with other

research reports, increased input sentence/pattern size pi reduces overall accuracy

[Choi et al., 2015]. The clear difference between Jaccard and Dice/F1 Score can be

seen in the right-side plot; as the difference in ideal and actual graphs increases (not

just missing edges, but edges which shouldn’t exist) the score is penalised. Another

observation is that node similarity slightly increases when processing larger input,

prior to decreasing, resulting in a slight edge increase. As node accuracy remains

stable towards larger size input, edge accuracy begins to suffer; the conclusion is

that whilst node creation actions remain accurate, edge actions become increasingly

116

more complicated and hard. The filled area between Dice and Jaccard coefficients

serves the purpose of demonstrating how those two measures differ. Similarly, the

filled area between Node and Dice as well as Edge and Dice coefficient demonstrate

how the overall accuracy decreases due to edge similarity decreasing whilst node

accuracy remains constant.

The accuracy of various tools as reported by Choi et al [Choi et al., 2015, pp

391] uses UAS and LAS. Because the notion of unlabelled accuracy does not exist,

and since LAS encompasses both arcs (edges) and labels (nodes), the comparison

following is with respect to Dice-Sørensen/F1 Score and not to UAS. I compare to

projective trees [McDonald et al., 2005b] since English is the language used in this

thesis and historically projective trees have been used for English. Furthermore all

frameworks appear to result in a better performance for projective trees but also

use non-projective trees, therefore for completeness I provide that information as

well towards the Jaccard coefficient (and not the Dice–Sørensen).

As described by Choi et al [Choi et al., 2015] most parsers report the afore-

mentioned accuracy for sentences more than 10 terms/words long; therefore a com-

parison could be made only respective to the smaller input size (e.g., up to 11 words),

as shown earlier in Section 4.1.2, Figure 4.2. Furthermore, since the aforementioned

research uses other datasets, a direct comparison is not possible.

Choi et al mention that most parsers have a UAS accuracy of 93.49 to 95.5 for

sentences under 10 terms, which declines to 81.66 and 86.61 for sentences larger than

50 terms; in comparison the L1 random datasets used for testing Icarus averages

smaller input size (see Figure 4.2). Comparing large input datasets sees a drop in

accuracy, yet it hasn’t been possible to correlate if that drop in Icarus is consistent

with the drop reported by other frameworks and research.

In terms of exact match accuracy (EM) the Icarus shallow ANN performance

averaged a 61.65 per cent, slightly above the averages reported by Choi et al [Choi

et al., 2015] which are 58.36 EM for UAS, taking into consideration the smaller

input size and difference of datasets. However, the work done by Choi et al does

not include Google’s Syntaxnet [Andor et al., 2016; Weiss et al., 2015] which has

provided the best to date F1 scores of 94.44% on news data and 95.40% on question-

answer data. The approach described by SyntaxNet is very similar with only one

major difference: the use of feature vectors rather than distributed encoders.

Ultimately what can be concluded from the shallow ANN experiments and

the agent implementation, is that it is quite similar to state-of-the-art performance;

Section 2.7.6 and framework Tables 2.1 demonstrate a range of F1 of 90% to 95.40%.

Although using non-directly comparable datasets due to input size differ-

117

ences, CG have an increased complexity due to partitioning nodes and then classi-

fying edges. Whilst that does not ameliorate the complexity increase when dealing

with larger input sentences, it is nonetheless a critical factor that should be taken

into consideration.

Interestingly, Google’s research [Andor et al., 2016] indicates that shallow

ANN tend to perform just as good, if not better than more complex deep networks, a

design which I explore in the next Section 5.5. Regardless of the somewhat simplistic

design and scheme, a well tuned ANN is able to accurately create new actions,

without the need to be retrained due to the distributed encoding nature; the meta-

data can be updated via Statistics and therefore the generalising and approximating

nature of ANN allow their continuous use.

5.5 Deep Learning Experiments

The field of deep learning has been a trending topic in the past 8 years; albeit deep

learning is a field of machine learning, it is ANN re-branded for use with GP2U,

nVidia’s CUDA and a family of new activation functions and training algorithms

(see Section 2.4.3 for a thorough list). This notion doesn’t imply that traditional

ANN and deep learning are the same; they do share a common origin and structure,

but as models, algorithms and kernels they differ (as discussed in Sections 2.4.1

and 2.4.3). Because of the encouraging results from shallow ANN (Section 5.4.2) I

decided to implement a deep learning module which would focus on the structured

and hierarchical nature of NLU and CG. Similar to the previous sections, Icarus

was tested using the dataset from Chapter 4 and measured using Dice-Sørensen (see

Section 5.1.3) Following is the description of the implementation and the results.

5.5.1 Implementation

The actual design and implementation of deep learning uses a cascade of deep net-

works, as shown in Figure 3.10 and discussed in Section 3.9. The idea behind that

approach is that the outer deep networks classify sparsely encoded vectors (see for-

mulae 2.29 and 2.30) which represent a term ti as an item with the lexicon vector;

combining two of those sparse vectors produces a pair/tuple of an edge (or arc)

such that Ii = Vm+n where m is the size of the concept lexicon and n is the size

of the relation lexicon. Those are highly sparse vectors: only one value is usually

activated, and two different networks are needed, one for edges from concepts to

relations, and one for edges from relations to concepts.

118

Algorithm 10: Deep Network Training Kernel.

Input: pi

Output: S = {· · · }
1 Eik = {· · · };
2 for ni ∈ Gyi (pi) do

3 for nk ∈ Gyi (pi) do

4 E+
ik; e(titk);

5 · · ·
6 for Q(st, at) ∈MDP (pi) do

7 if ∃(at) ∈ Eik, at = e(nink) then

8 S+
i ; {Ii = [Vm(ti), Vn(tk)]→ yi = [1, 0]};

9 else if @(at) ∈ Eik then

10 S+
i ; {Ii = [Vm(ti), Vn(tk)]→ yi = [0, 1]};

11 return S;

First the outer networks are trained on term-based edges and POS tag-

based edges, then the inner networks are trained on classifying the encoder network

output as a viable or non-viable action at. That approach aims to detect and

learn characteristics of the triplets (term-based vectors, POS-based vectors and term

distances) as sparse input, rather than distributed encoded input. The deep learning

training Algorithm is shown in the pseudo-code in 10; the process is similar to the

one described earlier in Algorithm 9.

The shallow ANN created two matrices with respective columns m and rows

n, e.g., Im,n for input and Ym, n for output with Im=3 for input matrix and Ym=2

for output matrix and n being the number of samples. The deep training sampling

Algorithm uses input Im=‖C‖+‖R‖ e.g., the width of the input matrix I which equals

the cardinality of the concepts and relations lexicons (assuming the deep network for

concept to relation edges). The relation to concept network has an input Im=‖R‖+‖C‖

columns, whilst the n remains the number of samples and output matrix Ym=2

is the same. Therefore shallow ANN process triplets acquired from probabilities,

deep networks process features, or most specific, edges based on features as well as

probability triplets.

The output of each network is the likelihood using soft-max, as described by

equation (2.19) and all hidden layers and nodes use the ReLU function (equation

2.18); that combination is widely used and accepted as a good solution for fast learn-

ing [Tomczak, 2015; Dahl et al., 2013; Nair and Hinton, 2010]. Most networks were

optimised manually over a period of a year; various combinations of hidden layers

119

and hidden nodes were tried with a simple but effective methodological approach:

small adjustments and re-training until the cross-evaluation accuracy peaked.

During evaluation, if a term ti or tk is unknown, e.g., not indexed in the

relations or concepts lexicons, a fallback mechanism using the semantic distance as

described in Section 3.7, and 3.10. Therefore, during training of the outer networks

the input vector is sparse with a binary activation; this scheme may be replaced

by a real valued sparse input vector if the term being processed is unknown. The

actual value replacing the binary feature is derived from formula (3.8) but inverted

so that the closer to zero it is it will represent no similarity, and the closer to one it

is it will represent high similarity. The updated formula is shown in (5.9).

ṽtitk = 1− ṽtitk
= {ṽtitk ∈ R‖0 ≥ ṽtitk ≥ 1}.

(5.9)

This conversion affects sparse vectors, where the edge of nodes labelled by

ti and tk indexes an unseen or unknown term (ti) which has a known semantic

relation to another term tj . Because many similar terms may exist, the Algorithm

will always chose the topmost similar one (if multiple topmost similar ones, then

the first one). As a result, the input vector Iik instead of being a binary vector, is

transformed to a real-valued one as shown in (5.10).

Iik(ti|tj) =
[
0, 0,max(ṽtitj), 1, . . . , 0

]
. (5.10)

The pseudo-code in Algorithm 11 demonstrates the high-level logic behind

this approach; it tries to use semantic-based actions rather than syntactic-based

actions. The Algorithm uses a similar approach to the shallow ANN described in

Section 5.4; the difference is that instead of using the triplet values the input is a

sparse vector.

An edge from concept to a relation is defined as eC|R whereas an edge from

a relation to a concept is defined as eR|C . Thus, two different networks are used as

aforementioned, by concatenating the lexicon/set indexing concepts and relations or

vice versa. In the event that the sum of the vectorised input
∑
ŷterml=1 is greater than

one, then the assertion is that the vector can be used by the network; a vector with

a sum equal to one or less is not usable, and the Algorithm will fallback to using

POS tags only. Any value less than one implies that (a) the vector is not binary,

and (b) it may be a vector with two real valued indexes with less than 0.5 similarity.

The first layer of networks (input layer denoted by subscript l = 1) processes

120

only sparse vectors and produces in turn the output ŷl=1 with each network corre-

sponding to a either term or POS tag vectors. The second layer of networks (inner

layer denoted by subscript l = 2) processes the output of the previous networks;

thus two networks are used; one for both term and POS network output as well as

distance metric, and one for only POS network output and distance metric. The

final output ŷl=2 is a classification likelihood: if the first value is larger than the

second, then the network cascade associates that information with an action.

A variety of training algorithms were used, such as MBSGD, LBFGS, Conju-

gate Gradient and LMA; ultimately it was MBSGD which provided the best results

with careful fine-tuning. Most networks have four to six hidden layers, and around

350 hidden nodes, learning rates were kept small (0.01 to 0.1) from empirical testing

and optimisation, and the networks with the best accuracy in cross-evaluation were

re-used.

A methodology of an RBD was used when comparing deep networks, mostly

in order to determine their comparison to sparse and non-sparse vector input; as

such I tried a combination of sparsely encoded vector input and distributed input.

Algorithm 11: Deep Network Evaluation.

Input: e(titk)

Output: at

1 if
(
eC|R(titk)

)
then

2 I
term;C|R
l=1 = [Ci(ti), Rk(tk)];

3 ŷterml=1 = f(I
term;C|R
ik);

4 else if
(
eR|C(titk)

)
then

5 I
term;R|C
l=1 = [Ri(ti), Ck(tk)];

6 ŷterml=1 = f(I
term;R|C
ik);

7 IPOSl=1 = [POS(ti), POS(tk)];

8 ŷPOSl=1 = f(IPOSik);

9 if
(∑

ŷterml=1 > 1
)

then

10 Il=2 = [ŷterml=1 , ŷterml=1 , δ̂titk];

11 ŷl=2 = f(Iik);

12 else if
(∑

ŷterml=1 ≤ 1
)

then

13 Il=2 = [ŷPOSl=1 , δ̂titk];

14 ŷl=2 = f(Iik);

15 if
(
ŷl=2[0] > ŷl=2[1]

)
then

16 Return at = e(titk);

121

5.5.2 Results

The first and foremost observation is that training deep networks is considerably

harder than training shallow networks, achieving sufficient accuracy has been very

difficult. Part of the difficulty arises from the sampling kernel as described in Al-

gorithm 10; it allows for duplicate samples which may have contradictory outputs.

This as a result made accurate training very difficult with networks such as the POS

network constantly under-fitting and having a cross evaluation accuracy of 79%. The

term-based networks performed considerably better at 99% accuracy. However, the

error from the POS propagated to the second layer networks, and as such did not

perform well.

This issue was ameliorated (but not entirely removed) by not inserting dupli-

cates in the samples; arguably a better solution would be to filter duplicates based

on their usefulness (if that could be quantified and measured). By doing so, POS

network cross-accuracy increased to 0.8995 still considerably lower than term-based

accuracy.

Another reason why this is a problem is due to the contradictory nature of

POS tags; whereas they form categories of words, terms and symbols, quite often

those categories may generalise too much, therefore creating samples which induce

under-fitting in the network. The contradictions are often enabled by ambiguity

Gorrell [2006] in the underlying pattern/sentence pi which is further generalised by

using POS grouping. A solution to this problem is to prefer term-based actions

since they remove part of the generalisation of POS, and offer a more specific and

specialised point of view.

Sparse POS - Distributed Terms

In this scenario the POS network was a deep neural network (DNN) using sparse

encoding, whilst the term processing networks used DNN processing distributed

encoding as with the previous shallow ANN Section 5.4. The mean accuracy x̄ =

0.9563 and standard deviation σ = 0.0213, are higher than earlier results, whereas

the full dataset accuracy at 10.5 average input is at 94%.

An interesting observation from Figure 5.9 is that accuracy does not deteri-

orate as much as it did earlier, in fact it appears to perform better than before with

larger input. Furthermore it appears to have a ”dip” at ‖pi‖ = 7 which can be at-

tributed to the fact that those datasets had a larger evaluation set than before, thus

bigger room for error (see Figure 4.2). Even more interestingly, the DNN processing

POS had a cross-evaluation (CE) accuracy of 0.8995 to which I can attribute the

122

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

DNN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

Figure 5.9: Sparse POS and Distributed Term Classifiers

decrease in edge accuracy when concerned with larger input accuracy.

Sparsely encoded DNN can become more accurate than distributed-encoded

schemes, especially with large training samples. In comparison to shallow ANN,

and taking into consideration that CE is at 0.8995 for POS-based edges, a 1.25%

improvement was observed.

Sparse POS - Sparse Terms

The networks used were a deep sparse-encoding network for POS, and two deep

sparse-encoding networks for term-based edges. The Dice/F1 mean accuracy was

x̂ = 0.9384 and standard deviation σ = 0.0263. Accuracy was therefore lower than

shallow ANN, or distributed-encoded terms.

The term-based DNN had 0.9999 CE, therefore I cannot attribute the drop

in accuracy to a non-optimised network. In fact, the only changed parameter is

the shift from a distributed-encoding scheme to a sparsely-encoded scheme. The

only other factor that may cause that decrease in accuracy is the option to use

Semantics-based terms swapping.

Distributed POS - Sparse Terms

The networks used were a deep sparse-encoded network for term-based edges, and

a DNN using distributed-encoded triplet values for POS.

The Dice/F1 mean accuracy was x̂ = 0.9382 and standard deviation σ =

0.0262, shown in Figure 5.11. Accuracy below the shallow ANN benchmark, and the

123

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

DNN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

Figure 5.10: Sparse-Encoded POS and Term Edge Classifiers

previously DNN obtained results. Since the sparsely-encoded POS cross-evaluation

was also lower at 0.8995 CE is ameliorated by the somewhat better term-based CE at

0.9999, yet the overall performance is below all previous schemes. This also proves

that distributed encoding of POS-based edges is marginally worse than sparsely-

encoded POS vectors. Similarly it further supports the notion that the distributed

encoding of term-based edges is better than the sparsely-encoded term vectors.

Distributed POS - Distributed Terms

This final scenario used DNN which encoded distributed triplet values, similar to the

shallow ANN earlier. Those networks aren’t shallow, don’t use logistic activation

functions but linear (ReLU) and have 3 and 4 hidden layers, and 120 - 180 hidden

nodes. From Figure 5.12 it is apparent that performance of distributed-encoded

DNN is on par with shallow ANN; in fact it is marginally better by 0.51%. Whereas

shallow ANN achieved an average x̂ = 0.9438 the equivalent DNN using the same

data achieved x̂ = 0.9489 with a standard deviation of σ = 0.0240.

Therefore it is clear that when using the more traditional distributed-encoded

scheme, actual performance doesn’t really differ; the small margin could be at-

tributed to larger training samples, L1 or L2 regularisation or random weight ini-

tialisation. The latest trend of deep learning has made considerable improvements

in many fields, and whilst NLU and NLP are one of those fields, as indicated by

Andor et al [Andor et al., 2016] shallow ANN can often perfrom just as good and

achieve similar accuracy easier than DNN.

124

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

DNN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

Figure 5.11: Sparse-Encoded Term Edge and Distributed-Encoded POS Classifier

Deep Learning Conclusions

Training deep networks is considerably more difficult that training shallow networks,

and the hyper-parameters are a lot harder to optimise, as shown in the previous

Section. It would be unsound to conclude that deep learning in NLU doesn’t perform

well; it appears to offer a better stability especially when using larger input size, yet

fine-tuning it is a tedious task.

Increasing the training samples (which is often considered a good solution)

did not often help, and when comparing shallow ANN to DNN the results were

marginally better. What did make a difference, was using a sparse vector encoding

for POS; it achieved the best accuracy of 94% in combination with a distributed

encoding scheme of triplet values.

Considering that Google’s Syntaxnet [Andor et al., 2016] achieved a 94.44%

F1 score on news data using only POS, whereas this work managed to achieve a 94%

on data from a similar domain, but of smaller input size is encouraging; however

there is still room for improvement when taking into account the somewhat low CE

from the trained DNN.

I also tried using deep learning with POS-only edges; the agent only used

POS tags and no term-based actions at all. Accuracy was considerably lower: the

best attainable mean was x̂ = 0.8895 with σ = 0.0374. Those results support the

notion that term-based edges are not only useful but preferable to POS tags.

125

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

DNN Accuracy

Dice / F1 Score
Jaccard Coefficient

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10 11

A
v
g
.
A

c
c
u
ra

c
y

Avg. Input Size pi

Graph Component Accuracy

Node Similarity
Edge Similarity

Dice Coefficient

Figure 5.12: Distributed Term Edges and Distributed POS Edges

5.6 Experiment Conclusions

In this Chapter I described the methodology used for experimentation, how accuracy

was quantified and how it relates to similar approaches from other research, the

experiments done throughout my doctoral research, the Algorithm implementations

in the highest level, the actual results and their analyses, as well as how the Icarus

engine compares to state-of-the-art research.

The first and obvious conclusion to which all parsers are fallible is the in-

put size and how that relates to complexity. It was disheartening to observe high

accuracy and performance deteriorate with increased input size, regardless of the

Algorithm used. I investigated as many attributes of complexity as possible and

within my research scope (because complexity is a field on its own accord) and

discovered that (a) all parsers suffer from this phenomenom as Choi et al [Choi

et al., 2015] clearly indicate, and (b) that there appears to be a connection with the

meaning and logic flow of a sentence and not simply the input size, although that

complexity often increases in accordance with the input size.

This is best demonstrated in Figure 5.13; I used Principal Component Anal-

ysis (PCA) on the input pattern pi features (word length and edge search space)

and projected their most significant Eigenvectors on a single dimension on axis X,

then used axis Y to represent the node to edge ratio which appears to be an indica-

tor of graph complexity, and used axis Z to plot the graph average path length (see

Section 4.2). The 4th dimension is the accuracy: a PCA on Boolean (Exact Match),

Dice/F1 Score and Jaccard, represented by the heatmap, e.g., the colour change of

126

Complexity Map

−2

−1

 0

 1

 2

 3

 4

 5

Input Complexity (PCA)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Node−Edge Ratio

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
ra

p
h
 P

a
th

−
S

iz
e

Accuracy and Graph Complexity

−2

−1

 0

 1

 2

 3

 4

 5

Input Complexity (PCA)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Node−Edge Ratio

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
ra

p
h
 P

a
th

−
S

iz
e

high

A
c
c
u
ra

c
y
 (

P
C

A
)

Figure 5.13: Complexity Mapping to Accuracy PCA

the right-side plot. From a visual analysis of the Figure it is easy to spot the most

crucial factor: node to edge ratio, e.g, graph sparseness, which has been correctly

identified as a complexity factor. Whilst graph path-size does increase (almost lin-

early) the complexity, it is in combination with sparseness that it creates the ”ripple

effect” seen in the Figure 5.13 which coincidentally has lower than average accuracy.

This ripple effect is observable in all previous Figures in DNN, and can be seen as

the ”dip” at various stages, regardless of input size.

Overall the agent accuracy ranged depending on the Algorithm implementa-

tion, however the actual best performing Algorithm (DNN Section 5.5.2) performed

somewhat similar to state of the art platforms taking into consideration the fact that

larger input was not used, and that CG have an added level of complexity due to

their bipartite nature. Coincidentally the actual implementations are also similar;

albeit I’ve published theoretical approaches earlier [Gkiokas and Cristea, 2014b], it

wasn’t until later that results were submitted [Gkiokas and Cristea, 2016a].

The agent approach taken is vastly different from NLU, dependency parsing

and the general field of NLP, it has been designed as a cognitive agent scheme

taking into consideration experience, paradigm decoding, associative learning and

imitation, rather than the idiomatic attributes of news data, the characteristics of

the NLP domain, and the background work of NLU and NLP. This is evident by the

different approaches taken in my doctoral research in comparison to the standards

in NLU and NLP. However, as seen by the results, albeit Icarus engine is highly

unorthodox it provides similar performance and accuracy. The evaluation is, due

127

to the dataset and its characteristics, inconclusive on larger input. Whereas there

are large sentences in the dataset, those are not many, in fact the dataset used

favours smaller input (see Chapter 4, and in specific Figure 4.2) therefore a direct

comparison to other research which uses larger input sizes is not possible.

128

Chapter 6

Conclusions and Future Work

Closing the thesis in this Chapter, I provide a discussion on what has been done

within the four years of my Doctoral research, the design, implementation and

choices made, and the contributions to the field of AI.

6.1 Conclusions

First and foremost, the approach taken has been unconventional for which there is

a very good justification; during my first two years I tried to mimic and implement

a cognitive agent which would be as similar to the imitating mechanisms found

in humans as possible. Whereas I cannot claim it is biologically plausible or an

emulation, it certainly does meet all criteria as set and described in Sections 2.5

and 3.13 by the theoreticians of Synthetic and Cognitive AI. What has primarily

been achieved is the demonstration that a cognitive agent as an implementation in

C++ does actually learn by example, and it does so by using associative memory

models, reinforcement learning and statistical probabilities. Furthermore, not only

does it work as intended, but in most cases it provided results which are in the same

category as state-of-the-art results, with the potential to achieve even better results

if the DNN used are further optimised or if big data is used to train the agent.

Therefore the importance of the main contribution is that this thesis de-

scribes one of the cases where theoretical work laid beforehand has been empirically

and methodically proven to function, and more so by achieving a significant accu-

racy. The agent relies on a form of Deep Artificial Reinforcement Learning, similar

to how DQN used deep learning with reinforcement learning. That premise is not

unknown and is gaining momentum: standalone models can be enhanced when com-

bined correctly with other Algorithms, such as in the case of DQN as demonstrated

129

by DeepMind and Google.

The agent manages to efficiently decompose paradigms given as examples by

the user; admittedly the field of example decomposition in learning by imitation

requires further research as it could entail a variety of benefits to both robotics and

software agents. Whereas in software agents decomposition in effect becomes pars-

ing, in Robotics it is more closely related to computer vision, yet both decomposition

sub-domains require a common framework with its foundations in AI and not NLP

or Robotics. This in effect translates into the need of decomposing domain-specific

material (e.g., images, video, text, audio) into high level KR (e.g., the CG used here

or the MRL used in NLU) so that a unitary imitation mechanism can be developed

which would encompass all information available to AI agents.

All of the original research questions have been answered. Furthermore,

theoretical advice from Haikonen (Section 2.5.2) and Bach (Section 2.5.1) have been

used as the template upon which Icarus was built (analysed in Section 3.13). Icarus

was designed, implemented and tested as an interacting software agent, with the

end-goal of being a node in an intelligent system which can provide KR from text,

and then use it to reason. Whereas it was impossible to develop a complex cognitive

reasoning system within the time-frame of this PhD, it is doable if using as the basis

the Icarus engine, which could potentially also perform other high level cognitive

functions, such as learning to reason by imitation, etc. Following is an analysis of

those research questions, how they have been addressed and the contribution related

to the field.

How can cognitive agents learn by imitation?

Agents, cognitive, robotic and artificial systems can learn as shown in this thesis, by

using reinforcement learning as the MDP template serves the temporal-sequential

role of both the learner and the dynamic program. By doing so, the agent is ex-

tracting qualia from the learning material, and internally re-creating it and learning

it. This approach has two major advantages: (a) it is based upon reinforcement

learning, which is itself based upon behaviouristic Psychology and is therefore an

Algorithm inspired by the biological counterpart, and (b) it does so in a sequential-

temporal manner instead of a one-off process. Doing so enables cascading of different

families of Algorithms as seen in previous Chapter 5 and also enables beam-searching

using the MDP as the indexing mechanism.

130

How can an AI agent acquire knowledge from the Internet via imitation?

The Icarus agent has been successful at acquiring knowledge (stored as CG) from

news sources on the Internet (RSS feeds). Whilst not all Internet knowledge is

stored in news articles, and a considerable amount of user content is very different

from news articles, Icarus is able to answer that question. Using a combination of

RL, ANN and Statistics Icarus achieved a satisfactory accuracy in projecting raw

text onto KR, and it did that by being shown and then learning by imitation.

What are the differences between Learning by Imitation and Program-

ming by Example?

Whereas PBE [Lieberman, 2000] is concerned about programming, AI imitation

learning is mostly focusing on learning. Traditionally the field of imitation learning

has seen research in Robotics and not in AI. On the contrary PBE was a field now

eclipsed, which had most work (if not the entirety) done on graphical user interfaces.

Most of the criticism on PBE (in Section 2.6.2) is what this thesis addressed:

- Hidden States: decoding examples into qualia is done via inference (heuristic

or approximating Algorithms).

- Machine Learning : using ANN, Deep Learning and other ML models has

clearly demonstrated big advantages, especially when compared to more tra-

ditional Heuristic, Statistic or Probabilistic approaches.

- Sophistication and Complex Systems: PBE systems used a naive and some-

what overly simplistic approach; Icarus on the other hand is a full-fledged

cognitive AI agent, which comes with certain complexity but a much higher

degree of flexibility and accuracy.

Whereas PBE made too early of an appearance in Computer Science, modern

AI could potentially advance both user interfaces as well as Cognitive AI systems

by PBE or learning by imitation. The results of this thesis have demonstrated that

the lines between programming and learning can blur when the target is an agent

and not an interface.

What are the advantages of agents which learn by imitation?

This question was asked by Dautenhanh [Dautenhahn and Nehaniv, 2002a] and

remains valid today. Why should researchers or developers put additional effort

into creating or enabling imitation in agents and systems alike? The answer to such

131

a question cannot be easily answered and depends on the scenario or the domain.

In general however, the advantages are:

- Agents can learn directly from users, user generated data, raw information

(text or otherwise), thereby reducing the need for processing data, information,

creating training samples or sets, etc.

- A learning agent can be autonomous, self-updated, and require little to no

maintenance when compared to other systems.

- There is no need for searching, trial and error, state mapping, etc. This is

perhaps the biggest advantage and often the one most undermined. With

imitation there exists knowledge transference and thus agents don’t need to

discover; they learn by observation or interaction.

Researchers previously considered such agents as researchware, software with

the sole purpose of being used in research. However that idea is beginning to change;

modern IT giants such as IBM, Google, Microsoft, Yahoo, Apple and Amazon are

investing in personal AI assistants (Siri, Alexa, Watson, Cortana) as well as cloud-

based AI agents and systems. Therefore, a crucial part of those agents already is,

or will soon be, learning by imitation.

How do artificially imitating agents compare to traditional software sys-

tems?

Chapter 3 set the theoretical foundations, based upon previous research but creating

an imitating agent. Chapter 5 reported on the results and findings, evaluating and

demonstrating that imitating agents can outperform traditional approaches, and are

similar to state-of-the art researchware which rely on very similar technologies (e.g.

SyntaxNet). Although Heuristic systems based on simple but robust mechanisms are

still useful and have domain-specific applications, artificial agents are more adaptive

and flexible and can constantly evolve or become better over time.

6.2 Criticism and Limitations

One of the cornerstone issues of parsers is accuracy versus speed. Researchware

often focuses on how accurately it can parse, without taking into account the fact

that applications must also be fast and optimised. Icarus is indeed researchware,

optimisations have been made to increase accuracy and not speed.

132

Other limitations arise from the need to re-train when dealing with new

domains, sub-domains or unknown symbols. There doesn’t seem to exist a clear

solution to this: big-data and extremely large training sets appear to be one way of

handling such issues, another solution is the ability to continuously update. Icarus

tackles this issue by being updatable and re-trainanable on-the-fly, as well as using

semantic approximation (Sections 2.7.3, 3.10 and 5.2) in order to alleviate the need

for retraining or domain-dependant training.

Arguable one of the biggest criticisms is the decision to use conceptual graphs

instead of MRL which is the norm. The use of CGs is justified; this is not an

NLP/NLU focused research, but instead relies on users to create training samples

from which the agent learns. As such it was crucial that the KR scheme used

would be visually simple and easy to use, and CG fulfil that criteria. However, they

also induce additional errors: the node accuracy (which in essence is the amount

of correctly selected components of the bipartite CG) propagates as error into the

edge accuracy. Whereas the exact correlation of node to edge error propagation

is unknown, it is certain that it exists (albeit its not the only reason why edge

similarity declines). Using MRL instead of CG would have removed that error, and

could therefore increase Icarus accuracy; furthermore it would allow Icarus to be

trained with very large datasets which have been used in the past.

One of the limitations which I haven’t been able to surpass but do have plans

for the near future, is the ability to take into account context, e.g., previous term tj

and next term tk when examining actions for ti within a pattern pi. Whereas the

temporal nature of the MDP takes into consideration the creation of the KR, it does

not take into consideration the semiotics of the previous and next entities. This could

possibly be achieved with Bayesian inference, or recurrent neural networks (RNN).

Whilst Andor et al [Andor et al., 2016] argue that ANN can perform better than

RNN, it is important to note that processing time series is most always better done

using RNN, echo state network (ESN) or similar models.

6.3 Future Work

A task for the very near future is to remove CG and implement Icarus using MRL

and train it with existing datasets, and then examine how it performs. Furthermore,

training it with multiple datasets (big data) could provide valuable insight into

actual applications in the field of NLU and NLP.

Another task for future work is the development of a contextualising Algo-

rithm when deciding on edge actions, preferably using Bayesian inference on top

133

of the Statistical probabilities, and perhaps with the use of a ESN for processing

time-series predictions and classifications.

The last task for the near future is to further develop a reasoning system

based on Icarus, which would attempt to arrive to conclusions based on KR input

given by the user, or based on text input.

134

Appendix A

Penn Treebank POS tags

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign Word

IN Proposition/Subordinating conjunction

JJ Adjective

JJR Adjective comparative

JJS Adjective superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

135

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

136

Appendix B

Conceptual Graph examples

137

F
ig

u
re

B
.1

:
S

y
n
th

et
ic

m
ar

ij
u

a
n

a
is

m
ad

e
w

it
h

sh
re

d
d

ed
p

la
n
t

m
at

er
ia

l
co

at
ed

w
it

h
ch

em
ic

al
s

d
es

ig
n

ed
to

m
im

ic
T

H
C

p
sy

ch
oa

ct
iv

e
co

m
p

ou
n

d
fo

u
n

d
in

m
a
ri

ju
an

a
.

138

F
ig

u
re

B
.2

:
A

rt
ifi

ci
al

m
ag

n
et

ic
b

ac
te

ri
a

tu
rn

fo
o
d

in
to

n
at

u
ra

l
d

ru
gs

.

139

F
ig

u
re

B
.3

:
A

ta
lu

re
n

P
h

as
e

3
tr

ia
l

re
su

lt
s

in
n

on
se

n
se

m
u

ta
ti

on
cy

st
ic

fi
b

ro
si

s.

140

F
ig

u
re

B
.4

:
U

K
d

ru
g

co
m

p
a
n
y

A
st

ra
Z

en
ec

a
re

je
ct

s
im

p
ro

ve
d

fi
n

al
£

69
b

il
li

on
ta

ke
ov

er
off

er
fr

om
U

S
fi

rm
P

fi
ze

r.

141

F
ig

u
re

B
.5

:
L

ew
y

b
o
d

y
d

em
en

ti
a

is
m

os
t

m
is

d
ia

gn
os

ed
d

em
en

ti
a

aff
ec

ti
n

g
13

m
il

li
on

A
m

er
ic

an
s.

142

Figure B.6: Action star has got himself tank and destroys piano and birthday cake
with it.

143

F
ig

u
re

B
.7

:
P

la
n

to
off

er
b

et
te

r
ca

re
an

d
tr

ea
tm

en
t

fo
r

50
00

00
p
at

ie
n
ts

li
v
in

g
w

it
h

n
eu

ro
lo

gi
ca

l
co

n
d

it
io

n
s.

144

F
ig

u
re

B
.8

:
E

ac
h

ce
ll

u
se

s
p

a
rt

ic
u

la
r

sc
h
em

es
of

m
ol

ec
u

la
r

in
te

ra
ct

io
n

w
h

ic
h

p
sy

ch
ol

og
is

ts
ca

ll
in

te
rc

el
lu

la
r

si
gn

al
in

g
p

at
h
w

ay
s.

145

F
ig

u
re

B
.9

:
B

ra
n

ch
in

g
w

it
h

C
ol

u
m

n
G

ra
p

h
s

146

F
ig

u
re

B
.1

0:
B

ra
n

ch
in

g
w

it
h

C
ol

u
m

n
G

ra
p

h
s

147

Bibliography

Surafel Lemma Abebe and Paolo Tonella. Natural language parsing of program

element names for concept extraction. In Program Comprehension (ICPC), 2010

IEEE 18th International Conference on, pages 156–159. IEEE, 2010.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and

Aitor Soroa. A study on similarity and relatedness using distributional and

wordnet-based approaches. In Proceedings of Human Language Technologies: The

2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 19–27. Association for Computational Linguis-

tics, 2009.

Robert Amant, Luke Zettlemoyer, Henry Lieberman, and Richard Potter. Visual

generalization in programming by example. In Henry Liebermann, editor, Your

wish is my command: Programming by example, chapter 19, pages 371–385. Mor-

gan Kaufmann, 2001.

Gianni Amati and Iadh Ounis. Conceptual graphs and first order logic. The Com-

puter Journal, 43(1):1–12, 2000.

John R Anderson. Act: A simple theory of complex cognition. American Psychol-

ogist, 51(4):355, 1996.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized

transition-based neural networks. arXiv preprint arXiv:1603.06042, 2016.

Jacob Andreas, Andreas Vlachos, and Stephen Clark. Semantic parsing as machine

translation. In ACL (2), pages 47–52, 2013.

Joscha Bach. Seven principles of synthetic intelligence. Frontiers In Artificial Intel-

ligence And Applications, 171:63, 2008.

148

Joscha Bach. Principles of synthetic intelligence PSI: an architecture of motivated

cognition, volume 4. Oxford University Press, 2009.

Joscha Bach. Micropsi 2: the next generation of the micropsi framework. In In-

ternational Conference on Artificial General Intelligence, pages 11–20. Springer,

2012.

Miguel Ballesteros, Bernd Bohnet, Simon Mille, and Leo Wanner. Deep-syntactic

parsing. In COLING, pages 1402–1413, 2014.

Albert Bandura. Social foundations of thought and action: A social cognitive theory.

Prentice-Hall, Inc, 1986.

Prabir Barooah and Joäo P Hespanha. Estimation on graphs from relative mea-

surements. Control Systems, IEEE, 27(4):57–74, 2007.

Mathias Bauer, Dietmar Dengler, and Gabriele Paul. Trainable information agents

for the web. In Henry Liebermann, editor, Your wish is my command: Program-

ming by example, chapter 5, pages 87–114. Morgan Kaufmann, 2001.

J Neil Bearden and Terry Connolly. On optimal satisficing: how simple policies

can achieve excellent results. In Decision modeling and behavior in complex and

uncertain environments, pages 79–97. Springer, 2008.

Sean Bechhofer. Owl: Web ontology language. In Encyclopedia of Database Systems,

pages 2008–2009. Springer, 2009.

Richard Bellman. A markovian decision process. Technical report, DTIC Document,

1957.

Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1):1–127, 2009.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In ACL (1),

pages 1415–1425, 2014.

Dale E Berger, Kathy Pezdek, and William P Banks. Applications of cognitive

psychology: Problem solving, education, and computing. Routledge, 2013.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an

overview. In Decision and Control, 1995., Proceedings of the 34th IEEE Con-

ference on, volume 1, pages 560–564. IEEE, 1995.

149

Isabelle Bichindaritz and Sarada Akkineni. Concept mining for indexing medical

literature. Engineering Applications of Artificial Intelligence, 19(4):411–417, 2006.

Irving Biederman and Peter C Gerhardstein. Recognizing depth-rotated objects:

evidence and conditions for three-dimensional viewpoint invariance. Journal of

Experimental Psychology: Human perception and performance, 19(6):1162, 1993.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. English web treebank.

Linguistic Data Consortium, Philadelphia, PA, 2012.

David F Bjorklund. Mother knows best: Epigenetic inheritance, maternal effects,

and the evolution of human intelligence. Developmental Review, 26(2):213–242,

2006.

Stephan Bloehdorn and Alessandro Moschitti. Combined syntactic and semantic

kernels for text classification. In European Conference on Information Retrieval,

pages 307–318. Springer, 2007.

Bernd Bohnet. Very high accuracy and fast dependency parsing is not a contra-

diction. In Proceedings of the 23rd international conference on computational

linguistics, pages 89–97. Association for Computational Linguistics, 2010.

Luca Bonini and Pier Francesco Ferrari. Evolution of mirror systems: a simple

mechanism for complex cognitive functions. Annals of the New York Academy of

Sciences, 1225(1):166–175, 2011.

Cynthia Breazeal and Brian Scassellati. Robots that imitate humans. Trends in

cognitive sciences, 6(11):481–487, 2002.

Cynthia Breazeal, Daphna Buchsbaum, Jesse Gray, David Gatenby, and Bruce

Blumberg. Learning from and about others: Towards using imitation to bootstrap

the social understanding of others by robots. Artificial life, 11(1-2):31–62, 2005.

Kay H Brodersen, Cheng Soon Ong, Klaas E Stephan, and Joachim M Buhmann.

The balanced accuracy and its posterior distribution. In Pattern Recognition

(ICPR), 2010 20th International Conference on, pages 3121–3124. IEEE, 2010.

Jerome S Bruner. The process of education. Harvard University Press, 2009.

Peter Cabena, Pablo Hadjinian, Rolf Stadler, Jaap Verhees, and Alessandro Zanasi.

Discovering data mining: from concept to implementation. Prentice-Hall, Inc.,

1998.

150

Charles F Cadieu, Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila,

Ethan A Solomon, Najib J Majaj, and James J DiCarlo. Deep neural networks

rival the representation of primate it cortex for core visual object recognition.

PLoS Comput Biol, 10(12):e1003963, 2014.

Keith E Campbell and Mark A Musen. Representation of clinical data using snomed

iii and conceptual graphs. In Proceedings of the Annual Symposium on Computer

Application in Medical Care, page 354. American Medical Informatics Association,

1992.

Rudolf Carnap. Introduction to semantics, volume 1042. Harvard University Press

Cambridge, Massachusetts, 1948.

Raymond B Cattell. Theory of fluid and crystallized intelligence: A critical experi-

ment. Journal of educational psychology, 54(1):1, 1963.

Marco Cavazzuti. Optimization Methods: From Theory to Design Scientific and

Technological Aspects in Mechanics. Springer Science & Business Media, 2012.

William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. Ann

Arbor MI, 48113(2):161–175, 1994.

Gavin C Cawley and Nicola LC Talbot. Preventing over-fitting during model se-

lection via bayesian regularisation of the hyper-parameters. Journal of Machine

Learning Research, 8(Apr):841–861, 2007.

Eugene Charniak. Tree-bank grammars. In Proceedings of the National Conference

on Artificial Intelligence, pages 1031–1036, 1996.

Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete

& Computational Geometry, 10(1):377–409, 1993.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, and

Kevin Skadron. A performance study of general-purpose applications on graphics

processors using cuda. Journal of parallel and distributed computing, 68(10):1370–

1380, 2008.

Michel Chein and Marie-Laure Mugnier. Graph-based knowledge representation:

computational foundations of conceptual graphs. Springer Science & Business

Media, 2008.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser

using neural networks. In EMNLP, pages 740–750, 2014.

151

David L. Chen and Raymond J. Mooney. Learning to sportscast: A test of grounded

language acquisition. In Proceedings of 25th International Conference on Machine

Learning (ICML-2008), Helsinki, Finland, July 2008.

Jinho D Choi, Joel Tetreault, and Amanda Stent. It depends: Dependency parser

comparison using a web-based evaluation tool. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing of the Asian Federation

of Natural Language Processing, ACL, pages 26–31, 2015.

Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen

Schmidhuber. Flexible, high performance convolutional neural networks for image

classification. In IJCAI Proceedings-International Joint Conference on Artificial

Intelligence, volume 22, page 1237, 2011.

Daoud Clarke. Simple, fast semantic parsing with a tensor kernel. arXiv preprint

arXiv:1507.00639, 2015.

Carol E Cleland. Is the church-turing thesis true? Minds and Machines, 3(3):

283–312, 1993.

Ronan Collobert. Deep learning for efficient discriminative parsing. In AISTATS,

volume 15, pages 224–232, 2011.

Madalina Croitoru, Bo Hu, Srinandan Dasmahapatra, Paul Lewis, David Dup-

plaw, Alex Gibb, Margarida Julia-Sape, Javier Vicente, Carlos Saez, Juan Miguel

Garcia-Gomez, et al. Conceptual graphs based information retrieval in health

agents. In Computer-Based Medical Systems, 2007. CBMS’07. Twentieth IEEE

International Symposium on, pages 618–623. IEEE, 2007.

Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation extraction.

In Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics, page 423. Association for Computational Linguistics, 2004.

George E Dahl, Ryan P Adams, and Hugo Larochelle. Training restricted boltzmann

machines on word observations. arXiv preprint arXiv:1202.5695, 2012.

George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural

networks for lvcsr using rectified linear units and dropout. In Acoustics, Speech

and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages

8609–8613. IEEE, 2013.

152

Kerstin Dautenhahn and Chrystopher L. Nehaniv. The agent-based perspective

on imitation. In Kerstin Dautenhahn and Chrystopher L. Nehaniv, editors,

Imitation in Animals and Artifacts, pages 1–40. MIT Press, Cambridge, MA,

USA, 2002a. ISBN 0-262-04203-7. URL http://dl.acm.org/citation.cfm?id=

762896.762898.

Kerstin Dautenhahn and Chrystopher L. Nehaniv, editors. Imitation in Animals

and Artifacts. MIT Press, Cambridge, MA, USA, 2002b. ISBN 0-262-04203-7.

Raymond J. Mooney David L. Chen, Joohyun Kim. Training a multilingual

sportscaster: Using perceptual context to learn language. Journal of Artificial

Intelligence Research, 37:397–435, 2010.

Winston Davies and Pete Edwards. Dagger: A new approach to combining multiple

models learned from disjoint subsets. machine Learning, 2000:1–16, 2000.

Julien Offray de La Mettrie. Man a machine. Open court publishing Company,

1912.

J Decety, T Chaminade, J Grezes, and AN Meltzoff. A pet exploration of the neural

mechanisms involved in reciprocal imitation. Neuroimage, 15(1):265–272, 2002.

Georgiana Dinu and Rui Wang. Inference rules and their application to recognizing

textual entailment. In Proceedings of the 12th Conference of the European Chapter

of the Association for Computational Linguistics, pages 211–219. Association for

Computational Linguistics, 2009.

David A Duffy. Principles of automated theorem proving. John Wiley & Sons, Inc.,

1991.

Phan Minh Dung. On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games. Artificial

intelligence, 77(2):321–357, 1995.

Greg Durrett and Dan Klein. Neural crf parsing. arXiv preprint arXiv:1507.03641,

2015.

David Elizondo. The linear separability problem: Some testing methods. Neural

Networks, IEEE Transactions on, 17(2):330–344, 2006.

Susan L Epstein. Capitalizing on conflict: The forr architecture. In Proceedings of

the Workshop on Computational Architectures for Supporting Machine Learning

153

http://dl.acm.org/citation.cfm?id=762896.762898
http://dl.acm.org/citation.cfm?id=762896.762898

and Knowledge Acquisition, Ninth International Machine Learning Conference,

1992.

Oren Etzioni, Michele Banko, and Michael J Cafarella. Machine reading. In AAAI,

volume 6, pages 1517–1519, 2006.

Alexander Fabisch, Yohannes Kassahun, Hendrik Wöhrle, and Frank Kirchner.

Learning in compressed space. Neural Networks, 42:83–93, 2013.

Xiaocong Fan, Shuang Sun, and John Yen. On shared situation awareness for sup-

porting human decision-making teams. In AAAI Spring Symposium: AI Tech-

nologies for Homeland Security, pages 17–24, 2005.

Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

Pier F Ferrari, Elisabetta Visalberghi, Annika Paukner, Leonardo Fogassi, Angela

Ruggiero, and Stephen J Suomi. Neonatal imitation in rhesus macaques. PLoS

Biol, 4(9):e302, 2006.

Melvin Fitting. First-order logic. In First-Order Logic and Automated Theorem

Proving, pages 97–125. Springer, 1990.

Stan Franklin and FG Patterson Jr. The lida architecture: Adding new modes of

learning to an intelligent, autonomous, software agent. pat, 703:764–1004, 2006.

Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

Johannes Fritz and Kurt Kotrschal. On avian imitation: Cognitive and ethologi-

cal perspectives. In Kerstin Dautenhahn and Chrystopher L. Nehaniv, editors,

Imitation in Animals and Artifacts, pages 133–155. MIT Press, Cambridge, MA,

USA, 2002. ISBN 0-262-04203-7. URL http://dl.acm.org/citation.cfm?id=

762896.762902.

Bernd Fritzke et al. A growing neural gas network learns topologies. Advances in

neural information processing systems, 7:625–632, 1995.

Bennett G Galef Jr. Imitation in animals: history, definition, and interpretation

of data from the psychological laboratory. Social learning: Psychological and

biological perspectives, 28, 1988.

Howard Gardner. Frames of mind: The theory of multiple intelligences. Basic books,

2011.

154

http://dl.acm.org/citation.cfm?id=762896.762902
http://dl.acm.org/citation.cfm?id=762896.762902

Arthur Gill et al. Introduction to the theory of finite-state machines. McGraw-Hill,

1962.

Alexandros Gkiokas and Alexandra I Cristea. Training a cognitive agent to acquire

and represent knowledge from rss feeds onto conceptual graphs. IARIA COGNI-

TIVE, pages 184–194, 2014a.

Alexandros Gkiokas and Alexandra I Cristea. Unsupervised neural controller for re-

inforcement learning action-selection: Learning to represent knowledge. In Neural

Network Applications in Electrical Engineering (NEUREL), 2014 12th Symposium

on, pages 99–104. IEEE, 2014b.

Alexandros Gkiokas and Alexandra I Cristea. Cognitive agents and machine learning

by example: Representation with conceptual graphs. submitted, 2016a.

Alexandros Gkiokas and Alexandra I Cristea. Deep learning and encoding in natural

language understanding: Sparse and dense encoding schemes for neural-based

parsing. submitted, 2016b.

Alexandros Gkiokas, Alexandra I Cristea, and Matthew Thorpe. Self-reinforced

meta learning for belief generation. In Research and Development in Intelligent

Systems XXXI, pages 185–190. Springer, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain

Oliver, and Julian M Pine. Chunking mechanisms in human learning. Trends in

cognitive sciences, 5(6):236–243, 2001.

Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2.

Springer, 2007.

Dina Goldin and Peter Wegner. The church-turing thesis: Breaking the myth. In

Conference on Computability in Europe, pages 152–168. Springer, 2005.

Paul Gorrell. Syntax and parsing, volume 76. Cambridge University Press, 2006.

Edward Grefenstette, Phil Blunsom, Nando de Freitas, and Karl Moritz Hermann.

A deep architecture for semantic parsing. arXiv preprint arXiv:1404.7296, 2014.

Julie Grèzes, Jorge L Armony, James Rowe, and Richard E Passingham. Activations

related to mirror and canonical neurones in the human brain: an fmri study.

Neuroimage, 18(4):928–937, 2003.

155

David Guthrie, Ben Allison, Wei Liu, Louise Guthrie, and Yorick Wilks. A closer

look at skip-gram modelling. In Proceedings of the 5th international Conference

on Language Resources and Evaluation (LREC-2006), pages 1–4, 2006.

Pentti O Haikonen. The cognitive approach to conscious machines. Imprint Aca-

demic, 2003.

Pentti O Haikonen. Robot brains: circuits and systems for conscious machines. John

Wiley & Sons, 2007.

Pentti O Haikonen. Consciousness and robot sentience, volume 2. World Scientific,

2012.

Pentti OA Haikonen. Qualia and conscious machines. International Journal of

Machine Consciousness, 1(02):225–234, 2009.

Daniel Conrad Halbert. Programming by example. PhD thesis, University of Cali-

fornia, Berkeley, 1984.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena,

42(1-3):335–346, 1990.

David Hart and Ben Goertzel. Opencog: A software framework for integrative

artificial general intelligence. Frontiers in Artificial Intelligence and Applications,

171:468, 2008.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering

algorithm. Applied statistics, pages 100–108, 1979.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 1026–1034,

2015.

Jeff Heaton. Artificial Intelligence for Humans, Volume 3: Deep Learning and

Neural Networks. Heaton Research Inc, 2015.

Donald Olding Hebb. The organization of behavior; a neuropsychological theory.

Wiley, 1949.

Charles T Hemphill, John J Godfrey, and George R Doddington. The atis spoken

language systems pilot corpus. In Proceedings of the DARPA speech and natural

language workshop, pages 96–101, 1990.

156

Louis M. Herman. Vocal, social, and self-imitation by bottlenosed dolphins. In

Kerstin Dautenhahn and Chrystopher L. Nehaniv, editors, Imitation in Animals

and Artifacts, pages 63–108. MIT Press, Cambridge, MA, USA, 2002. ISBN 0-

262-04203-7. URL http://dl.acm.org/citation.cfm?id=762896.762900.

John Hertz, Anders Krogh, and Richard G Palmer. Introduction to the theory of

neural computation, volume 1. Basic Books, 1991.

Cecilia Heyes. Transformational and associative theories of imitation. In Kerstin

Dautenhahn and Chrystopher L. Nehaniv, editors, Imitation in Animals and Ar-

tifacts, pages 501–523. MIT Press, Cambridge, MA, USA, 2002. ISBN 0-262-

04203-7. URL http://dl.acm.org/citation.cfm?id=762896.762916.

James J Higgins. Introduction to modern nonparametric statistics. Cengage Learn-

ing, 2003.

Matthew Honnibal and Mark Johnson. An improved non-monotonic transition sys-

tem for dependency parsing. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, page 13731378, 2015.

John J Hopfield. Artificial neural networks. IEEE Circuits and Devices Magazine,

4(5):3–10, 1988.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph

Weischedel. Ontonotes: the 90% solution. In Proceedings of the human lan-

guage technology conference of the NAACL, Companion Volume: Short Papers,

pages 57–60. Association for Computational Linguistics, 2006.

Ronald A Howard. Dynamic programming and Markov processes. MIT Press, 1970.

Marco Iacoboni. Neural mechanisms of imitation. Current opinion in neurobiology,

15(6):632–637, 2005.

Marco Iacoboni and Mirella Dapretto. The mirror neuron system and the conse-

quences of its dysfunction. Nature Reviews Neuroscience, 7(12):942–951, 2006.

Marco Iacoboni, Roger P Woods, Marcel Brass, Harold Bekkering, John C Mazz-

iotta, and Giacomo Rizzolatti. Cortical mechanisms of human imitation. Science,

286(5449):2526–2528, 1999.

Jelena Ignjatović, Miroslav Ćirić, Stojan Bogdanović, and Tatjana Petković. Myhill–

nerode type theory for fuzzy languages and automata. Fuzzy sets and Systems,

161(9):1288–1324, 2010.

157

http://dl.acm.org/citation.cfm?id=762896.762900
http://dl.acm.org/citation.cfm?id=762896.762916

François Felix Ingrand, Michael P Georgeff, and Anand S Rao. An architecture for

real-time reasoning and system control. IEEE expert, 7(6):34–44, 1992.

Rolly Intan, Chi-Hung Chi, Henry N Palit, and Leo W Santoso. Intelligence in the

Era of Big Data: 4th International Conference on Soft Computing, Intelligent

Systems, and Information Technology, ICSIIT 2015, Bali, Indonesia, March 11-

14, 2015. Proceedings, volume 516. Springer, 2015.

Jay J Jiang and David W Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.

Anjali Ganesh Jivani et al. A comparative study of stemming algorithms. Int. J.

Comp. Tech. Appl, 2(6):1930–1938, 2011.

Susan S Jones. The development of imitation in infancy. Philosophical Transactions

of the Royal Society of London B: Biological Sciences, 364(1528):2325–2335, 2009.

A Jordan. On discriminative vs. generative classifiers: A comparison of logistic

regression and naive bayes. Advances in neural information processing systems,

14:841, 2002.

Dan Jurafsky and James H Martin. Speech & language processing. Pearson Educa-

tion India, 2000.

Marcel Adam Just and Sashank Varma. A hybrid architecture for working memory:

Reply to macdonald and christiansen (2002). Psychological Review, 2002.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

László Kalmár. An argument against the plausibility of Church’s thesis. In Con-

structivity in mathematics: Proceedings of the colloquium held at Amsterdam,

1957 (edited by A. Heyting), Studies in Logic and the Foundations of Mathemat-

ics, pages 72–80, Amsterdam, 1957. North-Holland Publishing Co.

Nanda Kambhatla. Combining lexical, syntactic, and semantic features with maxi-

mum entropy models for extracting relations. In Proceedings of the ACL 2004 on

Interactive poster and demonstration sessions, page 22. Association for Compu-

tational Linguistics, 2004.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Akinori Yonezawa. Overview

of genia event task in bionlp shared task 2011. In Proceedings of the BioNLP

158

Shared Task 2011 Workshop, pages 7–15. Association for Computational Linguis-

tics, 2011.

Ross D King, Stephen Muggleton, Richard A Lewis, and MJ Sternberg. Drug de-

sign by machine learning: The use of inductive logic programming to model the

structure-activity relationships of trimethoprim analogues binding to dihydrofo-

late reductase. Proceedings of the national academy of sciences, 89(23):11322–

11326, 1992.

Witold Kinsner. Towards cognitive machines: Multiscale measures and analysis.

In 2006 5th IEEE International Conference on Cognitive Informatics, volume 1,

pages 8–14. IEEE, 2006.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

Robocup: The robot world cup initiative. In Proceedings of the first international

conference on Autonomous agents, pages 340–347. ACM, 1997.

Graham Klyne and Jeremy J Carroll. Resource description framework (rdf): Con-

cepts and abstract syntax. W3C Recommendation, 2005.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–

1480, 1990.

Boicho N Kokinov. The dual cognitive architecture: A hybrid multi-agent approach.

In ECAI, pages 203–207, 1994.

Ben Taskar Carlos Guestrin Daphne Koller. Max-margin markov networks. Ad-

vances in Neural Information Processing Systems (NIPS), 17, 2014.

Richard E Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78,

1993.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

Ray Kurzweil. The singularity is near: When humans transcend biology. Penguin,

2005.

159

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the eighteenth international conference on machine learning, ICML, volume 1,

pages 282–289, 2001.

John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture for

general intelligence. Artificial intelligence, 33(1):1–64, 1987.

Pat Langley and Dongkyu Choi. A unified cognitive architecture for physical agents.

In Proceedings of the National Conference on Artificial Intelligence, volume 21,

page 1469. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2006.

Pat Langley, Daniel Shapiro, Meg Aycinena, and Michael Siliski. A value-driven

architecture for intelligent behavior. In Proceedings of the IJCAI-2003 Workshop

on Cognitive Modeling of Agents and Multi-Agent Interactions, pages 10–18, 2003.

Pat Langley, Kirstin Cummings, and Daniel Shapiro. Hierarchical skills and cog-

nitive architectures. In Proceedings of the twenty-sixth annual conference of the

cognitive science society, pages 779–784. Citeseer, 2004.

Pat Langley, John E Laird, and Seth Rogers. Cognitive architectures: Research

issues and challenges. Cognitive Systems Research, 10(2):141–160, 2009.

Anna T Lawniczak and Bruno N Di Stefano. Computational intelligence based

architecture for cognitive agents. Procedia Computer Science, 1(1):2227–2235,

2010.

Agnieszka Lawrynowicz and Jedrzej Potoniec. Fr-ont: An algorithm for frequent

concept mining with formal ontologies. In International Symposium on Method-

ologies for Intelligent Systems, pages 428–437. Springer, 2011.

Quoc V Le. Building high-level features using large scale unsupervised learning. In

2013 IEEE international conference on acoustics, speech and signal processing,

pages 8595–8598. IEEE, 2013.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 2015.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient

backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

160

Chin Yang Lee. An algorithm for path connections and its applications. Electronic

Computers, IRE Transactions on, EC-10(3):346–365, 1961.

Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net

model for visual area v2. In Advances in neural information processing systems,

pages 873–880, 2008.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convo-

lutional deep belief networks for scalable unsupervised learning of hierarchi-

cal representations. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, ICML ’09, pages 609–616, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.1553453. URL

http://doi.acm.org/10.1145/1553374.1553453.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank ten-

sors for scoring dependency structures. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1381–1391, Baltimore, Maryland, June 2014. Association for Computational Lin-

guistics. URL http://www.aclweb.org/anthology/P/P14/P14-1130.

Daniel Leivant. Higher order logic., 1994.

Hector J Levesque and Ronald Brachman. A fundamental tradeoff in knowledge

representation and reasoning. Laboratory for Artificial Intelligence Research,

Fairchild, Schlumberger, 1984.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch

training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 661–670.

ACM, 2014.

Percy Liang and Christopher Potts. Bringing machine learning and compositional

semantics together. Annu. Rev. Linguist., 1(1):355–376, 2015.

Henry Lieberman. Programming by example. Communications of the ACM, 43(3):

72–72, 2000.

Henry Lieberman. Your wish is my command: Programming by example. Morgan

Kaufmann, 2001.

Henry Liebermann, Bonnie A. Nardi, and David J. Wright. Training agents to rec-

ognize text by example. In Henry Liebermann, editor, Your wish is my command:

Programming by example, chapter 12, pages 227–244. Morgan Kaufmann, 2001.

161

http://doi.acm.org/10.1145/1553374.1553453
http://www.aclweb.org/anthology/P/P14/P14-1130

Dekang Lin. An information-theoretic definition of similarity. In ICML, volume 98,

pages 296–304, 1998.

Dekang Lin and Patrick Pantel. Dirt@ sbt@ discovery of inference rules from text. In

Proceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 323–328. ACM, 2001a.

Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.

Natural Language Engineering, 7(04):343–360, 2001b.

Seppo Linnainmaa. The representation of the cumulative rounding error of an al-

gorithm as a taylor expansion of the local rounding errors. Master’s Thesis (in

Finnish), Univ. Helsinki, pages 6–7, 1970.

Seymour Lipschutz and L Gersting Judith. Schaum’s Outline of Theory and Prob-

lems. McGraw-Hill, 1916.

Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human

language technologies, 5(1):1–167, 2012.

Ting Liu, Jinshan Ma, Huijia Zhu, and Sheng Li. Dependency parsing based on

dynamic local optimization. In Proceedings of the Tenth Conference on Computa-

tional Natural Language Learning, pages 211–215. Association for Computational

Linguistics, 2006.

Moshe Looks, Andrew Levine, G Adam Covington, Ronald P Loui, John W Lock-

wood, and Young H Cho. Streaming hierarchical clustering for concept mining.

In 2007 IEEE Aerospace Conference, pages 1–12. IEEE, 2007.

Maryellen C MacDonald, Neal J Pearlmutter, and Mark S Seidenberg. The lexical

nature of syntactic ambiguity resolution. Psychological review, 101(4):676, 1994.

James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330, 1993.

André FT Martins and Mariana SC Almeida. Priberam: A turbo semantic parser

with second order features. In Proceedings of the 8th International Workshop on

Semantic Evaluation (SemEval 2014), pages 471–476, 2014.

162

André FT Martins, Noah A Smith, Eric P Xing, Pedro MQ Aguiar, and Mário AT

Figueiredo. Turbo parsers: Dependency parsing by approximate variational in-

ference. In Proceedings of the 2010 Conference on Empirical Methods in Natural

Language Processing, pages 34–44. Association for Computational Linguistics,

2010.

André FT Martins, Noah A Smith, Pedro MQ Aguiar, and Mário AT Figueiredo.

Dual decomposition with many overlapping components. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pages 238–

249. Association for Computational Linguistics, 2011.

André FT Martins, Miguel B Almeida, and Noah A Smith. Turning on the turbo:

Fast third-order non-projective turbo parsers. In Proceedings of the Conference,

page 617, 2013.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions

on Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Richard McDaniel. Demonstrating the hidden features that make an application

work. In Henry Liebermann, editor, Your wish is my command: Programming by

example, chapter 8, pages 163–174. Morgan Kaufmann, 2001.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin train-

ing of dependency parsers. In Proceedings of the 43rd annual meeting on associ-

ation for computational linguistics, pages 91–98. Association for Computational

Linguistics, 2005a.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective

dependency parsing using spanning tree algorithms. In Proceedings of the confer-

ence on Human Language Technology and Empirical Methods in Natural Language

Processing, pages 523–530. Association for Computational Linguistics, 2005b.

Ryan T McDonald and Fernando CN Pereira. Online learning of approximate de-

pendency parsing algorithms. In EACL, 2006.

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W Lampson, and

Adam Kalai. A machine learning framework for programming by example. ICML

(1), 28:187–195, 2013.

163

Charles E Metz. Basic principles of roc analysis. Seminars in Nuclear Medicine, 8

(4):283–298, 1978.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119, 2013b.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-

tinuous space word representations. In HLT-NAACL, pages 746–751, 2013c.

Marvin L Minski and Seymour A Papert. Perceptrons: an introduction to compu-

tational geometry. MA: MIT Press, Cambridge, 1969.

Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,

1967.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for

relation extraction without labelled data. In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–

1011. Association for Computational Linguistics, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Na-

ture, 518(7540):529–533, 2015.

Francesmary Modugno. Extending end-user programming in a visual shell with

programming by demonstration and graphical language techniques. PhD thesis,

Carnegie Mellon University, 1996.

Alessandro Montalto, Giovanni Tessitore, and Roberto Prevete. A linear approach

for sparse coding by a two-layer neural network. Neurocomputing, 149:1315–1323,

2015.

164

Manuel Montes-y Gómez, Alexander Gelbukh, and Aurelio López-López. Text min-

ing at detail level using conceptual graphs. In Conceptual Structures: Integration

and Interfaces, pages 122–136. Springer, 2002.

Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory. In

Numerical analysis, pages 105–116. Springer, 1978.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network lan-

guage model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

Stephen Muggleton. Alan turing and the development of artificial intelligence. AI

communications, 27(1):3–10, 2014.

Brad Myers and Richard McDaniel. Demonstrational interfaces: Sometimes you

need a little intelligence, sometimes you need a lot. In Henry Liebermann, editor,

Your wish is my command: Programming by example, chapter 3, pages 48–60.

Morgan Kaufmann, 2001.

Brad Myers and Brad Vander Zanden. Environment for rapidly creating interactive

design tools. The Visual Computer, 8(2):94–116, 1992.

Brad A Myers, Francesmary Modugno, Rich McDaniel, David Kosbie, Andrew

Werth, Rob Miller, John Pane, James Landay, Jade Goldstein, and Matthew A

Goldberg. The demonstrational interfaces project at cmu. In 1996 AAAI Sympo-

sium, 1995.

Masako Myowa-Yamakoshi, Masaki Tomonaga, Masayuki Tanaka, and Tetsuro Mat-

suzawa. Imitation in neonatal chimpanzees (pan troglodytes). Developmental

science, 7(4):437–442, 2004.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pages 807–814, 2010.

Shin’ichiro Nakaoka, Atsushi Nakazawa, Fumio Kanehiro, Kenji Kaneko, Mitsuharu

Morisawa, Hirohisa Hirukawa, and Katsushi Ikeuchi. Learning from observation

paradigm: Leg task models for enabling a biped humanoid robot to imitate human

dances. The International Journal of Robotics Research, 26(8):829–844, 2007.

Tetsuya Nasukawa and Jeonghee Yi. Sentiment analysis: Capturing favorability

using natural language processing. In Proceedings of the 2nd international con-

ference on Knowledge capture, pages 70–77. ACM, 2003.

165

A Newell and JC Shaw. A variety op intelligent learning in a general problem solver.

RAND Report P-1742, dated July, 6, 1959.

Allen Newell and Herbert Simon. The logic theory machine–a complex information

processing system. IRE Transactions on Information Theory, 2(3):61–79, 1956.

Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance.

In Proceedings of the twenty-first international conference on Machine learning,

page 78. ACM, 2004.

Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and

Andrew Y Ng. On optimization methods for deep learning. In Proceedings of the

28th International Conference on Machine Learning (ICML-11), pages 265–272,

2011a.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-

drew Y Ng. Multimodal deep learning. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 689–696, 2011b.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda. Queue, 6(2):40–53, 2008.

Steffen Nissen. Implementation of a fast artificial neural network library (fann).

Report, Department of Computer Science University of Copenhagen (DIKU), 31,

2003.

Joakim Nivre. An efficient algorithm for projective dependency parsing. In Proceed-

ings of the 8th International Workshop on Parsing Technologies (IWPT. Citeseer,

2003.

Joakim Nivre and Mario Scholz. Deterministic dependency parsing of english text.

In Proceedings of the 20th international conference on Computational Linguistics,

page 64. Association for Computational Linguistics, 2004.

Vilém Novák, Irina Perfilieva, and Jiri Mockor. Mathematical principles of fuzzy

logic, volume 517. Springer Science & Business Media, 2012.

Marek Obitko. Translations between ontologies in multi-agent systems. PhD thesis,

Czech Technical University, 2007.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical

alignment models. Computational linguistics, 29(1):19–51, 2003.

166

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis

set: A strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. Current

opinion in neurobiology, 14(4):481–487, 2004.

John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose compu-

tation on graphics hardware. Computer graphics forum, 26(1):80–113, 2007.

Gordon W. Paynter and Ian H. Witten. Domain-independent programming by

demonstration in existing applications. In Henry Liebermann, editor, Your wish

is my command: Programming by example, chapter 15, pages 297–320. Morgan

Kaufmann, 2001.

Ismael Peña-López et al. Manual for measuring ict access and use by households

and individuals. Technical report, ITU, 2009.

Matt Pharr and Randima Fernando. Gpu gems 2: programming techniques for high-

performance graphics and general-purpose computation. Addison-Wesley Profes-

sional, 2005.

Gualtiero Piccinini. The physical church–turing thesis: Modest or bold? The British

Journal for the Philosophy of Science, page axr016, 2011.

Phil Picton. Introduction to neural networks. Macmillan Publishers Limited, 1994.

Fiora Pirri. The usual objects: a first draft on decomposing and reassembling famil-

iar objects images. In Proceedings of XXVII Annual Conference of the Cognitive

Science Society, pages 1773–1778, 2005.

David Martin Powers. Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation. Journal of Machine Learning Tech-

nologies, 2011.

Sameer S Pradhan, Wayne Ward, Kadri Hacioglu, James H Martin, and Daniel

Jurafsky. Shallow semantic parsing using support vector machines. In HLT-

NAACL, pages 233–240, 2004.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system.

In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

167

Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and

application of a metric on semantic nets. Systems, Man and Cybernetics, IEEE

Transactions on, 19(1):17–30, 1989.

Vilayanur S Ramachandran. Mirror neurons and imitation learning as the driving

force behind the great leap forward in human evolution. Edge Website article

http://www. edge. org/3rd culture/ramachandran/ramachandran p1. html, 2000.

Ruziana Binti Mohamad Rasli, Faudziah Ahmad, and Siti Sakira Kamaruddin. A

comparative study of conceptual graph and concept map. Journal of Engineering

and Applied Sciences, 9(9):1442–1446, 2014.

Mohammad Sadegh Rasooli and Joel Tetreault. Yara parser: A fast and accurate

dependency parser. arXiv preprint arXiv:1503.06733, 2015.

Raimundo Real and Juan M Vargas. The probabilistic basis of jaccard’s index of

similarity. Systematic biology, pages 380–385, 1996.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-

propagation learning: The rprop algorithm. In Neural Networks, 1993., IEEE

International Conference On, pages 586–591. IEEE, 1993.

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979. ISBN 0408709294.

Edmund T Rolls and Alessandro Treves. The relative advantages of sparse versus

distributed encoding for associative neuronal networks in the brain. Network:

computation in neural systems, 1(4):407–421, 1990.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

Kenji Sagae. Analysis of discourse structure with syntactic dependencies and data-

driven shift-reduce parsing. In Proceedings of the 11th International Conference

on Parsing Technologies, pages 81–84. Association for Computational Linguistics,

2009.

Kenji Sagae and Alon Lavie. A best-first probabilistic shift-reduce parser. In Pro-

ceedings of the COLING/ACL on Main conference poster sessions, pages 691–698.

Association for Computational Linguistics, 2006.

Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In AIS-

TATS, volume 1, page 3, 2009.

168

Robert E Schapire and Yoram Singer. Improved boosting algorithms using

confidence-rated predictions. Machine learning, 37(3):297–336, 1999.

John R Searle. Church-turing thesis. The MIT Encyclopedia of the Cognitive Sci-

ences, page 115, 2001.

Philip H. K. Seymour. Cognitive architecture of early reading. In Ingvar Lundberg,

Finn Egil Tønnessen, and Ingolv Austad, editors, Dyslexia: Advances in Theory

and Practice, pages 59–73. Springer Netherlands, Dordrecht, 1999. ISBN 978-94-

011-4667-8.

David F Shanno. On broyden-fletcher-goldfarb-shanno method. Journal of Opti-

mization Theory and Applications, 46(1):87–94, 1985.

K Gnana Sheela and SN Deepa. Review on methods to fix number of hidden neurons

in neural networks. Mathematical Problems in Engineering, 2013, 2013.

Lei Shi and Rada Mihalcea. Putting pieces together: Combining framenet, verb-

net and wordnet for robust semantic parsing. In Computational linguistics and

intelligent text processing, pages 100–111. Springer, 2005.

Stuart M Shieber. Sentence disambiguation by a shift-reduce parsing technique. In

Proceedings of the 21st annual meeting on Association for Computational Lin-

guistics, pages 113–118. Association for Computational Linguistics, 1983.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. Nature, 529(7587):484–489, 2016.

Burrhus Frederic Skinner. Contingencies of reinforcement: A theoretical analysis,

volume 3. BF Skinner Foundation, 2014.

Richard D Smallwood and Edward J Sondik. The optimal control of partially observ-

able markov processes over a finite horizon. Operations Research, 21(5):1071–1088,

1973.

David Canfield Smith, Allen Cypher, and Tesler Larry. Novice programming comes

of age. In Henry Liebermann, editor, Your wish is my command: Programming

by example, chapter 1, pages 8–19. Morgan Kaufmann, 2001.

Paul Smolensky. Connectionist ai, symbolic ai, and the brain. Artificial Intelligence

Review, 1(2):95–109, 1987.

169

Moshe Sniedovich. Dynamic programming: foundations and principles. CRC press,

2010.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural

scenes and natural language with recursive neural networks. In Proceedings of the

28th international conference on machine learning (ICML-11), pages 129–136,

2011.

Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Parsing

with compositional vector grammars. In ACL (1), pages 455–465, 2013a.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-

ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the conference on

empirical methods in natural language processing (EMNLP), volume 1631, page

1642. Citeseer, 2013b.

J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. ISBN

0-201-14472-7.

John F Sowa. Knowledge representation: logical, philosophical, and computational

foundations. Course Technology, 1999.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Stackexchange. How to choose the number of hidden lay-

ers and nodes in a feedforward neural network?, 2015.

URL http://stats.stackexchange.com/questions/181/

how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/

1097#1097. [Online; accessed 2015-09-30].

William Stallings. Handbook of computer-communications standards; Vol. 1: the

open systems interconnection (OSI) model and OSI-related standards. Macmillan

Publishing Co., Inc., 1987.

Mike Stannett. X-machines and the halting problem: Building a super-turing ma-

chine. Formal Aspects of Computing, 2(1):331–341, 1990.

Robert J Sternberg. Handbook of human intelligence. CUP Archive, 1982.

170

http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097
http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097
http://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw/1097#1097

Morag Stuart and Max Coltheart. Does reading develop in a sequence of stages?

Cognition, 30(2):139–181, 1988. ISSN 0010-0277.

Wael Suleiman, Eiichi Yoshida, Fumio Kanehiro, Jean-Paul Laumond, and André

Monin. On human motion imitation by humanoid robot. In Robotics and Au-

tomation, 2008. ICRA 2008. IEEE International Conference on, pages 2697–2704.

IEEE, 2008.

Ron Sun and Xi Zhang. Accounting for a variety of reasoning data within a cognitive

architecture. Journal of Experimental & Theoretical Artificial Intelligence, 18(2):

169–191, 2006.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998. ISBN 0-262-19398-1.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. PhD

thesis, University of Massachusetts Amherst, 1984.

Idan Szpektor and Ido Dagan. Learning entailment rules for unary templates. In

Proceedings of the 22nd International Conference on Computational Linguistics-

Volume 1, pages 849–856. Association for Computational Linguistics, 2008.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Clos-

ing the gap to human-level performance in face verification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1701–1708,

2014.

Lappoon R Tang and Raymond J Mooney. Using multiple clause constructors in

inductive logic programming for semantic parsing. In Machine Learning: ECML

2001, pages 466–477. Springer, 2001.

Chris J Thompson, Sahngyun Hahn, and Mark Oskin. Using modern graphics archi-

tectures for general-purpose computing: a framework and analysis. In Proceedings

of the 35th annual ACM/IEEE international symposium on Microarchitecture,

pages 306–317. IEEE Computer Society Press, 2002.

Edward L Thorndike. The mental life of the monkeys. The Psychological Review:

Monograph Supplements, 3(5):i, 1901.

Jakub Mikolaj Tomczak. Improving neural networks with bunches of neurons mod-

eled by kumaraswamy units: Preliminary study. arXiv preprint arXiv:1505.02581,

2015.

171

Godfried T Toussaint. Solving geometric problems with the rotating calipers. In

Proc. IEEE Melecon, volume 83, page A10, 1983.

John C Trueswell, Michael K Tanenhaus, and Susan M Garnsey. Semantic influences

on parsing: Use of thematic role information in syntactic ambiguity resolution.

Journal of memory and language, 33(3):285, 1994.

Reut Tsarfaty, Joakim Nivre, and Evelina Ndersson. Evaluating dependency pars-

ing: robust and heuristics-free cross-nnotation evaluation. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pages 385–396.

Association for Computational Linguistics, 2011.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. Cross-framework evaluation

for statistical parsing. In Proceedings of the 13th Conference of the European

Chapter of the Association for Computational Linguistics, pages 44–54. Associa-

tion for Computational Linguistics, 2012a.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. Joint evaluation of morpho-

logical segmentation and syntactic parsing. In Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Short Papers-Volume

2, pages 6–10. Association for Computational Linguistics, 2012b.

Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi Kazama. Learning with looka-

head: can history-based models rival globally optimized models? In Proceedings

of the Fifteenth Conference on Computational Natural Language Learning, pages

238–246. Association for Computational Linguistics, 2011.

Alan M Turing. Computing machinery and intelligence. Mind, 59(236):433–460,

1950.

Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vector space

models of semantics. Journal of artificial intelligence research, 37(1):141–188,

2010.

Stephen Ullmann. The principles of semantics. American Anthropologist, 1959.

Johan Van Benthem and Kees Doets. Higher-order logic. In Handbook of philosoph-

ical logic, pages 275–329. Springer, 1983.

Jorge Villalon and Rafael A Calvo. Concept extraction from student essays, towards

concept map mining. In 2009 Ninth IEEE International Conference on Advanced

Learning Technologies, 2009.

172

Elisabetta Visalberghi and Dorothy Fragaszy. ”do monkeys ape?”: Ten years after.

In Kerstin Dautenhahn and Chrystopher L. Nehaniv, editors, Imitation in Ani-

mals and Artifacts, pages 471–499. MIT Press, Cambridge, MA, USA, 2002. ISBN

0-262-04203-7. URL http://dl.acm.org/citation.cfm?id=762896.762915.

Andreas Vlachos. Evaluating unsupervised learning for natural language processing

tasks. In Proceedings of the First workshop on Unsupervised Learning in NLP,

pages 35–42. Association for Computational Linguistics, 2011.

Andreas Vlachos. An investigation of imitation learning algorithms for structured

prediction. In EWRL, pages 143–154. Citeseer, 2012.

Andreas Vlachos and Stephen Clark. A new corpus and imitation learning frame-

work for context-dependent semantic parsing. Transactions of the Association for

Computational Linguistics, 2:547–559, 2014.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD

thesis, University of Cambridge England, 1989.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-

worldnetworks. nature, 393(6684):440–442, 1998.

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured training

for neural network transition-based parsing. arXiv preprint arXiv:1506.06158,

2015.

G. Weiss. Aspects and Applications of the Random Walk (Random Materials & Pro-

cesses S.). North-Holland, 2005. ISBN 0444816062. URL http://www.worldcat.

org/isbn/0444816062.

George Weiss. Dynamic programming and markov processes. Science, 132(3428):

667–667, 1960. ISSN 0036-8075. doi: 10.1126/science.132.3428.667. URL http:

//science.sciencemag.org/content/132/3428/667.1.

Kathleen Anne Wellman. La Mettrie: Medicine, Philosophy, and Enlightenment.

Duke University Press, 1992.

Paul Werbos. Beyond regression: New tools for prediction and analysis in the be-

havioral sciences. PhD thesis, Harvard University, 1974.

Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In System

modeling and optimization, pages 762–770. Springer, 1982.

173

http://dl.acm.org/citation.cfm?id=762896.762915
http://www.worldcat.org/isbn/0444816062
http://www.worldcat.org/isbn/0444816062
http://science.sciencemag.org/content/132/3428/667.1
http://science.sciencemag.org/content/132/3428/667.1

Norbert Wiener. Cybernetics: Control and communication in the animal and the

machine. Wiley New York, 1948.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual polarity

in phrase-level sentiment analysis. In Proceedings of the conference on human

language technology and empirical methods in natural language processing, pages

347–354. Association for Computational Linguistics, 2005.

Ben James Winer, Donald R Brown, and Kenneth M Michels. Statistical principles

in experimental design, volume 2. McGraw-Hill New York, 1971.

Eric Winsberg. Simulated experiments: Methodology for a virtual world. Philosophy

of science, 70(1):105–125, 2003.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1):37–52, 1987.

Yuk Wah Wong and Raymond J. Mooney. Learning for semantic parsing with sta-

tistical machine translation. In Proceedings of the Main Conference on Human

Language Technology Conference of the North American Chapter of the Associa-

tion of Computational Linguistics, HLT-NAACL ’06, pages 439–446, Stroudsburg,

PA, USA, 2006. Association for Computational Linguistics.

William A Woods and James G Schmolze. The kl-one family. Computers & Math-

ematics with Applications, 23(2-5):133–177, 1992.

Jesse O Wrenn, Peter D Stetson, and Stephen B Johnson. An unsupervised machine

learning approach to segmentation of clinician-entered free text. In AMIA Annual

Symposium Proceedings, volume 2007, page 811. American Medical Informatics

Association, 2007.

E Maitland Wright. The number of connected sparsely edged graphs. Journal of

Graph Theory, 1(4):317–330, 1977.

Thomas Wynn. Piaget, stone tools and the evolution of human intelligence. World

archaeology, 17(1):32–43, 1985.

Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with sup-

port vector machines. In Proceedings of IWPT, volume 3, pages 195–206, 2003.

Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew Broad-

head, and Stephen Soderland. Textrunner: open information extraction on the

174

web. In Proceedings of Human Language Technologies: The Annual Conference

of the North American Chapter of the Association for Computational Linguistics:

Demonstrations, pages 25–26. Association for Computational Linguistics, 2007.

Lotfi A Zadeh. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A

Zadeh, volume 6. World Scientific, 1996.

Mehdi Rezaeian Zadeh, Seifollah Amin, Davar Khalili, and Vijay P Singh. Daily

outflow prediction by multi layer perceptron with logistic sigmoid and tangent

sigmoid activation functions. Water resources management, 24(11):2673–2688,

2010.

Brad Vander Zanden and Brad Myers. Automatic, look-and-feel independent dialog

creation for graphical user interfaces. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 27–34. ACM, 1990.

Amir Zeldes. The gum corpus: creating multilayer resources in the classroom.

Language Resources and Evaluation, pages 1–32, 2016.

Dell Zhang and Wee Sun Lee. Question classification using support vector ma-

chines. In Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval, pages 26–32. ACM, 2003.

Hao Zhang and Ryan McDonald. Generalized higher-order dependency parsing with

cube pruning. In Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning,

pages 320–331. Association for Computational Linguistics, 2012.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Greed is good if ran-

domized: New inference for dependency parsing. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

1013–1024. Association for Computational Linguistics, 2014a.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, and Amir Globerson. Steps

to excellence: Simple inference with refined scoring of dependency trees. In Pro-

ceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics, pages 197–207. Association for Computational Linguistics, 2014b.

Yue Zhang and Stephen Clark. A tale of two parsers: investigating and combining

graph-based and transition-based dependency parsing using beam-search. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 562–571. Association for Computational Linguistics, 2008.

175

Yue Zhang and Joakim Nivre. Transition-based dependency parsing with rich non-

local features. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies: short papers-Volume

2, pages 188–193. Association for Computational Linguistics, 2011.

Zhisong Zhang and Hai Zhao. High-order graph-based neural dependency parsing. In

29th Pacific Asia Conference on Language, Information and Computation pages,

pages 114–123, Shanghai, China, 2015.

Maosheng Zhong, Jianyong Duan, and Jian Zou. Indexing conceptual graph for

abstracts of books. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011

Eighth International Conference on, volume 3, pages 1816–1820. IEEE, 2011.

Jie Zhou and Wei Xu. End-to-end learning of semantic role labelling using recurrent

neural networks. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics, 2015.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and

accurate shift-reduce constituent parsing. In ACL (1), pages 434–443, 2013.

176

	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	List of Tables
	List of Figures
	Chapter Introduction
	Human Intelligence
	Imitation in Humans
	Imitation in Artificial Intelligence
	Cognitive Artificial Intelligence
	Icarus Engine
	Research Scope & Biological Plausibility
	Contributions
	Thesis Overview

	Chapter Background and Literature Review
	Alan Turing and the intelligent machines
	Imitation in Nature
	What is imitation?
	How does imitation work?

	Symbolic Artificial Intelligence
	Knowledge Representation
	Criticism and Limitations of Symbolic Artificial Intelligence

	Connectionistic Artificial Intelligence
	Artificial Neural Networks
	General Purpose Computing on Graphic Processing Units
	Deep Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	Connectionism Criticism and Limitations

	Cognitive or Synthetic Artificial Intelligence
	Bach and Synthetic Intelligence
	Haikonen and Cognitive Intelligence
	Five Cognitive Agent Criteria
	AI Architectures

	Programming by Example
	PBE: Theory and Models
	PBE: Application Domains and Criticism
	PBE: Differences from Imitation Learning

	Parsing and Understanding
	Semantics
	Distributional Semantics
	Relational Semantics
	Part of Speech Tagging
	Semantic and Syntactic Parsing
	Implementing Parsing and NLU
	Models and Algorithms in NLU
	NLU Performance and Issues

	Background Conclusion

	Chapter Theory and Agent Design
	MDP as a Template for Learning
	Paradigm Decomposition and Training
	Rewarding and Evaluation
	Episode Iteration and Inference
	Decision Making and Policy Approximation
	Statistical and Probabilistic Approximation
	Semantic and Heuristic Approximation
	Neural Approximation and Distributed Encoding
	Deep Neural Approximation and Sparse Encoding
	Semantic Approximation and Sparse Encoding
	Conceptual Graph Output
	Metalearning and Knowledge Compression
	Metalearning on Learnt Knowledge
	Grouping by Similarity
	Generalising Cluster Graphs
	Optimisation by Belief Evaluation

	Conclusion
	Bandura and Imitation in Humans
	Haikonen and Cognitive AI
	Bach and Synthetic Intelligence
	Five Cognitive Agent Criteria
	Icarus and Cognitive AI
	Discussion on Icarus Implementation

	Chapter Conceptual Graph Dataset
	Datasets for NLU and NLP
	Creating a New Dataset
	Partitioning the Dataset
	Translating and Converting Datasets

	Conceptual Graph Complexity
	Graph Columns and Linearity
	Graph Branching and Grouping
	Graphs and Operators

	Dataset Conclusion

	Chapter Experiments, Methodology and Results
	Methodology and Experiment Design
	Randomised Block Design
	Experiment Logs
	Accuracy Measures

	Semantic-Heuristic Experiments
	Implementation
	Results and Discussion

	Probability-based Experiments
	Implementation
	Probability Space Analysis
	Results
	Discussion & Conclusion

	Shallow Neural Experiments
	Implementation
	Results

	Deep Learning Experiments
	Implementation
	Results

	Experiment Conclusions

	Chapter Conclusions and Future Work
	Conclusions
	Criticism and Limitations
	Future Work

	Appendix Penn Treebank POS tags
	Appendix Conceptual Graph examples

