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Abstract 

An approach for analysis of thermal gradients in a catalytic packed bed milli-reactor operated 

under radiofrequency (RF) heating has been presented. A single-point temperature 

measurement would cause the misinterpretation of the catalytic activity in an RF-heated reactor 

due to the presence of a temperature gradient. For reliable data interpretation, the temperature 

should be measured at three positions along the reactor length. The temperature profile can be 

accurately estimated with the exact analytical solution of a 1D convection and conduction heat-

transfer model and it can also be approximated with a second-order polynomial function. The 

results revealed that the position of maximum temperature in the catalytic bed shifts towards a 

downstream location as the flow rate increases. The relative contribution of conduction and 
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convection to the overall heat transport has been discussed. The design criteria for a near 

isothermal milli-reactor have been suggested.  
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1. Introduction 

The fact that small-scale and distributed chemical manufacturing systems are proved to offer 

advantages such as lower capital and operating expenses, compactness of equipment, relatively 

small energy consumption and reduced by-product formation 1-4  has led to the growing interest 

in newer process intensification methods using reactors with channel diameter in the millimeter 

range (milli-reactors) 5-8. Among them, radiofrequency heating (RF) plays an important role to 

enhance the rate of catalytic reactions9-12. In this method, the energy is provided to the reactor 

by an alternating magnetic field in the 100-1000 kHz range. The application of RF heating 

requires to use composite magnetic catalysts composed of a magnetic material and an active 

catalyst or an adsorbent13. RF induced desorption from composite pellets have been recently 

demonstrated14.  

Catalytic packed bed reactors are the most extensively employed reactor type for laboratory 

and small scale chemical production15,16. In general, this kind of reactors involves mass of 

catalyst ranging from 10 to 500 mg and volumetric flow rates up to 10 mL min-1. There are no 

qualitative criteria for the existence of substantial temperature gradients in the flow direction 

as a result of volumetric heating and heat transfer. For many chemical processes in tubular 

reactors, a temperature gradient can improve the conversion as much higher reaction rate can 

be achieved towards the end zone maintained at higher temperature. For example, in an 

endothermic equilibrium limited reaction, such as methanol steam reforming, a thermal 

gradient offers the possibility of substantially increasing the conversion as compared to that in 

an isothermal or adiabatic process17. However there are also applications where even a small 

deviation of the catalyst temperature from an isothermal operation would result in a substantial 

decrease of selectivity. Those are partial oxidation and preferential oxidation reaction, just to 

mention a few18.     
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In the absence of convective flux, the general empirical rule to avoid temperature non-

uniformity is that the conductive thermal resistance in the solid bed, RA, (Eq. 1) should be much 

smaller as compared to the combined thermal resistance of the reactor wall (RB1),  insulation 

(RB2),  and natural convection (RB3, Eq. 2): RA << RB,  
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where r1 is the inner radius of reactor, r2 is the outer radius of reactor, r3 is the outer radius of 

insulation, λ1 is the effective thermal conductivity of the catalyst bed, λ2 is the thermal 

conductivity of the reactor wall, λ3 is the thermal conductivity of insulation, L is the length of 

reactor, h3 is the natural convection heat transfer coefficient, 
A  is the cross sectional area of 

the reactor and A3 is the external surface area of insulation. 

However in the presence of liquid flow, the thermal analysis becomes more complex. 

Modelling heat transfer in mini- and micro-devices requires taking convective heat transfer 

into account. Disregarding this effect can lead to very large bias in the experimental estimation 

of heat transfer contributions, especially for larger Reynolds numbers. As a result of convective 

heat flux, the position of maximum temperature under volumetric heating shifts from the 

central part of the reactor towards a downstream location19. Tiselj et al. studied the effect of 

axial heat flux on heat transfer in microchannels at Re numbers in the range between 3 and 

16020. The authors experimentally determined the axial heat flux values to verify their 

numerical calculations performed with a model which included a silicon chip with seventeen 

parallel microchannels with a length of 15 mm. The axial position corresponding to the 

maximum temperature in a microchannel shifts towards the channel outlet with an increase in 
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the flow rate20. Patil et al.21 reported that the position of the maximum temperature shifts 

towards the outlet with a decrease in the volumetric heat generation power. 

To evaluate the effect of axial heat conduction, Maranzana et al.22 proposed a quantifying factor 

(M, Eq. 3) which is the ratio between axial heat transfer by conduction in the wall (Φcond ) and 

convective heat transfer in the flow (Φconv ).  
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where FV is the volumetric flow rate, ρ is the density of fluid, Cp is the specific heat capacity 

of fluid. They concluded that with high M factor, which states that axial heat conduction is the 

main mechanism of heat transfer, the fluid temperature profile in the channel became non-

linear and heat flux at channel entrance increases as compared to the classical theory22. Huang 

et al.23 confirmed experimentally that at higher M factors, much stronger temperature gradient 

develops in the first section of channel as compared to the case of low M values. The axial heat 

flux is typically larger than the radial heat flux 19,24. Still the both contributions should be taken 

into account due to much larger area for radial heat exchange in micro- and milli-reactors. The 

radial heat losses can be reduced by insulation or temperature compensation, both reducing 

driving force for heat transfer 25.  

A large number of contributions in literature are devoted to simulations of the complete 

behavior of a flow reactor, formulating and solving the momentum, mass and energy 

conservation balances26,27. In that way, Qu and Mudawar28,29 performed numerical simulations 

of heat transfer in a single phase microchannel by solving the conjugate heat transfer problem 

involving simultaneous determination of the temperature field in both solid and fluid regions. 

They compared the numerical results with experimental data and showed good agreement 

between the local fluid and wall temperatures at different locations along the channel. Such an 

approach allows a proper analysis of the experimental results, even if some significant 

departure from the isothermal behavior occurs. Although three-dimensional conjugate heat 
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transfer analyses of catalytic microchannels was shown to provide satisfactory results as 

compared with the experimental measurements, they are computationally expensive, case-

specific and cannot be generalized to a wide range of reactor configurations. 

The goal of this work was to develop a simplified approach to predict temperature profiles in 

an RF-heated flow milli-channel reactor. To achieve this goal, two different approaches were 

employed. In the first approach, an analytical solution was used to estimate temperature profiles 

in the milli-channel reactor based on an energy balance. These results were compared with the 

exact solution obtained by a 3D convection and conduction model which represents the second 

approach. The model accounted for the effect of hydrodynamic and thermal developing 

boundary layers on the pressure drop and heat transfer.  

 

2. Materials and methods 

A quartz reactor (45 mm length, i.d. 4 mm, o.d. 6 mm) was split into three zones. The middle 

section with a length of 25 mm consisted of composite magnetic catalyst (CMC) pellets (125-

250 µm) that generated heat under RF field. The details of preparation of the magnetic catalyst 

and CMC pellets are reported elsewhere13. A schematic view of the central reactor section is 

shown in Figure 1.  

 

Insert Figure 1 here 

 

The two adjacent sections with a length of 10 mm were filled with inert pellets of the same size 

and thermal properties as those in the middle section while those sections were not heated by 

RF field. This allowed creating the same hydrodynamic conditions in all three sections. The 

reactor was placed inside an RF coil with a diameter of 46 mm connected to an Easyheat 

system, generating a uniform RF field inside the coil at a frequency of 280 kHz. Cooling water 
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was supplied by a Lauda thermostat and was circulated through the coil during operation. Three 

fiber optic temperature sensors (Opsens) were attached to the exterior of the reactor at positions 

xA = 5.0 mm, xB =12 mm and xC =20 mm along the axial coordinate, measuring temperatures 

TA, TB and TC respectively. The accuracy of the fiber optic sensors is 0.1 K.  The reactor 

dimensions and material thermal properties are listed in Table 1 and shown in Figure 1. 

 

Insert Table 1 here. 

 

The amount of heat generated by the composite material (q) was determined from the heat 

balance in a non-reacting system. The RF power level was controlled to obtain the required 

temperature at any specific flow rate. Para-xylene (99.5 wt. %, Fluka) was fed to the reactor by 

a Shimadzu LC-20AD HPLC pump with a flow rate in the range between 0 and 200 µL min-1. 

The system was pressurized to 7 bar using an Upchurch P-787 PEEK backpressure regulator 

to avoid evaporation of xylene. To study a catalytic reaction of direct amide synthesis from an 

amine and a carboxylic acid, two HPLC pumps were used to feed solutions of aniline and 4-

phenylbutyric acid. The product analysis was performed with a Shimadzu GC-2010 gas 

chromatograph equipped with a 30 m Staliwax capillary column and an FID detector. Carbon 

balance was 99.5 % in all experiments. 

 

3. Results and discussion 

The conductive thermal resistance of the catalyst bed (RA) is calculated by Eq. 1. The obtained 

value of 590 K W-1 is larger than that of RB (Eq. 2) of 330 K W-1. This means that there is a 

temperature gradient in the reactor under volumetric heating even in the absence of fluid flow. 

The M value, obtained by Eq. 3, is 0.43 indicates a considerable contribution by convection 

which eventually results in a non-symmetrical thermal gradient in the axial direction. 
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The value for the overall heat transfer coefficient (U) of the composite wall was determined 

from the combined thermal resistance, RB 

AR
U

B

1
       (4) 

The effective thermal conductivity (λ1) of the catalyst bed depends on the bed porosity. Typical 

values between 4 W m-1 K-1 27 and 12 W m-1 K-1 28 are reported. In the current study, a value of 

6.7 W m-1 K-1 was obtained from a transient experiment. In this experiment, the temperature 

of the bed has been measured by fast heating of a part of the magnetic bed section inside the 

RF coil by 50 K (within 1 s) while keeping other part of the bed at room temperature (outside 

the coil). Then following the temperature distribution in the bed at different times, the effective 

thermal conductivity of the bed was calculated. 

Two methods were employed to obtain temperature profiles: (1) an analytical solution to a 1D 

heat transfer model including volumetric heat generation and convective flux; (2) a numerical 

solution to a 1D heat transfer model including axial dispersion and the effect of hydrodynamic 

and thermal developing boundary layers in the entrance region.  

 

3.1 Temperature profile in the reactor 

 

The conventional method for kinetic analysis involves independent variation of temperature 

and flow rate to obtain a set of kinetic data. In the first approach, the temperatures were 

measured at three axial positions at several flow rates and the temperature profiles were 

approximated with a second order polynomial function (Figure 2). A significant temperature 

gradient occurs within the reactor under volumetric heating which is in line with the assumption 

based on comparison of RA and RB values. Therefore any approach based on a single 

temperature measurement would be invalid. 

 

Insert Figure 2 here 
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Under RF field, the shape of the temperature profile depends both on the power input and flow 

rate. At a constant power input of 3.1 W, the average temperature decreases from 181 to 124 

oC as the flow rate increases from 40 to 200 l min-1 (Figure 2a). In addition, the position of 

the maximum temperature gradually shifts downstream as the flow rate increases. At the 

highest flow rate of 200 l min-1, the highest temperature is observed at a distance x* = 0.77. 

In the absence of the fluid flow, the temperature profile becomes symmetrical relative to the 

center of the bed. As the power input increases from 2.7 to 3.8 W at a constant flow rate of 160 

l min-1, the average temperature increases from 112 to 181 oC while the degree of concavity 

of temperature profiles remains almost the same (Figure 2b).  

A one dimensional (1D) pseudo-homogeneous dispersed plug flow model can be employed to 

formulate the energy balance within the heating zone:  

0)(
4

2

2

 avenv

h

peff qTTU
ddx

dT
GC

dx

Td
k     (5) 

where qav is the volumetric heat generation rate in the reactor. The volumetric heat generation 

rate was calculated from the intensity of magnetic field and the efficiency of conversion of 

electromagnetic energy into heat and it was verified from the heat balance in the absence of 

fluid flow. The efficiency of conversion of RF field into heat is 84% in the RF coil. The 

intensity of electromagnetic field along both radial and axial dimensions is rather uniform. This 

is because the reactor diameter (4 mm) is considerably smaller than the coil diameter (46 mm) 

and the bed length is smaller than the coil length. This provides very uniform magnetic field 

and volumetric energy supply along both radial and axial dimensions. 

The heat transfer rate depends on two effective thermal parameters: the overall heat transfer 

coefficient U between the bed and the environment, and the effective axial thermal 

conductivity, effk . Eq. 5 describes the T(x*) profile of the temperature averaged over the cross 



-10- 
 

section of the reactor. The boundary conditions are chosen such that the temperature far away 

from the heating zone reaches the temperature of the environment: 
envTTT  )()( . The 

solution of Eq. 5 can be presented in a form: 
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where z1 and –z2 are the characteristic roots which can be expressed as follows: 
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 The temperature gradient depends on the dimensionless parameter, RC, describing the 

ratio between the effect of heat convection and that of axial heat dispersion. At very low flow 

rate, RC <<1, and the effect of convection heat transfer can be neglected. The solution becomes  

  
effhd

U
Lzzz


2210       (8) 

The position of the maximum in the temperature profile can be determined from condition

0
dx

dT . Taking the first derivative of Eq. 6 and equalizing it to zero, one would obtain: 
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Solving Eq. 9 for the position of the maximum, one would obtain: 
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From this value, the maximum temperature can be evaluated from Eq. 6: 
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The maximum temperature is a function of the overall heat transfer coefficient, the thickness 

of the insulation and the effective axial thermal conductivity of the catalyst. However at very 

low flow rate, RC <<1, and 021 zzz  . In this case, Eq. 6 can be simplified to   
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The temperature profile is symmetrical relative 5.0* MAXx  and the maximum temperature 

becomes  
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If z0 is small, Eq. 13 can be expanded in series up to the second order terms: 
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Inserting Eq.8 in to Eq. 14 one can get expression for the maximum temperature in an RF 

heated reactor  

eff

av
env

Lq
TT

8

2

max             (15) 

It can be seen from Eq. 15 that in this case, the maximum temperature does not depend on the 

overall heat transfer coefficient and the reactor diameter. The minimum temperature will be 

always at the reactor inlet: 0* MINx .  

Making a new variable, the reactor half-length, 
2

L
l  , the temperature profile becomes 

parabolic and symmetrical relative x=l 
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We used both the exact (Eq. 6) and approximate (Eqs. 12 and 16) analytical solutions to predict 

the axial temperature profile and the maximum temperature difference at a constant volumetric 

heating rate. Eq. 6 predicts the maximum temperature rather well (Figure 3a).  In the absence 

of convective flux, the profile is symmetrical and the maximum temperature is described by 

Eq. 15 rather well. From the energy balance, it is possible to estimate the contribution from the 

natural convention losses and therefore to estimate the overall heat transfer coefficient. The 

overall heat transfer coefficient (U) is equal to 9.0 W m-2K-1. A very close value of 9.2 W m-

2K-1 was obtained for h3 from a correlation for heat transfer rate around a horizontal cylinder 

(Eq. 17)30 
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As the overall heat transfer coefficient is close to h3, it can be concluded that the main heat 

transfer resistance is in the boundary layer around the insulation layer.  In the flow experiments, 

the maximum position shifts to the downstream location. Again, the position of the maximum 

temperature is very well described by Eq. 6 (Figure 3b and Table 2).  

 

Insert Table 2 here 

 

A convection and conduction heat-transfer model was solved numerically in Comsol to verify 

the validity of the analytical solution (Figure 4). This model is essentially the same as 

previously presented31 to estimate temperature profile is a trickle-bed reactor under RF heating. 



-13- 
 

The model was used to predict the temperature profiles in the reactor, using the same 

parameters as used for the analytical solution.  

 

Insert Figure 4 here 

 

The temperature profiles predicted by the numerical model were almost identical to those 

predicted by the analytical solution. The difference can be caused by axial dispersion effects in 

the numerical model which are not accounted in the analytical solution. Similar to the analytical 

solution, the maximum temperature was also observed to shift downstream for increasing flow 

rates.  

 

3.2 Heat losses 

Once an accurate description of temperature profiles in the reactor has been obtained, the 

overall heat balance can be estimated. While the description of temperature profiles given by 

Eq 6 is rather accurate, it is possible to replace the exact solution with a simple parabolic 

function as presented in Table 3. 

 

Insert Table 3 here. 

Such replacement allows to estimate the conductive heat loss at the both ends of the reactor 

using the Fourier’s law of thermal conduction:  
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using eff of 6.7 W m-1·K-1 and the temperature gradient at the both ends of the reactor: 
*dx

dT
at 

x*=0 and x*=1. 

The heat losses to the environment were calculated by the Newton’s law of cooling, 
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)(  TTUAQ sconv
             (19) 

where T  is the average temperature of the reactor bed over the length between x*=0 and x*=1, 

and 
T is the temperature of the surrounding air which was set at 20 oC. 

Finally the contribution of the fluid heating was estimated from the conservation of internal 

energy 

)( 01 TTCFQ pVheat              (20) 

where T1 and T0 is the mean temperature of the fluid leaving and entering the packed-bed, 

respectively. At steady-state conditions, the total heat transfer rate is equal to the heat 

generation via RF heating: 

convcondheattot QQQVqQ  '''          (21) 

Figure 5 shows the contribution of different heat loss mechanisms in the reactor as a function 

of the flow rate.  

 

Insert Figure 5 here 

 

At flow rates below 200 μL min-1, conduction has the largest contribution to the overall heat 

loss (Figure 5). Conduction opposite to the flow direction plays a significant role in preheating 

the liquid before it enters the packed-bed. As the flow rate increases the contribution of both 

conduction and convection heat transfer decreases as a result of the decreased temperature 

gradient. 

The position of the maximum temperature in the reactor can also be expressed as a function of 

M-factor (Eq. 3, Figure 6). Increasing the flow rate increases the contribution by forced 

convection and therefore the M factor decreases. In the region at M<0.4, the maximum 

temperature positions shifts to the very end of the reactor, and at these conditions a major 
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amount of heat is transported away from the reactor by convection. This corresponds to 2

CR

value above 3. At even larger values of 2

CR , the position of the maximum temperature would 

be located almost at the exit. 

 

3.3. Recommendations for the choice of design parameter for RF-heated milli-reactor 

In case of a catalytic reaction taking place in the reactor, the heat transfer model should be 

coupled with an appropriate kinetic model either to predict the reactant concentration profiles 

or to estimate relevant kinetic parameters. While this can be done using modern CFD packages, 

such approach is rather time consuming and requires good initial guess values for fast 

convergence. However, the temperature profile under RF-heating can be rather good described 

by the analytical solution to a 1D heat transfer problem once the effective thermal conductivity 

of the bed and the overall heat transfer coefficient are known. Therefore an important 

simplifying step is the initial modelling of temperature profile from the known specific heat 

generation rate, which allows to decouple the energy conservation balance from the component 

mass balance. Finally, the obtained temperature profiles can be rather good described by a 

second order polynomial function which further simplifies the analysis. 

It is however important in many applications that the maximum hot spot in the reactor should 

not exceed some critical value. On the other size, the experimental error due to the uncertainty 

of determination of overall heat transfer coefficient (U) should be reduced.   

It has been shown that the exact value of maxT can be estimated by Eq. 11 with high precision. 

The maximum allowed magnitude of maxT can be determined if the activation energy of 

reaction is known. In our past experiments, a temperature difference as low as 2 K can be 

maintained in the RF-heated reactor31,32. It can be seen from Eq. 15 that the temperature 

gradient increases as a second power of the reactor length. Therefore it is of importance that 
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the length to diameter ratio should be kept as low as possible to create near-isothermal 

conditions in the reactor. Also the M-value should be chosen below 1 to reduce the contribution 

from natural convection. However, the range of experimental flow rates is usually determined 

by the catalyst volume, so it is not always possible to increase the flow rate to decrease the M-

value. While dilution of the magnetic catalyst will reduce the specific heat generation rate, this 

will increase the size of the total catalyst bed, and the overall effect will be much lower than 

expected. Therefore, an alternative approach can be used where a single catalytic bed can be 

split in several heating sections with additional sections of inert material in between32. In case 

of a non-magnetic catalyst, one catalytic and one heating zone form a single periodic unit 

which, in principle, can be repeated in the axial direction if the intensity of RF field in the axial 

direction remains the same. Further adjustments can be made by varying the position and the 

length of individual heating zones.  

The importance of accurate temperature measurements is crucial for a proper interpretation of 

the catalytic activity in an RF heated reactor. Figure 7 compares two reactant concentration 

profiles simulated based on the kinetics of amide synthesis from of aniline and 4-phenylbutyric 

acid 33 and respective temperature distributions. The reaction follows a first order kinetics with 

respect to both reactants with a reaction rate of 0.15 mol g-1 s-1 at 150 oC and an activation 

energy of 48 kj mol-1 (Figure 8). 

 Figure 7a shows both temperature and amine concentration profiles under RF heating. A 

conversion of 82.0±0.3% was observed and the average temperature in the bed was 181 oC. 

However if the same reactor was placed in a convection oven maintained at a constant 

temperature of 181 oC over the entire reactor length, the conversion was 78.8±0.3% (Figure 

7b). Thus, a single-point temperature measurement would cause the misinterpretation of the 

catalytic activity in an RF-heated reactor due to an underestimation of reaction rate. The 

difference is caused by much higher reaction rate in the central part of the catalytic bed under 
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RF heating. In other words, the temperature rise along the RF heated reactor length helps to 

keep high reaction rate in the downstream section of the reactor. Depending on the position of 

the fiber optic sensor and the fluid flow rate the difference between the single point kinetic 

model predictions and experimental data could be as high as 20% (Figure 9). 

Insert Figures 7-9 here. 

 

4. Conclusions 

Determination of the temperature profile in an RF heated catalytic packed-bed milli-reactors is 

essential for interpretation of kinetic data in these systems. Due to their small dimensions larger 

contributions of axial conduction and heat losses to the environment are observed and 

accordingly the temperature profiles deviate from those observed in large scale reactors that 

follow adiabatic operation. The accurate determination of effective thermal conductivity is 

necessary for the estimation of the maximum temperature in the reactor and the position of this 

maximum. Therefore the temperature has to be measured at least at three different positions 

along the bed. This allows to determine the effective thermal conductivity from the exact 

analytical solution to a 1D convective and conduction heat transfer problem with internal heat 

generation. The M-factor (as suggested by Maranzana et al.22) should be below 0.4 to reduce 

the contribution from natural convection heat transfer and increase the accuracy of kinetic 

measurements. However once the M-factor exceeds 0.4, the axial conduction becomes the 

dominant mechanism of heat transfer and a more rigorous approach utilising numerical 

modelling has to be employed. 
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Figure captions 

Figure 1.  Schematic view of the experimental setup with definitions of reactor dimension 

and heat transfer parameters. r1= 2mm, r2=3 mm, r3=6mm. 

Figure 2.  Measured (symbols) and calculated (lines) temperatures as a function of the 

dimensionless reactor coordinate. (a) RF power of 3.1 W, (b) Liquid flow rate: 

160 μL min-1. 

Figure 3.   (a) Parity plot for the maximum temperature in the reactor; (b) Parity plot for the 

position of the maximum temperature in the reactor 

Figure 4.  (a) Simulated temperature profiles (lines) vs experimental temperature 

measurements (points); (b) parity plot obtained at a total input power of 3.1 W at 

different liquid flow rates. 

Figure 5.    Contributions of fluid heating, natural convection and conduction to the overall 

heat loss in the RF-heated reactor. 

Figure 6.  Dimensionless axial position of maximum temperature as a function of M factor. 

Figure 7.  Comparison of conversion in the reaction of direct amide bond synthesis in an 

ideal isothermal reactor and in the RF heated reactor at a reactant flow rate of 80 

l min-1. 

Figure 8.  Synthesis of 4,N-diphenylbutynamide from aniline and 4-phenylbutyric acid. 

Figure 9.  The difference in amine conversion between theoretical prediction based on a 

single point measurement (assuming isothermal conditions) and experimental 

data. 
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Nomenclature 

A  cross sectional area of the bed, m2 

A3 external surface area of insulation, m2 

Cp liquid specific heat capacity, J kg-1 K-1 

FV volumetric flow rate, m3 s-1 

h convection heat transfer coefficient, W m-2 K-1 

K  bed permeability, m-2 

L  length of reactor, m 

'''

Vq  volumetric heat generation rate, W m-3 

axq  axial conduction heat transfer rate, W  

RA conductive thermal resistance in the bed, K W-1 

RB1 thermal resistance of the reactor wall, K W-1 

RB2 thermal resistance of insulation, K W-1 

RB3 thermal resistance of natural convection, K W-1 

T temperature, K 

T  average bed temperature, K 

T  temperature of the surrounding air,  293 K  

U  overall heat transfer coefficient, W m-2 K-1 

r1  inner radius of reactor,  m 

r2  outer radius of reactor, m 

r3  outer radius of insulation, m 
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Greek symbols: 

ρ density of fluid, kg m-3 

λ1 effective thermal conductivity of the bed, W m-1 K-1 

λ2 thermal conductivity of the wall, W m-1 K-1 

λ3 thermal conductivity of insulation, W m-1 K-1 

  viscosity, kg m-1 s-1 

Φcond
 axial heat transfer by conduction in the wall, W K-1 

Φconv convective heat transfer in the flow, W K-1 

 

Subscript 

in inlet 

out outlet 
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Table 1. Thermophysical properties of the liquid and solid phase and heat-transfer parameters 

Parameter Value 

U [W m-2 K-1] 9.0 

h3  [W m-2 K-1] 9.2 

λeff [W m-1 K-1] 7.0 

Cp,  [J kg-1 K-1] 1710 

 [kg  m-3] 861 

Tinlet [
oC] 20 

Tenv [
oC] 20 

 

 

 

Table 2. Parameters of fitting functions for temperature profiles at different flow rates 

Flow rate 

[L min-1] 

GCp  

[kg m-2 s-1] 

2

CR  z1 z2 *

MAXx  

40 6.17  101 0.07 0.962 0.742 0.564 

80 1.23  102 0.27 1.093 0.653 0.626 

120 1.85  102 0.61 1.237 0.577 0.682 

160 2.47  102 1.09 1.393 0.513 0.731 

200 3.08  102 1.70 1.559 0.458 0.772 
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Table 3. Parameters of second order polynomial functions T(x*)= ax*2+bx*+c to describe 

temperature profiles at four different power inputs 

Parameter 2.7 W 3.1W 3.4W 3.8W 

a [oC] -207 -241 -272 -291 

b [oC] 284 332 378 407 

c [oC] 53 57 62 70 
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