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Abstract

Fourier transform ion cyclotron resonance mass spectrometry affords the resolving

power to determine an unprecedented number of components in complex mixtures,

such as petroleum. The software tools required to also analyze these data struggle

to keep pace with advancing instrument capabilities and increasing quantities of data,

particularly in terms of combining information efficiently across multiple replicates.

Improved confidence in data and the use of replicates is particularly important where

strategic decisions will be based upon the analysis. We present a new algorithm named

Themis, developed using R, to jointly preprocess replicate measurements of a sample

with the aim of improving consistency as a preliminary step to assigning peaks to

chemical compositions. The main features of the algorithm are quality control criteria

to detect failed runs, ensuring comparable magnitudes across replicates, peak alignment
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and the use of an adaptive mixture model-based strategy to help distinguish true peaks

from noise. The algorithm outputs a list of peaks reliably observed across replicates and

facilitates data handling by preprocessing all replicates in a single step. The processed

data produced by our algorithm can subsequently be analyzed using relevant specialized

software. While Themis has been demonstrated using petroleum as an example of a

complex mixture, its basic framework will be useful for complex samples arising from

a variety of other applications.

Introduction

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS)1–6 represents a

state-of-the-art technique for the study of complex mixtures that provides significant ad-

vantages in terms of ultrahigh resolving power and mass accuracy7 . As a result of these

performance advantages, FTICR MS affords the ability to distinguish molecules with very

similar mass-to-charge ratios (m/z), on the basis of mass defect. Given the complexity of

petroleum composition, these advantages are particularly relevant for the characterization of

petroleum and its products by mass spectrometry8–14 , an area of research that has become

known as “petroleomics” . The following discussion will use application to this field as a

suitable example, but it should be made clear that our methodology remains applicable to

other complex samples. A variety of analytical approaches have been applied for the char-

acterization of petroleum15 , as well as environmental samples associated with alternative

sources of oil16–19 . Although high-field Orbitrap mass spectrometers are showing promising

results for light and medium petroleum fractions, FTICR MS remains state-of-the-art for

heavy fractions20–24 . In order to address the challenges of producing and refining crude oil,

one needs to develop a more detailed understanding of its composition through improvements

in characterization methods25,26 . Petroleomics is a field of growing importance because the

most desirable varieties of crude oil are becoming more scarce. At the same time, the deriva-

tives of crude oil are in everyday use and include products such as fuels, solvents, plastics,
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dyes, waxes, lubricants, and pharmaceuticals, among others27 .

As the capabilities of FTICR MS have increased and produce larger and richer datasets,

there has been an accompanying need for the development of more advanced software for

data analysis28 . Peak detection is a fundamental step as part of a data analysis workflow,

regardless of application and instrument type. Reflecting this, a large variety of methods

have been developed over time to improve peak picking29–37 . Thus far, the development of

data analysis methodologies for mass spectrometry have focused upon the characterization

of biomolecules, such as peptides and proteins. In 2003 , Patterson argued in relation to the

study of biomolecules that ‘data analysis is the Achilles heel of proteomics and our ability

to generate data now outstrips our ability to analyze it’38 . Today, the ability to analyze

proteomics data is considerably improved, with many software tools available. The analysis

of complex mixtures data29–31,39–42 is different from proteomics, metabolomics, or polymer

data, for example, given the higher peak density (15 to 30 peaks in a 0.5 m/z window)10,12,35

and different patterns within the data. While proteomics has typically involved lower resolu-

tion instrumentation and higher throughput techniques (automated system analyzing many

samples per day), of greatest need when analysis petroleomic samples is ultra-high reso-

lution, making FTICR MS the tool of choice. Another difference is that software tools

for biomolecule characterization are designed to match protein or peptide sequences using

online databanks. For complex mixtures such as petroleum, the strategy is to determine se-

ries of heteroatom containing organic components, with thousands of possible compositions

(CcHhNnOoSs).

One example of data analysis software is Mass-Up43,44 , an open source mass spectrometry

program that gathers functions such as normalization, peak detection and peak matching

of replicated samples. It was developed specifically for proteomics MALDI data45–47 , when

typically using a lower resolution mass analyzer such as time of flight mass spectrometry.

While a software tool designed for other varieties of mass analyzers and other sample types

can be invaluable for their intended purposes, they are not appropriate for complex mixtures
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analysis due to their design for use with lower resolution data and wider mass error tolerances

(e.g.: hundreds of parts per million, ppm). There is an emerging need for improved data

analysis strategies for complex mixtures, such as for petroleomics applications, that are

designed for the resolution of ten of thousands of peaks15 .

Currently, a typical workflow for analysis using FTICR MS may consist of acquiring one

spectrum per sample and processing each individual sample with specialized petroleomics

software, such as Composer (Sierra Analytics, Modesto, CA, U.S.A.)16,20 or PetroOrg (Florida

State University, Tallahassee, FL, U.S.A.)48 . The results from individual samples can then

be recalibrated with respect to m/z to compensate for electric field effects (including space-

charge due to the presence of the ions) within FTICR cells13,49–51 . As the field becomes more

mature, increasing numbers of samples need to be analyzed within a practical time frame,

including multiple experiments to ensure repeatability of results. A fundamental concern is

to ensure that the data are reliable and false assignments are reduced by removing as much

noise as possible before performing in-depth data analysis.36 .

To improve the reliability of analysis of crude oil spectra, Hur et al. have previously high-

lighted the importance of the use of replicates52,53 . The need for replicates was demonstrated

for FTICR MS-based metabolomics data54 , and recently replicates were used to generate an

averaged mass spectrum55 . Our approach is based on the idea that to fully capitalize on the

advantages brought by repeat measurements, replicates should be processed together instead

of separately. The first challenge is that complex mixture datasets present a high density of

peaks of interest, hampering the identification of those that are consistent across replicates.

A second challenge is that of the peak magnitudes: some peaks are similar in magnitude to

the noise level, and it is also possible that peak magnitudes can differ significantly across

replicates.

A simple strategy to avoid false positives is to use stringent parameters when making

peak assignments, e.g. setting a higher minimal signal-to-noise (S/N) ratio when picking

peaks or a narrower tolerance of mass error (more limited deviation on the m/z axis). There
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are advantages in working with such peak lists rather than full mass spectra in terms of

simplicity and reduced computational cost. The problem with these strategies is that they

may, at an early stage, discard low magnitude peaks that provide valuable information and

are consistently observed across replicates. That is, they may be too aggressive in reducing

the number of peaks, with consequences for subsequent interpretation. In contrast, using

settings that are too permissive risks including a high number of false positives. Further, the

fundamental issue remains that applying thresholds to individual spectra loses the oppor-

tunity to share information across samples. Ideally, one would like to preserve all potential

peaks in individual samples and then use information across replicates to identify which

peaks are truly reliable. Traditionally, denoising methods are based on signal magnitude,

either using the shape of the peaks or their magnitudes, to discriminate between noise and

reliable peaks. By contrast, we propose to denoise the spectra by focusing upon the con-

sistency on the m/z scale, with peak magnitude being used as a secondary criterion. Our

algorithm ensures reproducibility of the peak list extracted from a sample and produces a

single consensus list. Figure 1 provides a schematic representation. The first stage is to

extract a peak list from each replicate using a permissive S/N ratio. The second step is to

detect anomalous replicates using quality control statistics based upon their molecular weight

distributions. The third stage is the use of quantile normalization to ensure that magnitudes

are comparable across replicates. Finally the fourth step uses a statistical mixture modeling

approach to distinguish reliable peaks from those due to noise.

Methodology

Sample Preparation

Sample A was an NIST light sour crude oil sample (National Institute of Standards and

Technology, SRM 2721, Crude Oil (Light -Sour)) which was dissolved as 0.1 mg/mL in

an 80:20 ratio of propan-2-ol/toluene (Fisher Scientific, Loughborough, UK), with formic
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acid (Sigma-Aldrich Company Ltd, Gillingham, UK) being added as 1 % by volume to aid

protonation. Sample B was a South American crude oil sample which was dissolved as

0.05 mg/mL in a 50:50 propan-2-ol/toluene (Fisher Scientific, Loughborough, UK) and with

0.2% formic acid (Sigma-Aldrich Company Ltd, Gillingham, UK) for positive-ion mode or

ammonium hydroxide (Sigma-Aldrich Company Ltd, Gillingham, UK) at 0.8% for negative-

ion mode. Sample C was a Kodak naphthenic acid (NA) mixture (The Eastman Kodak

Company, Rochester, NY) was prepared at 0.1 mg/mL in acetonitrile (VWR Chemicals,

Lutterworth, UK) without the addition of any ammonium hydroxide.

Instrumentation

Mass spectra were acquired using an Apollo II electrospray ionization (ESI) source, coupled

to a 12 T solariX FTICR mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany).

For sample A, the instrument was operated in positive-ion mode and 6 repeat measurements

were obtained all of them being the result of 300 scans. Sample B was recorded in both

positive and negative mode with 5 and 6 repeat measurements, respectively. The number

of scans was 300 for the negative mode and 210 scans for the positive mode. Sample C

was recorded in negative mode with 6 repeat measurements and 100 scans. In all cases,

replicates were obtained the same day using a single session on the instrument. Broadband

mass spectra were acquired, where a single zero fill and Sine-Bell apodization were applied

before usage of a Fourier transform.

Statistical processing

Extract peak lists: The spectra were exported from solariXcontrol to DataAnalysis 4.2,

the latter was used to extract peak information using the following parameters: Peak finder

“FTMS”, S/N threshold of 4, relative magnitude threshold (base peak) of 0.01 % and absolute

magnitude threshold of 100%. The spectrum was not subject to any modification other than

the application of the default apodization before undergoing the Fourier transformation.
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INPUT: Peak lists

extracted from 

each replicate

4.Discard 

inconsistent peaks

OUTPUT: 

Combined peak list

1.Detect anomalous

 replicates

2.Normalize peak

magnitudes across

replicates

3. Initial alignment

of peaks

across replicates

5. Align peaks

across replicates

Figure 1: Schematic of the Themis pre-processing algorithm

Step 1: Detect anomalous replicates. The average molecular weight W j of each

replicate j = 1, . . . , r , where r is the number of replicates, was calculated as a quality

control metric to detect anomalous runs. Specifically

W j =

∑nj

i=1M [i, j] I [i, j]∑nj

i=1 I [i, j]
(1)

whereM [i, j] is them/z value of peak i in the sample j, I[i, j] is the corresponding magnitude

and nj is the number of peaks in sample j.

To identify what constitutes an anomalous average molecular weight, we must first char-

acterize their reference distribution from the data. Given that the mean and the standard

deviation (sd) can be heavily influenced by outliers, we used robust measures of the cen-

ter and spread, namely the median and the corrected median absolute deviation (mad)56–58

given by:

mad(x1, . . . , xn) = b (mediani(|xi −medianj(xj)|)) (2)
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with b = 1.4826 for Gaussian distributions. Motivated by the Central Limit Theorem, we

assume that the average molecular weights of non-anomalous samples are approximately

normally distributed around a mean µ, with standard deviation σ. We wish to find an

interval (µ − y, µ + y) that in the absence of any anomalies should contain all n samples

with probability 1 − α, where α is a user-specified error threshold (by default α = 0.05).

Assuming that replicates are independent, for a given µ and σ it can be seen that:

y = Φ−1

(
(1− α)1/r

2
, µ, σ

)
(3)

where Φ−1(x, µ, σ) is the inverse normal cumulative distribution function.

Step 2: Normalize peak magnitudes across replicates. To take into account that

the dynamic range of magnitudes varies across samples we apply quantile normalization59,60

. This ensures that the distribution of magnitudes is identical across replicates, facilitating

the subsequent peak alignment.

Step 3: Initial alignment of peaks across replicates. Our peak alignment strategy

has two steps, a first one to initialize (Step 3) and a second one used iteratively to refine the

matching Step (5) . For clarity we denote any value that may change across iterations with

a k superscript to indicate the value at the kth iteration. In the initialization step k = 0.

To initialize the peak alignment, we take the sample with the largest number of peaks as a

reference and match peaks in all the other replicates to the reference. Let m(k) denote the

number of aligned peaks in iteration k and m(0) the number of peaks in the longest replicate

at initialization. For each peak in the reference replicate we match to the closest peak in

each replicate in terms of its m/z value.

Step 4: Discarding inconsistent peaks. We compute the standard deviation of the

m/z values matched to reference peak i = 1, . . . ,m(k), which we denote Z(k)
i . Intuitively,

peaks that are consistently observed across samples should show similarm/z values, resulting

in low Z
(k)
i . That is, one typically observes a sub-population of reliable peaks with low Z

(k)
i

8



and another sub-population of less reliable peaks with high Z(k)
i , likely due to noise. This

motivated us to fit a mixture model to separate these subpopulations. Let P (k)
ij ∈ {1, . . . , nj}

be the index of the peak in replicate j (for j = 1, . . . , r) that is matched to the ith reference

peak in iteration k. We define the meanm/z and magnitude for reference peak i = 1, . . . ,m(k)

by

M
(k)

i =
1

r

r∑
j=1

M [P
(k)
ij , j] (4)

I
(k)

i =
1

r

r∑
j=1

I[P
(k)
ij , j] (5)

and

Z
(k)
i =

√√√√∑r
j=1

(
M [P

(k)
ij , j]−M

(k)

i

)2
r − 1

(6)

T
(k)
i =

√√√√∑r
j=1

(
I[P

(k)
ij , j]− I

(k)

i

)2
r − 1

(7)

the respective m/z and magnitude standard deviations.

An important step in our algorithm is to identify the subpopulation of peaks consistently

observed across replicates. To this end we fit a Normal mixture model61 to log

(
Z

(k)
i

M
(k)
i

)
using the function mclust62,63 in the R package mclust. Calculating the relative standard

deviation (RSD) by dividing the standard deviation Z(k)
i of a peak by its M (k)

i allows us to

express the results in a unit equivalent to parts per million which is a standard unit when

expressing the mass error associated with the m/z of a peak. In addition, it helps to make

the mixture model more reliable as it allows to be equally stringent for high and low m/z as

the sd will naturally be higher with high m/z values. We denote G(k)
i = log

(
Z

(k)
i

M
(k)
i

)
.

In mclust, we set the maximum number of components to capture peak subpopulations

of high, low and potentially a third one of intermediate quality. We use the Bayesian infor-

mation criterion (BIC) to select the final number of components in the mixture. Themis then

selects the population with lowest mean G(k)
i . When this mean is > 1ppm a warning is given
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to signal that the dataset may be of low quality. The first time that Step 4 is performed,

a conservative threshold is used: peaks are discarded if they have a probability below 0.01

of belonging to the selected subpopulation. Doing so allows the algorithm to remove the

majority of the obvious noise whilst making sure not to discard any potentially relevant

peaks. At this step, the presence of leftover noise isn’t problematic as further refining will

be performed by iteratively repeating Steps 4 and 5 .

In each subsequent repetition of Step 4 in future iterations the 0.01 threshold is increased

by 0.01, up to a maximum of 0.5. The goal is that by the end of the iterative process only

peaks belonging to the high-quality subpopulation remain.

Step 5: Align peaks across replicates. After peak removal in Step 4, we refine the

peak matching across samples using a combined criterion that incorporates both magnitude

and m/z, in contrast to Step 3 where we only used m/z. Intuitively, the criterion seeks

the closest peak based on a score where m/z and magnitude are weighted according to

their inherent variability. Given that the precision of the variance estimates in (6)-(7) may

suffer when the number of replicates r is low, we borrow strength across peaks using the

hierarchical empirical Bayes framework proposed by Smyth and Speed 64 , implemented in

function squeezeVar from the Bioconductor package limma65 . We denote Z̃(k−1)
i and T̃ (k−1)

i

the refined estimates analogous to Zk−1
i and T k−1

i . Specifically, the score to measure the

closeness of peak ` in sample j to reference peak i at the kth iteration is

S
(k)
ij` =

∣∣∣M`j −M
(k−1)

i

∣∣∣
Z̃

(k−1)
i

+

∣∣∣I`j − I(k−1)

i

∣∣∣
T̃

(k−1)
i

. (8)

The highest scoring peak in each replicate replaces the one chosen in the initial matching.

After this peak assignment we update M (k)

i , I
(k)

i , Z
(k)
i , T

(k)
i Z̃

(k)
i and T̃ (k)

i . To obtain a scoring

method that limits the effect of outliers and can be computed in cases where a reference peak

is absent from one or a few replicates, we added the possibility to replace (4)-(5)-(6)-(7) by

trimmed means and standard deviations. That is, the replicate(s) with largest S(k)
ij` in (8)
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can be discarded.

Themis iteratively repeats Steps 4 and 5 until either the BIC selects a single population

or else when all remaining subpopulations have a mean less than ≡ 1ppm and the peak list

does not change between 5 successive iterations.

Output combined peak list. The final output is a list composed of 3 tables contain-

ing respectively the m/z values, magnitude values and the final peak list. The m/z and

magnitude tables have a [mK , r] dimension where mK indicates a peak and r a replicate

number. The final reference peak list file is an m(K) × 4 table where m(K) is the number of

reference peaks at the final iteration K. Themis stores the m/z, sd(m/z), magnitude and

sd (magnitude) of each peak as separated columns. Themis provides a function to extract

columns 1 and 3 from the peak list table to a .txt file containing a first column with the

m/z and a second with the corresponding magnitudes.

Results and discussion
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Figure 2: Automated detection of outliers and use of a series of repeat measurements to
produce an averaged data set for characterization.

The performance of the pre-processing methodology was assessed using a sample of NIST

light sour crude oil, a naphthenic acid sample66 and a crude oil sample analyzed using

both positive-ion and negative-ion modes. We also used a dataset that was recorded using
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deliberately aberrant instrument parameters to study the ability of our framework to detect

such situations. Themis is available as an online tool at http://themis.warwick.ac.uk/themis

and is based on Rwui67 to generate a web interface for the R script.

A common strategy to improve the accuracy in the m/z values is to apply a calibration

step based upon a list of reference peaks. This step can in principle be applied to each

individual peak list given as input to Themis or to the single reference peak list output by

Themis. It is common that there can be minor variations in mass errors between different

datasets. Calibrating each individual peak list before passing to Themis can significantly

improve the quality of the processing due to improved consistency.

In order to test Step 1 of the algorithm, we recorded a spectrum of the NIST Sample

A, where the ICR cell was intentionally overloaded with a high ion population and one

where we deactivated ion source dissociation (ISD), which is used to minimize non-covalent

aggregation. These two peak lists were extracted and included with the 6 others which were

acquired under normal conditions. The algorithm was able to detect these 2 spectra as

aberrant and remove them. Similarly, we then substituted the ISD off peak list by one from

naphthenic acid sample C to the list of replicates for sample A (NIST) used before to verify

that our method would be able to cover this potential error. Again, the algorithm successfully

detected the spectrum which did not correspond to Sample A (NIST) and removed it. The

procedure was illustrated in Figure 2 where spectra C and E were discarded after modelisation

while the other were kept.

To assess Step 2, we produced a quantile-quantile plot (q-q plot) to compare the mag-

nitudes across samples. We observed considerable variation between replicates (Figure 3a.),

particularly for greater magnitudes. Low magnitudes (ranging from 0− 0.5× 108) exhibited

a similar distribution across replicates. In the region from 0.5× 108 to 2.0× 108, we observe

an inflexion of the line, which demonstrates that the magnitude of the magnitude is different

but the overall shape is similar. Also, single high magnitude peaks such as those originating

from contaminants will influence the total signal magnitude for the corresponding dataset.
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The quantile normalized magnitudes are shown in Figure 3b. Similar results were observed

for other samples (see Supporting Information).
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Figure 3: (Quantile-quantile plots of the magnitudes of the six replicates before (A.) and
after (B.) quantile normalization for the NIST light sour crude oil sample.

Figure 4 was produced after the initial peak alignment in Step 3. It shows a histogram of

log-standard deviation within-peak m/z values for multiple datasets. It reveals the presence

of a sub-population with low log(sd/mz) corresponding to reliable peaks, i.e. with similar

m/z across replicates and another sub-population with high log(sd/mz) mostly composed of

noise. Evidence of distinct sub-populations was observed in all datasets we have analyzed

so far, including different samples, instruments, users and peak list extraction methods.

Step 4 is critical because although in all datasets there are clearly distinct sub-populations,

the distributions are different. That is, the threshold used to distinguish reliable from unreli-

able peaks cannot be a fixed quantity but instead needs to be data-dependent. The red line,

labeled “1 ppm”, indicates a fixed threshold equivalent to the log of 1 ppm, a value which is

typically used as a benchmark for the accuracy of the mass measurement. For comparison,

the black line, labeled “Themis Threshold”, indicates the final threshold identified by our
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mixture model framework, which is adaptive to the nature of the individual datasets. For

instance, for both ionization of the Crude Oil B, a more tolerant threshold was used. While

for Figure 4C, the threshold immediately makes sense to the eye, Figure 4D may give the

impression of selecting part of the noise population. This is because during the refining

process the shape of the population changes due to the scoring algorithm. With the NIST

data the refinement led to the removal of peaks which ended up being present several times

following the rematching performed during the iterative part of the algorithm. During this

part the peaks in between the two large populations resulting from valid peaks [on the left]

and noise peaks [on the right], noise slowly joined these large populations. The more chal-

lenging naphthenic acid sample ended up with a threshold close to 1 ppm. This dataset

had considerably fewer peaks than the 3 other datasets, making the mixture modeling more

challenging. Despite fewer peaks for the mixture modeling, the algorithm still managed to

isolate a consistent population.

An example that highlights the benefits of the algorithm is given in Figure 5 with the

close examination of a region around the peak m/z = 248.1434, for 2 replicate datasets

and Themis output using all replicates. It is possible for a user to manually go through

every dataset, adjust the parameters, to get an optimal assignment. This is a laborious

task which is usually avoided by using default data analysis parameters across the datasets.

Manual adjustments of the parameters on a case by case basis is the way to assign the

greatest possible number of peaks, but also leads to an increased risk of false assignments

due inclusion of noise peaks. In Figure 5 noise was observed between m/z 248.00 and 248.40

for the individual replicates, but was not observed in the dataset produced by Themis.

Figure S5 shows a larger m/z region to illustrate the peak list obtained across the 6

replicates of the NIST sample. Our algorithm identified peaks that were consistently observed

across replicates with a S/N ratio as low as 4.5 up to 15 for this section between 700 and

710 m/z. For comparison, in the region around 400 m/z the peaks are routinely observed

with a S/N ratio of more than 500.
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Figure 5: Peak assignment between m/z 248.00 and 248.40, showing 2 replicates datasets
and the one produced by Themis using all replicates. In replicate 1 composition C15H21NS
is present just above the noise threshold while in replicate 2 the peak is below the noise
threshold and so not assigned.
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The raw peak lists for the NIST light sour crude oil sample contained an average of

approximately 16,400 peaks. Out of these, Themis identified 2,260 reference peaks deemed

to be common amongst all of the replicates. The number of entries increased to 2,523 when

the peaks were allowed to be absent from one of the replicates at Step 5 of our algorithm,

and to 2,820 when peaks could be absent from 2 of the replicates. Allowing peaks to be

absent from one or more replicates increases the ability to detect potentially relevant peaks,

at the expense of an increased risk of potentially including less reliable peaks.

We compared the chemical composition obtained from the unprocessed spectra with that

from the peaks list produced by our algorithm for the NIST light sour crude oil. For the

purposes of the comparison, the N1 class has been used, due to being the most prevalent and

the more challenging NS class because of its lower magnitudes. The data was recalibrated

using the N1 class and a walking algorithm51 . The m/z match tolerance was set to 1 ppm.

For the N1 class the results demonstrated that the reference peak list output by Themis

has a similar chemical composition after processing. Plots of contributions by double bond

equivalents (DBE) and carbon number for the N1 class are shown in Figure S6. Figure

S6 demonstrates that the assignments were very similar despite the output from Themis

containing a fraction of the number of peaks, indicating that information was not being lost

during the processing. Themis is expected to improve picking of peaks of low S/N ratio and

therefore we next looked at the NS class which forms a smaller contribution to the profile.

Figure 6 shows the contributions of homologous series to the NS class, where the NS class

included many lower magnitude peaks, as already shown in Figure 5 .

At first glance, a wider range of carbon numbers and DBE appeared to be observed when

no processing was used. Closer inspection of the data, however, revealed gaps within the

DBE series; this can typically be used to differentiate between likely correct and incorrect

assignments within petroleum data, due to the well-known presence of homologous series.

The additional assignments in the unprocessed replicates were also associated with higher

mass errors, further indicating that they were of questionable validity. Furthermore, manual
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Figure 6: Stacked bar plot of the carbon number and DBE distributions for the NS class
for the NIST light sour crude oil sample. The results of the data analyses are shown for:
(A) a single replicate, where the total peak list (all classes and including noise) comprised
approximately 16,400 peaks and for (B) the output from Themis using all replicates, where
the entire peak list comprised approximately 2,260 peaks.
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inspection of the data also revealed that the peaks in question were not consistently observed

across the replicates. The combination of these observations provides evidence that the

removal of these assignments does not represent a loss of information, but, in fact, a reduction

in false positives. After processing with Themis, the series observed were more consistent

and the associated range of mass errors was smaller. While Themis reduced the size of the

peak list by differentiating noise and inconsistent peaks, information is not being lost. In

fact, the processing has facilitated an improvement in data quality by reducing interferences

in the analysis from false positives.
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Figure 7: Histogram showing mass errors associated with assignments for the positive ESI
mode NIST data for the NS class for one replicate (A) and after processing with Themis
(B)

Figure 7 is a histogram of the mass errors associated with assignments of the NS class

for sample A (NIST) before processing (Figure 7.A) and after Themis processing (Figure

7.B). The typical mass errors were below 1 ppm for both datasets, with a root mean square

of 0.38 and 0.21, respectively. The unprocessed replicate displays larger mass errors than

data resulting from the processing with Themis as also illustrated by the false positives in

Figure 6.A.

Conclusion

Themis capitalizes on the availability of replicated measurements to generate a single, reli-

able peak list, while avoiding the a priori discarding of low magnitude peaks which typically
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occurs when applying signal-to-noise thresholds. At a practical level, the user’s workflow

is simplified by performing downstream data analysis using a single dataset produced by

Themis, instead of working with replicates individually and comparing results at the end.

Furthermore, the pre-processing actually led to improved assignment of low magnitude con-

tributions. Dataset sizes and the demand for more reliable, replicated data will increase

alongside technological advances in experimental methods. There is an accompanying need

to simplify datasets and handle greater numbers of mass spectra. Themis currently performs

its tasks within a few minutes and removes the majority of the noise, but there is scope for

improvement. For instance, one could incorporate into the analysis peak shape information

such as the full width at half the maximum or some chemical prior information to further

refine the output reference peak list. In this work it has been found that it is simplistic to

use a single parameter threshold, such as S/N ratio, to separate noise from valid peaks; and

using m/z in combination with magnitude is a more promising approach. While the appli-

cation of Themis has been demonstrated using petroleum, it is expected to also be useful for

other complex samples. It is intended that Themis will be included in a workflow alongside

specialized software for the analysis of different varieties of complex mixtures. The antici-

pated benefits include faster downstream data analysis, fewer false positives, fewer genuine

peaks discarded and hence ultimately an increased confidence in the results of the analysis,

which is vital when decision making may be based on the findings.
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• Figure S4: Illustration of the automated detection of outliers and use of a series of

replicates to produce an averaged data set for characterization

• Figure S5: Enlargement of the low S/N region between m/z 700 and 710 for the NIST

light sour crude oil.

• Figure S6: Stacked bar plot the carbon number and DBE distributions for the N1 class

for the NIST light sour crude oil sample.

• Figure S7: Histograms showing mass errors associated with assignments for the positive

ESI mode NIST data for the N1 class for one replicate and after processing with Themis.

• Figure S8: Multidimensional Scaling (MDS) two-dimensional plot based on the Spear-
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