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Abstract— As autonomous technologies in ground vehicle 

application begin to mature, there is a greater acceptance that they 

can eventually exhaust human involvement in the driving activity. 

There is however still a long way to go before such maturity is seen 

in autonomous ground vehicles. One of the critical limitations of the 

existing technology is the inability to navigate complex dynamic 

traffic scenarios such as non-signalised roundabouts safely, 

efficiently and while maintaining passenger drive comfort. The 

navigation at roundabouts has often been considered as either a 

problem of collision avoidance alone or the problem of efficient 

driving (reducing congestion). We argue that for any autonomous 

planning solution to be accepted for replacing the human driver, it 

has to consider all the three objectives of safety, efficiency and 

comfort. With human drivers driving these complex and dynamic 

scenarios for a long time, learning from the human driving has 

become a promising area of research.  In this work, we learn human 

driver’s longitudinal behaviours for driving at a non-signalised 

roundabout. This knowledge is then used to generate longitudinal 

behaviour candidate profiles that give the autonomous vehicle 

different behaviour choices in a dynamic environment. A decision-

making algorithm is then employed to tactically select the optimal 

behaviour candidate based on the existing scenario dynamics. There 

are two important contributions in this paper, firstly the adaptive 

longitudinal behaviour candidate generation algorithm and secondly 

the tactical, risk aware, multi-objective decision-making algorithm. 

We describe their implementation and compare the autonomous 

vehicle performance against human driving. 
 

Keywords— Path Planning, Naturalistic Speed Planning, 

Behaviour Planning, Trajectories, Situation Awareness, Risk Aware. 
 

I.  INTRODUCTION 

For a long period of time before all the vehicles on the road are 

autonomous and can communicate their intentions, they will co-

exist with semi-autonomous and human-driven vehicles. In such a 

situation it is necessary for the autonomous vehicle to be able to 

understand its surrounding scenario context, predict its evolution 

and generate plans that will enable its successful navigation. To 

give the vehicle this capability of generating adaptive behaviours 

a novel behaviour planning concept was suggested in our previous 

work [1]. The autonomous control software architecture that 

encompasses the behaviour planning module was also developed 

and tested in simulation and real-world environment [2]. In this 

work, we describe the adaptive behaviour selection algorithm 

which complements the behaviour planning methodology for an 

autonomous vehicle described in [1]. With the case of a non-

signalised roundabout, we demonstrate how an autonomous 

vehicle can adaptively generate multiple candidate behaviour 

plans based on the current scenario and use a risk-aware multi-

objective decision-making algorithm to select the optimal 

behaviour to execute a successful navigation. The decision making 

to select the optimal behaviour manoeuvres at non-signalised 

roundabouts is an existing problem for autonomous vehicles. Here, 

the types of manoeuvres chosen are dependent on multiple factors 

such as traffic rules, priority interpretation, the motion intentions 

of other actors etc.  In such an interaction dependent scenario, the 

behaviour of other actors in the scene can be dynamically changing 

and sometimes non-predictable. This makes the requirement of 

generating multiple behaviours candidates for the autonomous 

vehicle decision-making non-trivial.  
 

Experienced human drivers have shown the ability to master the 

art of navigating complex scenarios such as non-signalised 

roundabouts with a combination of manoeuvre planning and 

tactical decision making. Considering the scenario of a single lane 

non-signalised 4- exit roundabout, we learn the art of how human 

drivers control the vehicle motion in the presence and absence of 

conflict in its motion path. The learnings are then used in 

generating naturalistic longitudinal behaviour candidate profiles. 

We also provide the provision to make the candidate profile 

generation adaptive, encompassing the dynamic scenario factors 

such as speed limits and current vehicle speed. We then embed this 

with the risk-aware decision-making algorithm to form a 

behaviour selection module for an autonomous vehicle. The 

developed solution is then compared to the human driver for 

efficiency, safety and driving comfort. 
 

A. Related Work 

Human driver’s longitudinal behaviour has been studied in great 

detail for applications such as ADAS, traffic simulation studies 

and human factor studies. In ADAS applications the learnings 

have been used to develop strategies for functions such as 
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Adaptive Cruise Control (ACC)[3], [4] Emergency Braking (EB) 

[5], Anti-Lock Braking System (ABS) [5] etc. In Human Factor 

Studies, the learnings have enabled classifications to differentiate 

the driver's skill level and also insight into how different type of 

driving behaviours lead to accidents etc.[6]–[8]. More recently 

attempts have been made to understand the human driving 

behaviours and strategies to aid autonomous driving decision 

making in complex traffic scenarios. As experienced human 

drivers have shown the ability to adapt their longitudinal speed 

behaviours and strategies to effectively navigate complex traffic 

scenarios, human-inspired longitudinal speed control is considered 

a promising direction for the autonomous vehicle application. This 

approach has two obvious advantages, the first one being that the 

autonomous vehicle driving will be more naturalistic [9], which 

will help it to seamlessly integrate into environments with other 

semi-autonomous and human driven vehicles and secondly it will 

improve the driving experience, especially in scenarios that are 

prone to stop-start motion or roads with high curvature [10]. One 

such study was seen carried out for an intersection scenario where 

clustering technique was used to match the human driving data 

from a simulator [11]. The cluster profiles were then used for 

autonomous driving using a collision avoidance decision-making 

algorithm. Although the approach for longitudinal behaviour 

planning is similar to ours, the method of generating the 

candidate's profiles is very specific to the recorded scenario, and 

the profiles also are not adapted with scenario dynamics. Also, the 

decision-making process with only collision avoidance as an 

objective gives little consideration to the drive comfort. 
 

II. THE APPROACH 

For a single lane roundabout, once the global path is established, 

the lateral steering behaviour for the autonomous vehicle will be 

known, therefore in this work, we consider the navigation planning 

for merging at a single lane roundabout, as a longitudinal speed 

planning problem. The two parts of the adaptive behaviour 

selection module are discussed below. 
 

A. Longitudinal Behaviour Profiles Generation  

The path planning module of the autonomous vehicle specifies a 

look-ahead trajectory for a defined horizon in front of the vehicle. 

The spatial part of the trajectory is defined by the position 

coordinates and the orientation, while the temporal part is defined 

by the target velocity along the trajectory. When navigating a 

scenario that involves possible conflicts with the motion of other 

actors, it is important the speed planning generate profiles that are 

not conflicting with other actor’s motion and also lead to a smooth 

continuous motion of the vehicle. It has been shown in in human 

driving studies at intersection both through simulation [11] and 

real world [10], that experienced human driver control this 

temporal motion in a continuous manner, which allows the other 

actors to interact and plan their respective motion with greater 

certainty. This has led to attempts to generate human-like motion 

trajectories for autonomous driving application especially to 

navigate complex scenarios [12]–[14]. In this work, we use the 

same analogy by developing a novel speed profiles generation 

algorithm using Bezier curve method. We first conducted an 

experiment of human drivers navigating the single lane 

roundabout in different merging condition and extracted 

longitudinal behaviour shape patterns for different motion 

intention. These learned patterns are then used with other 

characteristics such as the existing entry speed, the roundabout 

speed and the exit speed etc. which are usually dictated by the 

scenario dynamics to generate longitudinal behaviour profiles. As 

the behaviour intention of the other actors cannot be predicted with 

certainty and also there are cases where the other actor can have 

“change-of-intention”, the algorithm generates multiple behaviour 

candidate profiles. This gives the decision-making algorithm the 

possibility to select the optimal profile according to the existing 

scenario dynamics. The process of generating the candidate 

profiles are shown in Section II of this paper. 
 

B. Risk Aware Decision Making  

In autonomous path planning at a non-signalised roundabout, the 

planner is required to take into account the motion of the other 

actors and make decisions of its motion according to the scenario 

context. Typically, in human driving at intersections, it has been 

shown that the individual's decision making about when, and how 

to choose the manoeuvre/ manoeuvres, is dependent on their 

current state, the perceptions of the gaps with other actors, their 

knowledge of own car's performance and their knowledge of the 

road layout. Many of these parameters are not fixed and some also 

change dynamically throughout the actor navigation along the 

length of the roundabout, resulting in a wide range of behaviour 

possibilities. In the non-signalised roundabouts, it is also crucial 

that the priorities of merging defined by the road regulations are 

respected. Human drivers show a wide disparity in their 

interpretation of the merging priority, which manifests into some 

drivers being highly assertive, while some very defensive. The 

autonomous vehicle decision making should account for these 

behaviour possibilities and dynamically select the behaviour 

profiles that are safe, and optimal in travel time, and maintains 

drive comfort. In this work we are concerned with autonomous 

navigation of a non-signalised roundabout, the priority is 

established based on the UK Highway driving code 184 to 190 

[15]. Using the Highway Code the decision-making algorithm has 

to evaluate the priority while selecting any particular speed profile 

by evaluating two main situations. 

1. Another vehicle within the roundabout – Here, the vehicle in the 

intersection has priority, and the autonomous vehicle can only 

merge behind that vehicle if sufficient gap exists. 

2. No vehicle within the roundabout – Here, the priority to merge 

is applied by the right-hand rule, i.e. the vehicle on the right has 

priority and the priority goes anti-clockwise.  
 

The first situation is a clear-cut case for decision making, while the 

second situation presents a unique decision-making challenge for 

the autonomous vehicle. The second situation presents the 

possibility to merge before the priority vehicle if its arrival at the 
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Yield line / or the conflict point is sufficiently earlier than the 

priority lane vehicle. Therefore in this study, we have only 

considered the second situation for analysis. As the longitudinal 

behaviour of the other actors can change during their motion, any 

behaviour maneuverer chosen by the autonomous vehicle will 

have an associated risk. The behaviour selection decision making 

algorithm establishes an objective risk index for each candidate 

profile based on the time gap method. The risk index is re-

calculated iteratively every fixed sampling time and involves the 

calculation of the Time-to-Yield-line (𝑇𝑇𝑌𝑙) and the Time-to-

Conflict point (𝑇𝑇𝐶𝑝) of the involved actors using its sensed 

current state and expected future motion speed. 
 

𝑇𝑇𝑌𝑙𝑎𝑐𝑡 = 𝑑𝑝𝑎𝑡ℎ,𝑎𝑐𝑡 ∗ 𝑣𝑎𝑐𝑡  

𝑇𝑇𝐶𝑝𝑎𝑐𝑡 = 𝑇𝑇𝑌𝑙𝑎𝑐𝑡 + 𝑑𝑟𝑑𝑎𝑏𝑡,𝑝𝑎𝑡ℎ ∗ 𝑣𝑟𝑑𝑎𝑏𝑡,𝑚𝑎𝑥  
 

Where the 𝑑𝑝𝑎𝑡ℎ,𝑎𝑐𝑡 is the distance of the actor along its path to the 

Yield line, and  𝑣𝑎𝑐𝑡 is the estimated velocity of the actor, 

𝑑𝑟𝑑𝑎𝑏𝑡,𝑝𝑎𝑡ℎ, is the distance along the path within the roundabout 

from the Yield line to the nearest conflict point. This parameter is 

fixed for a geometry of the roundabout. 𝑣𝑟𝑑𝑎𝑏𝑡,𝑚𝑎𝑥  is the 

maximum speed achievable in the roundabout. The predicted 

future speed of the other actor is calculated using constant 

deceleration if its current speed is greater than roundabout speed 

or through constant speed propagation if its current speed is equal 

to or below the speed achievable in the roundabout. The same 

parameters are then calulated for the autonomous vehicle i.e. 

𝑇𝑇𝑌𝑙𝑠𝑢𝑏  and 𝑇𝑇𝐶𝑝𝑠𝑢𝑏  for each of the candidate profile.  
 

The other two parameters used in the decision-making function are 

the drive comfort index and the waiting time index. In this work, 

the drive comfort indexes for the candidate profiles of the subject 

vehicle are established from vehicle lateral acceleration. The 

lateral acceleration is known to be proportional to the longitudinal 

speed in curves [16] i.e. higher the speed within the roundabout, 

higher is the lateral acceleration and therefore increased driver 

discomfort. Any speed below the comfortable lateral acceleration 

is given a zero index, while the higher lateral accelerations are 

penalised using the penalty factor. Here the longitudinal 

acceleration and deceleration are not considered as they are 

controlled through the candidate profile generation.  The waiting 

time index is established as the amount of speed reduction 

required, as compared to the maximum possible speed profile in 

non–conflict situation, i.e. if the roundabout was free of any traffic 

there would be no waiting time, while the index increases with 

every reducing speed profile. If the vehicle has to come to a 

complete stop it has the highest index and the higher waiting times 

are penalised using the penalty factor. The overall behaviour 

selection function is then formulated as an objective function, ′𝑄′, 
which is minimized to find the candidate with the lowest penalty. 
 

min
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑄𝑐𝑎𝑛𝑑 = 𝑎 ∗ 𝐶𝐼𝑐𝑎𝑛𝑑 + 𝑏 ∗ 𝑊𝑇𝐼𝑐𝑎𝑛𝑑  
 

Where ‘𝑎’ and ‘𝑏’ are tuning parameters to weigh the objectives 

based on preference. ′𝐶𝐼′, and ‘𝑊𝑇𝐼′, are comfort index and the 

waiting time index respectively. With the indexes derived above 

and the objective function the decision-making algorithm is 

shown in Table I. 
 

TABLE 1: THE PSEUDOCODE FOR BEHAVIOUR PLANNER. 

When approaching an intersection 

1. If the size of the roundabout is small, use ‘𝑇𝑇𝑌𝑙′ otherwise use ‘𝑇𝑇𝐶𝑝′. 
(The threshold for roundabout size can be derived empirically) 

2. Estimate the candidate time gap as 

For all candidates  

𝑇𝑖𝑚𝑒𝐺𝑎𝑝𝑌𝑙 =  𝑇𝑇𝑌𝑙𝑐𝑎𝑛𝑑,𝑖 − 𝑇𝑇𝑌𝑙𝑎𝑐𝑡 

𝑇𝑖𝑚𝑒𝐺𝑎𝑝𝐶𝑝 =  𝑇𝑇𝐶𝑝𝑐𝑎𝑛𝑑,𝑖 −  𝑇𝑇𝐶𝑝𝑎𝑐𝑡 

Where i = 1,2,3…. ,n (n - number of candidates) 

3. For all non-stopping candidates, if there exist candidates with time gap 
greater than the safe gap, select the behaviour candidate among them with 

the minimum penalty index as the chosen behaviour profile. 

4. If none of the non-stopping candidates have time-gap greater than the safe 

gap, determine non-stopping candidates that can pass behind the 

conflicting vehicle and select the candidate one with the minimum penalty. 

5. If none of the non-stopping candidates exists which can pass behind the 

conflict actor, select to stop candidate for stopping at the Yield line, before 
finding a safe gap to exit. 

6. For all optimal candidate behaviours, the stop behaviour is also chosen as 
a secondary emergency behaviour. 

 

The real-time behaviour selection algorithm is described through 

the flow diagram in Fig 1. 
 

 
Fig. 1.  Risk Aware Decision-Making Algorithm. 

 

The rest of the paper is divided into 4 main sections. In Section III 

we describe the experimental study to record human longitudinal 

behaviour profiles. In Section IV we describe the analysis of the 

human driver data from the simulator study. In Section V we 

describe the results of the application of behavioural decision-

making algorithm and compare the performance against human 

driver decision making. Finally, in section VI we conclude by 

summarising the work described in this paper and discuss the 

future work in this research direction. 
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III. THE EXPERIMENTAL STUDY 

The objective of the experimental study was to gain insight into 

the human driver's longitudinal behaviour profiles and the 

decision-making at the non-signalised roundabout. The 

experimental set-up is explained through the driving scenario, the 

vehicle model and the vehicle control mechanism. 
 

A. The Scenario. 

The scenario consisted of a single lane 4 exit roundabout, with the 

subject vehicle and the actor vehicle approaching the intersection 

from two different entry points as shown in the bird's eye view in 

Fig 2. Two scenarios main cases were considered to capture 

driver’s perception of risk and decision making when 

approaching the roundabout with another actor also approaching 

from the priority entry. The two cases are depicted in Fig 2. 
 

  
       (a)                                               (b) 

Fig 2. The simulator driving scenarios for (a) Case I and (b) Case II  
 

CASE–I: Here the actor vehicle Follows-On to the second exit, 

thus there is an overlap of the intended path of the two actors 

CASE-II: Here the actor vehicle takes the first exit, thus the path 

of the actor never overlap with the subject vehicle 
 

To avoid the human driver pre-meditating the decision to stop or 

continue when approaching the intersection, they were not 

informed of the actor vehicle intention. This meant they had to 

make the decision in the dynamic scenario based on their 

perception and risk taking ability. 
  

B. Vehicle Model 

A vehicle plant model was required to provide the human driver 

with a realistic feedback of the control inputs. A dynamic vehicle 

model was used which provided the output motion based on the 

driver throttle and brake demand [11]. The suspension system 

stiffness, damping and maximum travel were calibrated to make 

the driving dynamics realistic. All the parameters of the vehicle 

were fixed including the vehicle mass so that there were no 

differences in the vehicle characteristics for the different 

participants. 
 

C. Vehicle Control 

1. The Lateral Control: Human drivers show variability in the 

lateral control of the vehicle which can lead to differences in the 

travelled distance, it also acts as a source of variation in the 

longitudinal behaviour. As in this study, the objective was to 

understand the variation in the longitudinal behaviour, the 

lateral control was automated, resulting in all drivers travelling 

exactly the same path. The human drivers were then only 

required control the vehicle longitudinal speed. 

2. The Longitudinal Control: The driver accelerator pedal demand 

was converted through the vehicle powertrain model into 

traction force. The brake force was simulated as a percentage of 

the brake pedal percentage 
 

𝐹𝑏𝑟𝑎𝑘𝑒 =  −𝑘(𝐵𝑟𝑘𝑃𝑑𝑙) 
 

Where the parameter 𝑘 was empirically obtained. The net force 

after accounting for the drag resistance was then divided by the 

vehicle mass to obtain the acceleration and tham speed. 
 

Before the actual recording, the human drivers were given trial 

runs to familiarise with the controls and only when they were 

sufficiently accustomed to the simulated driving task they were 

introduced to the different scenarios. 10 human participants were 

made to drive 14 scenarios with 7 different variations of the actor 

behaviour in each of the two cases. The 7 different variations in 

the actor's behaviour were obtained by changing the trigger point 

and its initial positions. The experiment resulted in 70 readings in 

each of the two cases, a total of 140 recordings of human driver 

longitudinal behaviour profiles. 
 

IV. THE ANALYSIS 

The human driver longitudinal behaviours were expected to vary 

depending on their anticipation of the conflict with the other actor 

and their risk taking in the merging manoeuvre. Analysing the 

longitudinal vehicle speed against the distance along the path of 

the subject vehicle, a wide spread of speed profiles were observed 

in both the scenario cases. While some drivers attempted to pass 

without stopping, others stopped even in the case of the actor 

vehicle was not in conflict. The speed profiles were classified into 

two categories for each case, which resulted in 4 categories, i.e  

Follow-On No Conflict (FONC): Here the two vehicle paths did 

not overlap and the human driver continued the manoeuvre 

without coming to a stop at the Yield line. 

Stop No Conflict (STNC): Here the two vehicle paths did not 

overlap, and the human driver still stopped at/close to the Yield 

line. This is a form of defensive driving.  

Follow-On With Conflict (FOWC): Here the two vehicle paths 

did overlap, however, the human driver continued the manoeuvre 

without coming to a stop. This is a form of assertive driving. 

Stop With Conflict (STWC): Here the two vehicle paths did 

overlap, and the human driver stopped at/close to the Yield line.  
 

To visualise the spread of the data in each category, we used an 

Inter Quartile Range (IQR) box plot as shown Fig 3. Our intention 

of the analysis was to derive behaviour patterns for the different 

categories of longitudinal behaviours. As seen from Fig 3, the 

spread of the data is not symmetric along the length of the path, 

therefore we used median as a measure of the central tendency 

instead of the mean. 
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Fig 3. The IQR box plot for (a) FONC, (b) STNC, (c) FOWC and (d) STWC 

 

Extracting the means of the 4 categories and plotting them another 

against the distance along the path is shown in Fig 4. 
 

 
Fig 4. Median Behaviours for (a) FONC, (b) STNC, (c) FOWC and (d) STWC 

 

The behaviour shape patterns obtained through our simulator 

study are similar to those obtained by M Coelho et al [17], for a 

single lane roundabout through empirical measurements. We 

describe the salient features of the behaviour patterns to 

incorporate them into the profile generation algorithm. 
 

A. Salient Features 

1. Curvature Limitations: The median profile suggests that in all 

categories the human drivers invariably slowed down from 

their existing speed to a median speed of 18-20 km/h. This 

behaviour can be primarily attributed to the curvature of the 

road limiting the speeds within the roundabout. 

2. Defensive Driving: The median speed profile for STNC 

category suggests that many drivers came close to a complete 

stop and started to accelerate as soon as the no-conflict situation 

was comprehended.  

3. Creeping Behaviour: The median speed profile for STWC 

suggests that many drivers first stopped and then tried to slowly 

creep forward before accelerating after the conflict situation no 

longer existed. 

4. Manoeuvres Choice: The statistical analysis showed that the 

drivers made their choice to either follow on or stop at a 

considerable distance before the Yield line. It was also seen 

from Fig 3 that the more than 50% of the Follow-On behaviours 

had intersection speeds from 12km/h-23km/h.  

5. Crash Scenario: The zero/low-speed behaviour seen in FOWC 

and STWC was the consequence of a crash between the subject 

vehicle and the actor in conflict.  
 

Having analysed the data of human driving, the longitudinal 

behaviour profile at roundabouts can be described as a series of 

three successive manoeuvres i.e. the approach to the roundabout 

the merging into the roundabout and the exit from the roundabout. 

In this work, we describe these three behaviour manoeuvres as 

phases and start from the point where the drivers showed an 

appreciable change in the longitudinal behaviour in the approach 

manoeuvre. We found that this behaviour point was 

approximately located around the human driver’s anticipation of 

a safe stopping distance from the current speed. This point termed 

as a behaviour “changepoint” (BCP) is a function of the vehicle 

approach speed. The three phases of behaviour profile for a 

roundabout scenario is shown in Fig 5. 
 

 
Fig 5. The Longitudinal Behaviour Phases for a Roundabout Scenario 

 

B. The Candidate Generation 

As seen in the experiments of human driving the approach to the 

roundabout is highly dependent on the manoeuvre chosen. If the 

driver chooses to continue without stopping at the Yield line, then 

they can continue to do the manoeuvres with the maximum 

possible speed. If however, the driver chooses to stop then the 

speed profile chosen should bring the vehicle to a stop at the Yield 

line before accelerating to the speed of the exit. These are the two 

possible extrema’s for navigating the intersection. The 

experimental study also showed that a most of the driver's speed 

profiles were within the two extrema’s, and the chosen speed 

profile is directly related to how the individual driver anticipation 

of the collision risk. Therefore, to generate naturalistic behaviour 

profiles using the Bezier curve approach matching the derived 

patterns to mimic human behaviours. The generation of the 

behaviour profiles to incorporate the regulatory factors such as 

speed limitation for entry and exit and also the curvature 

constraints through speed limit within the roundabout was 
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achieved using an adaptation mechanism of the Bezier control 

points. The algorithm first generates three pairs of Bezier curves, 

the first two pairs are for the Follow-On, and are generated using 

the control points shown in Fig 6, with the dynamic inputs of 

speed difference of entry and exits with the roundabout speeds 

(𝛿𝑣𝑒𝑛 , 𝛿𝑣𝑒𝑥), the stopping distance (𝑠𝑑) the calibratble shape 

parameter (𝛿) and exit acceleration distance parameter (𝑒𝑑). 
 

 
Fig 6. The Follow-On Behaviour Control Points  

 

The stop behaviour profile pair of curves are also generated using 

the same analogy with control points shown in Fig 7 
 

 
Fig 7. The Stop-On Behaviour Control Points  

 

The pairs of curves are then concatenated to generate a continuous 

profile. By appropriate choice of the calibratable parameters, the 

shape of the profiles can be matched to any learned pattern 

generated from statistical data. To generate the rest of the 

candidate profiles for the follow-on behaviours, a fast 

interpolation technique was employed to reduce the 

computational burden of constructing all through the Bezier curve 

approach. The candidate behaviour profiles were generated 

through scenario specific adaptable speed control points and the 

terminology used for defining the profiles was also the value of 

control points speed i.e. if the entry speed is 40km/h, intersection 

speed is 20 km/h and exit speed is 40km/h, then the behaviour 

profile set will be named as 40-20-40. Fig 8 shows the 40-20-40 

behaviour candidate profiles generated for a current scenario. 

 
Fig 8. Behaviour Profiles for  40-20-40.  

 

V. RESULTS AND DISCUSSION 

To objectively compare the performance of the decision-making 

algorithm, we ran the autonomous vehicle in the same 14 

scenarios of as the human drivers. To demonstrate different levels 

of risk-taking ability, the autonomous vehicle was calibrated to 

two different settings for safe time-gap, 0.7s for assertive driving 

0.7s, and 1.5s  for defensive driving. The performance was then 

measured using three performance indexes 

1. The number of successful passes before the priority vehicle. 

This performance index classified drivers as either assertive or 

defensive. Successful assertive manoeuvres reduce waiting 

time and hence lead to efficient driving. Drivers with a 

successful pass before attempts of greater than 4 were termed 

as assertive drivers, while others were termed as defensive. 

2. The number of collisions: This performance index indicated the 

skill level of the driver to avoid collision through predictive risk 

assessment. It highlights driver’s ability to drive safely. 

3. Speed differential at Entry: This performance index described 

the ability of the driver navigate the scenarios with minimum 

speed differential which leads to comfort driving. The speeds 

above the suggested max speed also lead to a negative 

performance on drive comfort. 
 

 
Fig 9. Number of Successful Navigation Passes 

 

As seen in Fig 9 some human drivers were able to judge the 

scenario better than others and were able to make more successful 

passes before the priority lane vehicle. The autonomous vehicle 

with the assertive setting was able to perform better than human 

vehicle while the defensive also showed good performance. 

Human drivers generally show variability in decision making 

which results in them sometimes driving the same scenario 

differently. An autonomous vehicle, however, is more consistent 

in the speed selection and therefore has higher successful passes. 
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Fig 10. No of Collisions 

 

Fig 10 shows the two human drivers ended up with collisions with 

the actor vehicle. As seen in Fig 9, these drivers were from the 

assertive group, however, could be termed as unskilled/ unsafe as 

they were not able to judge the scenario as well as the other 

assertive drivers or the autonomous vehicle. 
 

 
Fig 11. Speed Differential of Each Driver at Roundabout Entry 

 

Many of the human drivers exceeded the target max speed at the 

entry of the roundabout and also had average speed far below the 

target speed suggesting that there were considerable 

decelerations. Both these behaviours contribute towards driver 

discomfort. This co2uld be attributed to the expected disregard 

for the vehicle lateral acceleration by human drivers when driving 

a simulator vehicle. The assertive autonomous vehicle performed 

better than all the human-driven vehicle. 
 

VI. CONCLUSION AND FUTURE WORK 

In this work, a concept of naturalistic longitudinal behaviour 

selection algorithm for autonomous ground vehicle application 

was demonstrated. This algorithm used risk-aware decision-

making approach to select human-like longitudinal behaviour 

profiles for navigating a roundabout scenario. First, the speed 

profiles were generated using patterns learned from human 

driving and then they are adapted online with the dynamic 

scenario characteristics. There are two new contributions in this 

work, firstly the naturalistic profile generation for human-like 

navigation and secondly, the risk aware multi-objective decision-

making approach, that accounts for drive comfort, drive 

efficiency in addition to drive safety. The performance of the 

proposed solution was compared with human driving data from 

experimental study, which showed encouraging advantages. The 

next phase of development of this work involves testing this 

algorithm in real, world mock-up environment. We also, intend to 

see how this algorithm is suited for other types of road layouts 

such as multi-lane intersections etc. 
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