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Abstract 

Based on the self-developed three dimensional micro/nano machining system, the effects of 

machining parameters and sample material on micro/nano machining are investigated. The 

micro/nano machining system is mainly composed of the probe system and micro/nano 

positioning stage. The former is applied to control the normal load and the latter is utilized to 

realize high precision motion in the xy plane. A sample examination method is firstly introduced to 

estimate whether the sample is placed horizontally. The machining parameters include scratching 

direction, speed, cycles, normal load and feed. According to the experimental results, the 

scratching depth is significantly affected by the normal load in all four defined scratching 

directions but is rarely influenced by the scratching speed. The increase of scratching cycle 

number can increase the scratching depth as well as smooth the groove wall. In addition, the 

scratching tests of silicon and copper attest that the harder material is easier to be removed. In the 

scratching with different feed amount, the machining results indicate that the machined depth 

increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to 

predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, 

scratching speed 5μm/s and feed 0.06μm, some more micro structures including stair, sinusoidal 

groove, Chinese character „田‟, „TJU‟ and Chinese panda have been fabricated on the silicon 

substrate. 

Keywords: micro/nano machining; machining parameters; scratching depth 

1. Introduction 

Nowadays, the fabrication of nanochannel and nanostructure is a hot issue in micro/nano 

field. There are many different methods, such as photolithography [1], LIGA [2], FIB (Focused 

Ion Beam) technology [3], nanoimprint [4] and tip based nanomanufacturing (TBN) [5]. Among 

all of these methods, every technique has its own advantages and special applications, but the tip 

based micro/nano machining is attracting more and more attention for the low-cost, simple 

operation and high accuracy. The scanning tunneling microscopy (STM), atomic force microscope 



(AFM) and nanoindenter are three common devices for the TBN technology, especially the 

application of AFM makes this technology greatly developed, and it has successfully combined 

the chemical and thermal effects to the traditional mechanical removal [6]. 

In the AFM tip based mechanical nanomanufacturing, the effects of machining parameters 

including applied normal load, scratching direction, scratching cycles, scratching speed and 

scratching feed on the machined depth and surface roughness have been investigated by many 

scholars in the last decades [7-13]. Recently, some researchers focus on the theoretical modeling 

of scratching depth. Wang studied the relationship between the initial and final nanochannel depth 

through both theoretically and experimentally [14, 15]. Geng modeled the scratching depth 

theoretically in both single and multiple scratching, and micro/nano structures were manufactured 

based on the proposed model [16]. Lin estimated the cutting depth based on regression equations 

of nanoscale contact pressure factor and specific down force energy, respectively [17]. 

The probe cantilever of the AFM is essentially a single flexible beam, as a result, the stiffness 

of the AFM cantilever in the longitudinal direction is different from that in the transverse direction, 

which affects the experimental results when scratching in different directions. Unfortunately, the 

tip-sample interface is also affected by the scratching direction due to the tip geometrical 

asymmetry. These factors make the investigation of scratching direction complex. Moreover, the 

AFM cantilever is usually very soft in the vertical direction, which makes it sensitive to the 

environmental changes. Finally, the low positioning precision of the AFM motion platform 

reduces the machining accuracy in xy plane. In order to overcome these shortcomings of the AFM, 

many different mechanical designs have been proposed for the micro/nano machining. Lee 

adopted a strain gauge measured load beam to substitute the AFM cantilever [18]. Park designed a 

displacement-force device to realize the micro/nano machining [19]. Jeong presented an air 

lubricated hydrostatic sliding mechanism based portable nano probe system [20]. Gozen 

constructed a nano milling system to fabricate the micro channel [21]. All these designs can 

realize the micro/nano structure scratching, but they also have obvious drawbacks, such as the 

overlarge normal load in Lee‟s mechanism, the residual friction of the probe shaft in Jeong‟s 

design, and the limitation of machining width in Gozen‟s system. As to the position precision in xy 

plane, the piezo-actuated flexure-mechanism is a good choice to solve this problem, which has 

been studied by many scholars [22-25]. 

In this paper, a self-developed three dimensional micro/nano machining system is used for 

the experimental investigation, which mainly includes the probe system and precise positioning 

stage. The cross-shaped probe suspension mechanism in the probe system effectively avoids the 

singal axis and low stiffness of the AFM cantilever. Before the scratching experiments, an 



examination method is presented to examine the horizontal place of the sample. Subsequently, the 

scratching parameters including scratching direction, normal load, scratching cycles, scratching 

speed and scratching feed are systematically investigated and analyzed. Further, the copper sample 

is scratched and the material removal results are compared with those of silicon samples. Finally, 

some more micro structures are fabricated on the silicon base with the selected scratching 

parameters. 

2. The micro/nano machining system 

All of experiments are performed in a self-developed three dimensional micro/nano 

machining system, which is shown in Fig. 1. The overall frame applies the gantry structure. Three 

manual coarse mobile platforms (WN115TM50M, winner optical instruments, China) arranged 

orthogonally are used to realize the broad adjustment with the full stroke of 50mm and minimal 

regulating amount of 2 μm. The probe system and the 3-DOF micro/nano positioning stage are the 

two core parts of the machining system, where, the probe system is used to control the normal 

force, and the micro/nano positioning stage is used to realize the precise motion in the xy plane. 

The whole system is mounted on a Newport RS-4000 optical table. 

 

2.1 The probe system 

As shown in Fig. 2(a), the probe system mainly includes the coil, permanent magnetic, cross 

shaped probe suspension mechanism, diamond probe and aluminum film. The coil and permanent 

magnetic form the electromagnetic device to provide normal force on the probe, the convert rate 

from current to electromagnetic force is 78.4μN/mA. The probe suspension mechanism is cross 

shaped beams, which has better isotropic stiffness in the xy plane compared with the AFM 
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Fig. 1 The three dimensional micro/nano machining system 
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cantilever. Each beam of the probe suspension mechanism organizes the capacitor plates with the 

aluminum film as well as supports the diamond probe, the constructed four group capacitors are 

marked as 1-4 in Fig. 3(a), and each group can be used for the scratching depth measurement. 

Further information about the probe system can reference our previous work [26]. 

As the machining tool, the Berkovich probe is attached on the bottom of the cross-shaped 

probe suspension. Due to the three side pyramidal geometry of the probe tip, four perpendicular 

scratching directions are defined to investigate the effects of scratching direction on the scratching 

process. The four directions d1-d4 are shown in Fig. 3(b), d1 is the edge forward direction, d2 is 

the face forward direction, d3 and d4 are the side face forward direction. Each scratching direction 

is along one beam of the probe suspension mechanism. Thus, the probe must be carefully 

assembled to ensure the correct position between the probe and the probe suspension mechanism. 

The horizontal projected area of the tip-sample interface in each scratching direction is also shown 

in Fig. 3(b), indicating two pyramidal faces of the probe tip contact with the sample in the d1, d3 

and d4 direction, and one pyramidal face in the d2 direction.  

Related to the probe system, a home-made directive current (DC) circuit is used to drive the 

coil, which receives the command signals from the I/O interface of a dSPACE DS1103 R&D 

control board. The capacitance of the formed capacitor is converted to voltage by a post-process 

circuit (E-509.C3A, PI, Germany) for the further data processing. 

2.2 The micor/nano positioning stage 

Fig. 2(b) shows a piezoelectric actuator (AE 0505D18F, THORlabs Company, USA) driven 

3-DOF micro/nano positioning stage. Six Double Circular Hinge Linkages (DCHL) are used to 

translate the driving force and decouple the motion, as well as to support the moving platform. 

The Dual Leaf Parallelogram Hinge (DLPH), as shown in Fig. 1(c), is utilized to guide the motion 

of the piezoelectric actuator, and further the half cylinder structure is added between the 

piezoelectric actuator and the DLPH to eliminate the bending moment acting on the piezoelectric 

actuator. Three laser displacement sensors (LK-H050, Keyence, Japan) provide real time 

displacement sensing and measurement for the moving platform. The stroke of the stage is beyond 

10μm in both x and y direction, and with a positioning precision 37nm in the x direction and 24nm 

in the y direction. The detailed design process of the stage can be found in reference [27]. 



 

 

3. The experimental investigation 

In the experimental investigation, the silicon is firstly selected as the sample for the wide 

application in semiconductor industry. After micro/nano machining, the sample is cleaned using 

ultrasonic wash with acetone solution for ten minutes to remove the generated chips, and then the 

machined micro/nano grooves or structures are measured using AFM (CSPM5500, Benyuan, 

China). 

3.1 The horizontal examination of the sample 

In the developed micro/nano machining system, considering the simple operation, the open 

loop control method is adopted to control the electromagnetic force. As a result, for a constant 

Coil 

Permanent magnetic 

Diamond probe 

Aluminum film 

Probe suspension 

mechanism 

Fig. 2 (a) The exploded review of the probe system; (b) The 3-DOF micro/nano 

positioning stage 

Moving 

platform 

DLPH 

DCHL 

PZT 

(a) (b) 

 

 

   

  

 
 

(b) 

Fig. 3 (a) the probe suspension mechanism and the formed capacitor; (b) defined scratching 

direction and the horizontal projected area of the tip-sample interface. 
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normal force, the scratching depth will be affected if the sample is not placed horizontally. Thus, a 

method to examine whether the sample is placed horizontally is firstly introduced. 

A square groove is scratched on silicon base with each groove parallel to one above defined 

scratching direction, and a group of capacitor is used to measure the scratching depth 

simultaneously. A linear current is inputted into the probe system to generate electromagnetic 

force and further drive the probe move in the z direction. As shown in Fig. 4, before the contact of 

the probe tip and sample surface, the displacement is linear to the input current, in this period, the 

electromagnetic force is completely balanced by the deformation of probe suspension mechanism. 

As shown in Fig. 4(c), when the probe tip contacts with the sample, the measured displacement 

appears an inflection point due to the resistance of the sample base. Then the probe is indented 

into the sample. In the phase of probe indentation, the deformation force of the probe suspension 

could be neglected for the small indentation depth, so the normal force used for the scratching is 

approximately the increased electromagnetic force. After that, the electromagnetic force is kept 

constant and the micro/nano positioning stage is actuated to complete the square motion, 

simultaneously, the measured displacement of the probe suspension is shown in Fig. 4(d), the 

constant displacement in every direction means the sample surface is positioned horizontally. 

 

       (a) The input curret           (b) The measurement of the capacitance sensor 

 

 (c) The indent of the probe              (d) The scratch of the probe 

Fig. 4 The horizontal examination of the sample 
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Ideally, the measured displacement should be constant in all scratching direction, but there 

are abrupt changes in the direction convert, it can be explained as follows. The capacitor 2 (shown 

in Fig. 3) is selected to measure the probe displacement, so the applied suspension mechanism 

beam is along the scratching directions d1 and d2. According to the beam stiffness theory, it is 

easier to generate deformation in the axial direction than the vertical direction, thus, the beam 

bends easier in the d1 and d2 directions but with opposite deformation as shown in Fig. 5(b), 

while it keeps almost undeformed in the d3 and d4 directions as shown in Fig. 5(c). As a result, 

the beam deforms suddenly when the scratching direction changes. The residual difference of the 

measured displacement in the d3 and d4 directions may be caused by the assembly error of the 

probe. 

     

       (a) probe indent        (b) d1 or d2 direction        (c) d3 or d4 direction 

Fig. 5 Probe indent and scratching in different direction 

3.2 The indentation test 

The indentation tests with three different normal loads are firstly implemented on the silicon 

substrate. Fig. 6(a) and (b) show the relationship of electromagnetic force - measured 

displacement and load - indentation depth, respectively. In Fig. 6(a), the relationship curve during 

the probe lift appears inflection in all three indentation tests, which means the probe tip separates 

from the sample, and then the electromagnetic force is balanced by the deformation of probe 

suspension mechanism, indicating the electromagnetic force is linear to the measured 

displacement. Remove the deformation force of the suspension mechanism, the relationship of 

load – indentation depth is obtained as shown in Fig. 6(b). Where, the normal load is the 

difference between the electromagnetic force and the deformation force of suspension mechanism, 

as Eq. (1). It is obvious that after the normal load is reduced to zero, the sample generates plastic 

deformation with certain indentation depth. 

normal elec susF F F                                 (1) 

where, Fnormal is the normal load acted on the sample, Felec is the generated electromagnetic force, 

Fsus is the deformation force of the probe suspension mechanism. 
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(a) The electromagnetic force versus the measured displacement 
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(b) The load versus the indentation depth 

Fig. 6 The indentation tests of silicon 

3.3 The effect of machining parameters on the micro/nano scratching 

3.3.1 Scratching direction 

Due to the symmetric structure of the Berkovich probe, the scratching in the d3 and d4 

directions has the same characteristics, so they are combined together. Based on the four 

directions defined in Fig. 3, the relationships between the normal load and scratching depth are 

analyzed and shown in Fig. 7. It is obvious that the scratching depth increases as the normal load 

increases in all four directions. With the same normal load, the scratching depth in the d2 direction 

is the largest, while in the d1 direction is the smallest.  

Generally, the normal load is considered as the product of the sample yield stress and the 

horizontal projected area of the tip-sample interface [14-16, 28]. Based on the horizontal projected 

area in Fig. 3(b), for the same normal load, the scratching depth in the d1, d3 and d4 directions 

should be half of it in the d2 direction, but the experimental results are not agree well in Fig. 7. 

The possible reason is that in the scratching direction d2, the cutting tool is a pyramidal face rather 

than a blade, which leads to the material stack in front of the probe tip, as a result, the tip-sample 

interface is increased greatly, thus resulting in the reduction of scratching depth, this phenomenon 



has been found in the scratching simulation [29]. The scratching depth in the d1 direction is 

smaller than those in the d3/d4 directions, this may be caused by the assembly error of the probe. 

As shown in Fig. 8, assuming the probe is assembled with a tilted angle θ towards the d1 direction. 

On the one hand, it directly leads to the increase of the tip-sample interface due to the probe tilt. 

On the other hand, the attack angle δ is reduced with a tilted angle, which is against to remove the 

material, further resulting in the increase of tip-sample interface. All these reasons will reduce the 

scratching depth. 

 

(a) d1 direction 

 

(b) d2 direction 

 

(c) d3/d4 direction 

Fig. 7 The relationship between the normal load and scratching depth 
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3.3.2 Scratching cycles 

In the exploration of multi scratching, the scratching direction is the d3/d4 direction, the 

normal load is 1.5 mN and the scratching speed is 5 μm/s, the scratching numbers of scratching 

cycles are set as 1, 2, 5 and 10, respectively. According to the experimental results as shown in Fig. 

9, the scratching depth is increased gradually from 70 nm in 1 scratching cycle to 170 nm in 10 

cycles, the same trend as other scholars‟ reports [7, 30]. Besides the increase of the scratching 

depth, it can also be seen that the groove wall, especially the right side, in 1 scratching cycle is 

coarser than the multi scratching. In order to show this phenomenon better, a section of groove 

bottom is shown in Fig. 10, which indicates the groove undulation in 1 scratching cycle is almost 

twice to it in 10 scratching cycles. It is because with the increase of the scratching cycles, the 

groove wall and bottom suffer repeated mechanical extrusion and friction, as a result, most of 

micro bulges and defects are removed or compensated, make the groove smoother. 

  

(a) 1 cycle  
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δ δˊ 

d1 

Fig. 8 The tilt of the probe tip 
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(b) 2 cycles 

  

(c) 5 cycles 

 

(d) 10 cycles 

Fig. 9 Groove scratching with different numbers of scratching cycles 
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Fig. 10 The bottom of grooves with different scratching cycles 

3.3.3 Scratching speed 

In the scratching speed test, the normal load is kept constant, three scratching speeds of 2 

μm/s, 5 μm/s, 10 μm/s are used for the experiments. The cross sections of the scratched grooves 

are shown in Fig. 11. The experiments show the average scratching depths with the three speeds 

are 48.0 nm, 49.8 nm and 49.8 nm respectively, the maximal difference is only 1.8 nm, indicating 

the scratching speed has little influence on the scratching depth. 

 

(a) 2 μm/s                           (b) 5 μm/s 

 

(c) 10 μm/s 

Fig. 11 Scratching depth with different scratching speed 
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3.3.4 Scratching feed 

Only micro/nano grooves are scratched in the above experiments, a certain scratching feed is 

necessary to fabricate micro/nano structures, so the scratching feed is a very important parameter 

in the micro/nano machining. It has been verified that the scratching direction affects the 

scratching depth obviously, so in order to avoid this disturbance, the whole scratching in this 

section is the d3/d4 direction. Fig. 12 shows the probe trajectory. The probe is pressed into the 

sample during the scratching, when the micro/nano positioning stage is returned to initial position 

and generates feed movement, the probe is lifted up to avoid the additional scratching. 

 

Five feeds of 240 nm，160 nm，80 nm，60 nm，40 nm are selected to investigate the effect 

of feed on the micro/nano scratching. Other related parameters are as follows: normal load 0.75 

mN, scratching speed 5 μm/s, scratching direction d3/d4. The scratching results are shown in Fig. 

13. The groove is separated from each other in the larger feed of 240 nm and 160 nm, while in the 

smaller feed of 80 nm, 60 nm and 40 nm, a micro structure with certain depth is machined, the 

average depth is increased from 28.4 nm, 57.3 nm to 123.7 nm as the feed is reduced. This is 

because that the adjacent grooves are interlaced each other for a smaller feed, leading to the 

reduction of tip-sample interface area in subsequent scratching, as a result, the scratching depth is 

increased. The roughness (Ra) can be seen as an important parameter to define the machining 

quality, so the AFM images of the scratched micro structures are post-processed in Gwyddion 

software to obtain the surface roughness. In order to avoid the randomness, the roughness in three 

positions of the scratched surface are measured and then takes the average value. The results show 
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Fig. 12 The trajectory of the probe 
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the roughness of the scratched surface with the feed 80 nm, 60 nm and 40 nm is 10.6 nm, 9.3 nm 

and 13.3 nm, respectively. 

          

(a) feed of 240 nm                (b) feed of 160 nm 

  

(c) feed of 80 nm 

  

(d) feed of 60 nm 
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(e) feed of 40 nm 

Fig. 13 The scratching results with different feed 

It has been known that the normal load affects the scratching depth significantly in single 

scratching, so in the multi scratching with feed 60 nm, the effects of five different normal loads on 

scratching depth are explored. The relationship between the normal load and the scratching depth 

is shown in Fig. 14, indicating the scratching depth is increased with the increase of the normal 

load as a whole, but the increasing rate is slowed down in the larger scratching depth.  

In the Geng‟s model [16], the normal force is the product of the horizontal projected area of 

the tip-sample interface and the yield stress, where the horizontal projected area is approximately 

a quadratic polynomial of the scratching depth, the yield stress is also related to the scratching 

depth, so a cubic polynomial is much closer to the model‟s equation power. Thus, in order to 

avoid the complicated theoretical modeling, a cubic polynomial is selected to fit the experimental 

normal load and scratching depth, the range of scratching depth is from 40 nm to 140 nm, the 

fitting function is optimized as Eq. (2), which can be used to predict the machining depth for the 

three dimensional micro/nano structure. It is noted that the fitted cubic polynomial is only 

applicable when the scratching depth is fallen in the depth range as it in the polynomial fitting 

process. 

3 2

normal 0.00000102 -0.00012947 +0.01610394 +0.01792159F h h h            (2)
 

where, Fnormal and h is the normal load and scratching depth, respectively. 

Another two scratching experiments have been conducted to further validate the effectiveness 

of the fitting function, and the results are marked as green circles in Fig. 14. Under the effect of 

normal force 0.73mN and 0.78mN, the experimental and predicted scratching depths are about 58 

nm, 63 nm and 59.2 nm, 63.6 nm, respectively, the results agree well. 
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Fig. 14 The relationship between the normal load and scratching depth with feed 60 nm 

3.4 The effect of sample material on the micro/nano scratching 

Silicon is relatively hard, so another soft sample copper is scratched to compare the 

scratching property with silicon. The AFM image of the scratched grooves on copper is shown in 

Fig. 15. According to the profiles of the groove, it generates obvious ridge on the groove sides, 

and the chip is stacked in the end of the groove. While in the silicon scratching, as shown in Fig. 

9(a), there are almost no ridge and residual chips on the groove sides. In conclusion, harder 

material is easier to be removed in the micro/nano scratching, which is favorable in three 

dimensional micro/nano structure machining, but excessive hard sample material usually 

accelerate the wear of the probe tip.  

 

Fig. 15 The scratching of copper 

4. Three dimensional micro/nano machining 

Based on the above experimental results, some additional three dimensional micro/nano 

structures are fabricated on silicon substrate by controlling the normal force. The following 

machining parameters are adopted: scratching direction d3/d4, scratching speed 5 μm/s and feed 

60 nm. 

Fig. 16 shows the normal force used for the fabrication of a stair micro/nano structure and the 
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corresponding experimental result. The average scratching depth in right stair is about 10nm 

smaller than the left one, the possible reason is that the sample is not ideally horizontally 

positioned. The surface roughness in three stairs from left to right are 13.2, 19.5 and 10.7nm, 

respectively, indicating that larger scratching depth makes the scratched surface coarser. Similarly, 

a sinusoidal micro structure is fabricated with a magnitude of normal force 0.6 mN, which is 

shown in Fig. 17. It is noted that in the machining of these two kinds of micro structures, the 

normal load is kept constant in every single scratching, but is controlled based on Eq. (1) in the 

feed direction. 

 

(a) the normal force 

    

(b) the AFM image scratched micro stair          (c) the profiles of the micro stair 

Fig. 16 The micro/nano structure of stair 
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(b) the AFM image of sinusoidal micro structure   (c) the profiles of sinusoidal micro structure 

Fig. 17 The scratched sinusoidal micro structure 

Furthermore, some complex three dimensional micro/nano structures are also fabricated. As 

shown in Figs. 18 and 19, a Chinese character „田‟ and an abbreviation of Tianjin University „TJU‟ 

are fabricated, for these two micro structures, the normal force needs to be controlled in both 

single scratching and feed direction. The average scratched depth in two sides of micro structure 

„田‟ is about 130 nm, while the depth of four squares in the center is about only 90nm. This is may 

be caused by the tip geometry, the pyramidal surfaces of the tip form two slopes in both start and 

end of every single scratching, when the scratching length is small, the two slopes will occupy 

large volume of the scratched micro structure, thus make the scratching depth small. Same 

phenomena can be found on the top line of „T‟ and „J‟, the bottom line of „U‟. 

A more complex micro structure, cartoon of Chinese panda, is further fabricated. The original 

picture and the AFM picture of the fabricated micro structure are shown in Fig. 20. Due to the 

complexity of the probe trajectory, the gray value of the original image is used to control the probe 

motion. According to the fabricated micro panda, the narrowest part of the panda is the mouth 

with channel width 0.3μm. It is worth to indicate a sharper probe tip is helpful to fabricate a 

narrower channel. 
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Fig. 19 Abbreviation of Tianjin University - TJU 

 

 

Fig. 20 Three dimensional micro structure of Chinese panda 

 

5. Conclusion 

In the micro/nano machining, the machining parameters include scratching direction, normal 

load, scratching cycles, scratching speed and feed amount. According to the experimental results, 

0.12 μm 

-0.18 μm 

Fig. 18 Chinese character “田” 



the scratching depth in the d2, d3/d4 and d1 directions is successively reduced, but it is affected 

more obvious by the normal load. Multi scratching can also increase the scratching depth, and the 

groove become smoother as the number of scratching cycle number increases. The scratching 

depth difference is only 1.8 nm in three scratching speed, implying the scratching speed has little 

influence on the scratching depth. Compared with the scratching on silicon, the copper is easier to 

generate ridges in the groove scratching, indicating that the harder material is easier to be removed. 

In the scratching with feed, the micro structure was machined when the feed is smaller than 

0.08μm, and the machined depth increases as the feed reduces. 

Based on the analysis of machining parameters on scratching process, the scratching 

direction d3/d4, scratching speed 5μm/s and feed 60 nm are selected for the micro structure 

machining. Through the motion control of probe, the micro structures including stair, sine, 

Chinese character „田‟, „TJU‟ and Chinese panda are machined on the silicon base, which 

demonstrate the feasibility of the selected machining parameters and the micro machining ability 

of the developed three dimensional micro/nano machining system. 

There are still some drawbacks in the current machining system and the control method. In 

future work, a sharper probe tip will replace the Berkovich probe to reduce the channel width, and 

an automatic controlled horizontal leveling mechanism for the sample need to be designed. A 

feedback controller can be used to improve the controlling precision of the probe. 
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