
                          Navarro-Tapia, D., Marcos, A., Bennani, S., & Roux, C. (2016). Structured
H-Infinity Control Based on Classical Control Parameters for the VEGA
Launch Vehicle. In 2016 IEEE Conference on Control Applications (CCA
2016): Proceedings of a meeting held 19-22 September 2016, Buenos Aires,
Argentina (pp. 33-38). Buenos Aires, Argentina: Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.1109/CCA.2016.7587818

Peer reviewed version

Link to published version (if available):
10.1109/CCA.2016.7587818

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7587818/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/132201518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CCA.2016.7587818
https://doi.org/10.1109/CCA.2016.7587818
https://research-information.bris.ac.uk/en/publications/structured-hinfinity-control-based-on-classical-control-parameters-for-the-vega-launch-vehicle(000d4656-3df6-4e38-8ff4-e6253ff68748).html
https://research-information.bris.ac.uk/en/publications/structured-hinfinity-control-based-on-classical-control-parameters-for-the-vega-launch-vehicle(000d4656-3df6-4e38-8ff4-e6253ff68748).html


Structured H-Infinity Control Based on Classical
Control Parameters for the VEGA Launch Vehicle

Diego Navarro-Tapia1, Andres Marcos1, Samir Bennani2 and Christophe Roux3

Abstract— This article describes a methodology for struc-
tured H-infinity synthesis that reconciles classical and robust
control concepts. The aim is to provide a transparent and
methodological process to tune the weights used in the struc-
tured synthesis. The process is exemplified on a simplified model
for the atmospheric ascent-flight control system for the VEGA
launch vehicle. The results show that the same gains used for
a real flight can be recovered leading the path for industrial
transfer of the H-infinity structured control to launchers.

I. INTRODUCTION

The design of the ascent-flight control system of a launch
vehicle for the atmospheric phase is still a challenging task.
Along the first phase of the mission, any launch vehicle
encounters undesired events such as wind disturbances, high
aerodynamic pressure and dramatic dynamic changes.

The VEGA launcher [1] uses a classical controller frame-
work for the Thrust Vector Control (TVC) system, which has
been proved to be successful in the six flights VEGA has
performed so far. Nonetheless, the need of providing higher
robustness/performance as well as reducing the control tun-
ing effort and cost prior each flight has lead to investigate
the use of advanced and robust control techniques.

One of the most extended robust control techniques is
H∞, which has been successfully applied in a wide range
of applications, see [2–5] for some aerospace operational
examples. However, this theory has several limitations:
firstly, the designed controller is usually of high-order and
without a defined structured. This is an important drawback
in aerospace applications where the computational power
is limited. Besides, the lack of structure makes hard the
understanding and tuning of the controller. Secondly, unlike
classical control, H∞ requirements are expressed in terms
of weighting functions in the frequency domain. Thus, it
is necessary a conversion between system requirements and
H∞ constraints.

In the last decade, two new approaches based on the H∞
theory have been developed to solve some of the afore-
mentioned problems. The HIFOO approach, which allows
to synthesize controllers with a desired order [6], and the
structured H∞ approach (HINFSTRUCT), which allows to
fix the order and structure of the controller [7].

1 Diego Navarro-Tapia and Andres Marcos are with the Department of
Aerospace Engineering, University of Bristol, BS8 1TR, United Kingdom
diego.navarro-tapia/andres.marcos@bristol.ac.uk

2 Samir Bennani is with ESA-ESTEC, Noordwijk, 2201AZ, The Nether-
lands samir.bennani@esa.int

3 Christophe Roux is with ELV, Rome, 00034, Italy
Christophe.Roux@elv.it

The structured H∞ approach has been recently used in
several investigations to design the control system for a
launch vehicle [8–10]. However, this approach still requires
advance knowledge and experience in expressing the system
requirements in the frequency domain. In most of these
works, this process is not explained in detail and since it
generally implies several heuristic steps, it may be tedious
to obtain an adequate set of weighting functions. These
issues prevent the transfer of these control design methods
to industry since the main requirements to accomplish this
is the transparency and understanding of the process towards
tuning, verification and validation.

In order to address the industrial needs and concerns,
specifically for launchers but also in a more general manner
for other types of systems, this paper extends the classical
analysis done in [11], [12] and focuses on the selection of the
weighting functions in terms of classical design parameters
such as the natural frequency ωn and the damping ratio ζ. Al-
though the presented connections are well-known, a perusal
of the state of the art seems to indicate that they have been
forgotten (or rather, the design analysis has been shifted into
a pure frequency-domain sensitivity functions perspective).
It is within this aim of providing a more coherent and in-
depth problem understanding, by connecting classical metrics
and requirements with those from the sensitivity functions,
that this work is presented. In addition, these connections
provide a methodological framework for the weight selection
that will facilitate the design task, as well as the subsequent
controller tuning, verification and validation.

The layout of this paper is as follows. Firstly, the VEGA
launcher and model are introduced in Section II. Secondly,
the closed-loop, obtained using VEGA’s controller architec-
ture, is analysed connecting classical metrics and parameters
with the H∞ sensitivity functions framework. Then, the
structured H∞ approach is examined and the weighting func-
tions are defined in terms of the launcher model parameters
(a6,k1) and classical control requirements (ωn,ζ). Finally, the
process is exemplified using the rigid-motion of the VEGA
launcher and the results discussed.

II. VEGA MISSION AND LAUNCHER

VEGA launcher is the new European Small Launch Ve-
hicle developed under the responsibility of the European
Space Agency (ESA) and European Launch Vehicle (ELV)
as prime contractor. The launcher has successfully performed
six missions since February 2013.



The vehicle is assumed symmetric about the roll axis.
Thus, considering the roll rate negligible, the cross coupling
between the pitch and yaw axes are sufficiently small that can
be ignored. This allows to simplify the design and analysis
in a single plane, either the pitch or the yaw axis. In this
work, the focus is on the yaw plane, see Figure 1.
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Fig. 1: VEGA yaw-motion diagram

The system used is based on a simplified rotational rigid
motion model with the nozzle deflection angle βψ as the
input and the yaw attitude angle ψ as the output (see
equations 1 and 2).[
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Expressing the previous state-space representation as a
transfer function, the plant model G(s) is given by:

G(s) =
ψ

βψ
=

k1
s2 − a6

(3)

The previous model is simple yet significant. It contains
the main launcher rigid motion effects, and can be easily
augmented for design or analysis with additional effects (e.g.
flexible, sloshing, actuator dynamics). Indeed, it is standard
in industrial launcher design to start with this model [1], [13].
More fundamentally, it offers a simple launcher benchmark
to demonstrate the connections between classical and modern
control techniques.

Looking at equation 3, the plant model depends on two
parameters: the aerodynamic instability coefficient a6 and the
controllability parameter k1, whose expressions are given by:

a6 =
N

Jyy
XCP (4) k1 = − Tc

Jyy
XCG (5)

where, N is the total aerodynamic normal force, Jyy is
the yaw moment of inertia, Tc is the gimballed control thrust
force, XCP is the distance from the center-of-pressure (CP )
to the center-of-gravity (CG) and XCG is the distance from

CG to the nozzle pivot point (PV P ). Note that the total
aerodynamic force is given by: N = QSrefCNβ where Q is
the dynamic pressure, Sref is the reference area and CNβ is
the normal coefficient in the yaw plane.
a6 and k1 have a highly dynamic variation along the

atmospheric phase trajectory as it can be seen in Figure 2,
where these two parameters have been normalized by the
maximum value of |k1|. It should be remarked that k1 has
always a negative value (see equation 5). Also, the figure
shows the ratio a6/|k1|, which is also an important parameter
in the design trade-off process.
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Fig. 2: Flight parameter evolution along the atmospheric
phase

III. CLASSICAL CONTROL APPROACH

The VEGA TVC control architecture [1] is based on a PD
controller to stabilize the launcher’s attitude, a lateral control
feedback to reduce the angle of attack and to minimise
the drift of the vehicle and a set of bending filters to
attenuate the bending modes. A gain-scheduling approach
is used for the PD and lateral controllers, using the time
variation of a6 and k1 to focus on critical points along the
flight trajectory (e.g. pitch-over, maximum dynamic pressure,
maximum acceleration prior to stage separation). In this work
we will only consider the rigid-motion PD controller.

First, the controller gains will be obtained and expressed
in terms of an ideal 2nd order response. Then, in order
to provide insight on the weighting functions selection for
the H∞ synthesis, the closed-loop transfer functions are
analysed in terms of the aforementioned parameters.

A. PD controller identification
Defining the controller as, K(s) = Kp + Kds, and

considering unity negative feedback, the closed-loop transfer
function T (s) from the reference input ψref to the output ψ
is:

T (s) =
G(s)K(s)

1 +G(s)K(s)
=

k1Kds+ k1Kp

s2 + k1Kds+ k1Kp − a6
(6)

It is easy to recognize that the above can be represented
as an ideal 2nd order system with an extra zero z and gain
A:

ψ

ψref
=

ωn
2A(s+ z)

s2 + 2ζωns+ ωn2
=

2ζωns+Azωn
2

s2 + 2ζωns+ ωn2
(7)



Equating equations 6 and 7, the controller gains can be
expressed as a function of ωn and ζ:

Kp =
(

1 +
ωn

2

a6

)a6
k1

(8) Kd =
2ζωn
k1

(9)

Also, in order to completely match equations 6 and 7, the
steady-state value ψss can be analytically represented as:

ψss = Az = 1 +
a6
ωn2

(10)

Since, at least for VEGA (but also usually for launchers in
general), the control design objectives are defined in terms
of margin requirements [1], the gain margin (GM) for rigid-
motion is derived next following the same philosophy:

GM = 1 +
ωn

2

a6
(11)

It is important to remark now (see equations 10 and 11)
that the ratio a6/ωn

2 plays an important role for launchers
since it can tune the tracking performance and the gain
margin. Also, it is easy now to observe that when considering
ωn fixed, the most challenging design point occurs over the
high dynamic pressure region where a6 is at its maximum
value (around the flight instant 55s in Figure 2). This leads
to worst tracking performances and lower gain margins,
and is in agreement with standard launcher knowledge and
experience.

A similar phase margin (PM) definition was done but the
resulting analytical expression is very involved, and in any
case for the understanding and definition of PM requirements
it is better to look at the sensitivity functions (see next
subsections).

B. Sensitivity functions

A common way to study the robustness and performance
of a system is to analyse the closed-loop transfer functions,
also known as sensitivity functions.

1) Sensitivity function S(s): represents the error between
the reference input and the output. Note that the focus is
on S(s), as the complementary sensitivity function T (s) is
directly connected to it (see equation 12).

S(s) = 1− T (s) =
s2 − a6

s2 + 2ζωns+ ωn2
(12)

In order to connect with the previous classical metrics,
|S(ω)| can be derived from equation 12 as:

|S(ω)| = ω2 + a6√
ω4 + 2ω2ωn2(2ζ2 − 1) + ωn4

(13)

|S(ω)| has a high-pass filter shape, where the high-
frequency gain equals 1 and the DC gain is given by:

|S(ω = 0)| = a6
ωn2

(14)

Note that a6/ωn2 also appears here, reflecting the knowl-
edge that the low frequency of S(s) serves to reflect tracking
performance and gain margin.

Another relevant metric to study is the peak of the sensi-
tivity function. Figure 3 shows the evolution of |S(ωpeak)|
in terms of a6/ωn2 and ζ variations.
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Fig. 3: |S(ωpeak)| evolution in terms of a6/ωn2 and ζ

Notice from the figure that the maximum gain of |S(ω)|
increases as ζ reduces. It is also seen that it increases with
increasing a6/ωn2. Comparing this behaviour with equations
10 and 11, it can be concluded that lower peaks in |S(ω)|
imply better tracking performances and better gain margins.
This conclusion agrees with [14] where the following relation
between the stability margins and |S(ωpeak)| is shown:

GM ≥
|S(ωpeak)|
|S(ωpeak)| − 1

(15) PM ≥ 2 arcsin

(
1

2|S(ωpeak)|

)
(16)

In preparation for the subsequent weight design, Figure 4
shows the evolution of |S(ω)| when independently varying
each of the parameters ωn, ζ and t. Firstly, see left plot, ωn
is varied from 1.7 to 2.3 rad/s with fixed ζ = 0.7 and flight
instant t = 55s. The plot shows that slower systems (i.e. low
ωn) present higher DC gains and maximum |S(ω)| values,
which implies smaller stability margins and worst tracking
performances in agreement with the analysis from equation
11.

Secondly, see the middle plot, the damping ratio ζ is varied
from 0.1 to 1, under fixed ωn = 1.5 rad/s and t = 55s. |S(ω)|
presents a higher peak as ζ is reduced, as expected from the
correlation between damping and sensitivity peak.

Finally, the flight instant is varied from 10 to 110 seconds,
for fixed ωn = 1.5 rad/s and ζ = 0.7. As it was previously
mentioned, when the time response parameters are fixed then
|S(ω)| presents a higher peak as a6 increases. In addition,
it can be seen that tracking performance worsens around the
high dynamic pressure region (i.e when a6 is at its maximum
value).

2) Control sensitivity function KS(s): it represents the
transfer function from the reference input ψref to the control
signal u generated by the controller, and is given by:

KS(s) =
1

k1

(2ζωns+ ψssωn
2)(s2 − a6)

s2 + 2ζωns+ ωn2
(17)
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Fig. 4: |S(ω)| evolution based on changes for ωn (left figure), ζ (middle figure) and flight instant (right figure).

|KS(ω)| has a high-pass filter shape, where the DC
gain is given by equation 18. Similarly, it can be seen the
dependency on the term a6/ωn

2 and on this case also a6/|k1|
(whose variation along the atmospheric flight is depicted in
Figure 2).

|KS(ω = 0)| = KS(t =∞) =
a6
|k1|

(1 +
a6
ωn2

) (18)

Although the frequency analysis is relevant, in this case
the time-domain analysis offers a more intuitive way to
analyze this transfer function. Applying the Laplace inverse
transform to equation 17, the time-domain function KS(t)
can be obtained (not shown due to space limitations).

In order to analyze and establish requirements related to
actuators’ saturation is interesting to study the maximum
value of KS(t). Figure 5 shows the evolution of KS(tpeak)
in terms of a6/ωn2 and ζ variations (for the flight instant
t = 55s).
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Fig. 5: KS(tpeak) evolution in terms of a6
ωn2 and ζ (t = 55s)

Notice from Fig 5 that the lower a6/ωn2 is, the higher
the value of KS(tpeak) becomes. That means that higher
gain margins and better tracking performances imply more
actuator effort. This undesired effect can be alleviated by
tuning the damping ratio ζ at the expense of increasing
system overshoot.

From the previous analyses, it can be concluded that
good tracking performance (i.e. low a6/ωn

2) and plant input

limitation to avoid actuator saturation (i.e. low initial and
maximum values of KS(t)) are conflicting requirements.
Nonetheless, this trade-off can be alleviated by tuning the
damping ratio. Thus, based on the presented analyses a clear
design trade-off to emerge (based on the ratio a6/ωn

2 and
ζ), reconciling classical understanding with robust concepts.

IV. STRUCTURED H∞ SYNTHESIS

In this section the hinfstruct synthesis is examined. Then,
using the analyses from the previous section, the weighting
functions are expressed in terms of the launch vehicle model
parameters (a6,k1) and classic control parameters (ωn,ζ).
Finally, the weighting functions are validated through an
example for the VEGA Launcher.

A. Structured H∞
In this work, a H∞ mixed-sensitivity S-KS is considered.

Thus, two weighting functions Ws(s) and Wu(s) will be
used to constraint the sensitivity function S(s) and the
control sensitivity function KS(s) respectively (see Figure
6).

w G(s)K(s)
u

Ws(s)

y

Wu(s)z1 z2

K(s)

P (s)
zw

u

Fig. 6: Standard Form for Structured H∞ Synthesis

This problem can be formulated using the Standard Form
suggested in [7] (see Figure 6), where P is the Linear
Fractional Transformation (LFT) model of the generalized
plant (including the weighting functions), and K(s) is the
tunable structured controller: K=ltiblock.pid(’K’,’PD’).

The classic H∞ problem consists in minimizing the H∞
norm of the transfer function from w to z (Hzw), which is
given by the following lower LFT expression:

Hzw = P11 + P12K(I − P22K)−1P21 =

[
WsS
WuKS

]
(19)



However, as it is stated in [15], this configuration could
provide misleading solutions when there are cross-couplings
between the feedback loops. The structured H∞ synthesis
addresses this problem defining a generalized constraint H ,
which is the concatenation of all the H∞ constraints in a
diagonal block: H = diag[WsS,WuKS].

B. Selection of the weighting functions

To facilitate tuning the weighting functions Ws(s) and
Wu(s), a general format is used [14]. Specifically for Ws(s):

Ws(s) =
s
hs

+ ωs

s+ ωsls
(20)

where hs and ls are the high-frequency and low-frequency
asymptotes of Ws

−1(s) and ωs is the crossover frequency.
For the sensitivity control function KS(s), a constant

weighting has been used to limit actuator magnitude:

Wu(s) = 1/Au (21)

Next, and based on the analyses from the previous section,
the parameters of Ws(s) and Wu(s) are expressed as a
function of the system response parameters (ωn and ζ) and
the launcher model parameters (a6 and k1):

ls =
a6
ωn2

10
0.45
20 (22)

hs =

{
10

0.45
20 if |S(ωpeak)| = 1

10
H(a6,ωn,ζ)

20 other
(23)

ωs = Ω(a6, ωn, ζ) (24)

Au =

{
10

53
20 if |S(ωpeak)| = 1

|a6k1 |10
U(a6,ωn,ζ)

20 other
(25)

The functions H , Ω and U have been defined based on an
heuristic examination of a grid of points along the trajectory
and a range of ωn and ζ values. These functions are shown
in Figure 7 and detailed next. It is noted that the definition of
these functions is critical for the connection of the classical
metrics and system analyses presented before (and favored by
industry) with the definition of the frequency-domain weight
requirements required by H∞ techniques. Also, although

the specific values are system dependent, the analysis and
definition rationale presented in here are general.

a) Selection of ls: the definition of equation 22 is
driven by the DC gain of |S(ω)| from equation 14. A
heuristic gap of 0.45dB has been added to allow free-play of
the optimizer between achieving the desired DC gain and
satisfying the required constraint given by the inverse of
Ws(s).

b) Selection of hs: the proposed high-frequency
asymptote is based on the maximum gain of |S(ω)|. From
the analysis presented in the previous section, |S(ωpeak)|
decreases as ζ increases and as a6/ωn

2 decreases. This
|S(ωpeak)| evolution is used to define equation 23. As
above, a gap over |S(ωpeak)| at high frequencies is added.
This gap is constant when |S(ωpeak)| = 1. Otherwise, hs is
a function of the damping ratio ζ and the term a6/ωn

2 (see
the left plot of Figure 7).

c) Selection of ωs: the proposed ωs is based on the
crossover frequency of |S(ω)|. It was seen before that the
bandwidth increases as ζ increases and as a6/ωn2 decreases.
Thus, equation 24 is defined capturing this behavior. When
the maximum gain of |S(ω)| equals 1, ωs is a function of the
damping ratio ζ and the term a6/ωn

2. Otherwise, the value
of ωs is maintained constant (see the middle plot of Figure
7).

d) Selection of Au: as for the above, Au is based on
the analyses from the previous sections. When |S(ωpeak)| =
1, Au has a constant value of 53 dB, which was obtained
heuristically. Otherwise, Au depends on two terms: |a6k1 |
(which models the dependency of KS(s) on this term) and
the function U (which models its evolution as a6/ωn2 and
ζ vary).

It should be mentioned that the weighting functions de-
fined in equations 20 and 21 are only valid for ζ values
higher than 0.4. The reason is that a first order weighting
function, such as that proposed for Ws(s), cannot capture
the high order response of |S(ω)| with low damping ratios
(see the middle plot of Figure 4). In any case, this does not
imply a limitation because responses with such low damping
ratios are undesirable as they result in very high overshoots
and very low stability margins.

0.20.40.60.8 0.4
0.6

0.8

0
2
4
6
8

ζ

H(a6, ωn, ζ)

a6
ωn2

(d
B
)

0.2
0.4

0.6
0.8 0.4

0.6
0.8

10

2

4

ζ

Ω(a6, ωn, ζ)

a6
ωn2

r
a
d
/
s

0.2 0.4 0.6 0.8 0.4
0.6

0.80

20

40

60

80

ζ

U(a6, ωn, ζ)

a6
ωn2

(d
B
)

Fig. 7: Functions H , Ω and U



C. VEGA example

The weighting functions presented above are applied to a
rigid-motion example for the VEGA launcher.

This example considers two Linear Time Invariant (LTI)
models of the VEGA launcher at two flight instants: t = 30s
(Mach 1) and t = 55s (maximum dynamic pressure). Table
I shows the system parameters used in the third flight of
VEGA. Note that these parameters have been normalized by
the values for t = 55s for confidentially reasons.

t ˜a6/ωn
2 ζ̃ ˜a6/|k1|

30s 0.5113 0.6269 0.9006
55s 1 1 1

TABLE I: Normalized system parameters for VEGA

Using equations 22-25, two different set of weighting
functions are obtained for each flight instant (see their
inverses in Figure 8). Using these weighting functions, two
PD H∞ controllers are obtained. To validate the designs,
Figure 8 compares the frequency responses using the two
designed controllers and the baseline controllers (in black).
Note that the baseline controller gains can be computed
using equations 8-9. Although difficult to see in Figure 8,
the frequency responses of the different controllers match
respectively at each time instant. This implies that given the
same conditions and design objectives, the same controllers
that were used as baseline can be recovered from a structured
H-infinity framework. This has the important implication that
the legacy knowledge and experience (and even controller
structure) can be used within a design framework that
provides better robustness and performance guarantees, as
well as more efficient tuning and V&V capabilities.
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V. CONCLUSION

In this work, a methodological framework to select the
weighting functions for structured H-infinity synthesis has
been presented and applied to the design of the VEGA launch
vehicle attitude control.

The process uses well-known correlations between clas-
sical and robust metrics, but with the goal of identifying
critical parameters from these correlations. These identified
parameters and trends facilitate in turn the design trade-off
analyses and thus, naturally lead towards a methodological
way to define the weights required for the subsequent H∞
design. Specifically, the sensitivity functions have been ana-
lyzed in terms of the launch vehicle parameters and classical
design parameters such as the natural frequency ωn and the
damping ratio ζ.

This methodology shown in this work allows the designer
to facilitate the design task, as well as the subsequent tuning,
verification and validation.
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