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Abstract Pollinating insects utilise various sensory cues to identify and learn rewarding flower

species. One such cue is floral temperature, created by captured sunlight or plant thermogenesis.

Bumblebees, honeybees and stingless bees can distinguish flowers based on differences in overall

temperature between flowers. We report here that floral temperature often differs between

different parts of the flower creating a temperature structure or pattern. Temperature patterns are

common, with 55% of 118 plant species thermographed, showing within-flower temperature

differences greater than the 2˚C difference that bees are known to be able to detect. Using

differential conditioning techniques, we show that bumblebees can distinguish artificial flowers

differing in temperature patterns comparable to those seen in real flowers. Thus, bumblebees are

able to perceive the shape of these within-flower temperature patterns. Floral temperature

patterns may therefore represent a new floral cue that could assist pollinators in the recognition

and learning of rewarding flowers.

DOI: https://doi.org/10.7554/eLife.31262.001

Introduction
Many flowering plants require pollen transport by animals to ensure reproductive success

(Ollerton et al., 2011). These pollinating animals are often insects (Kevan and Baker, 1983), such

as bees. To encourage pollinator visits flowering plants create floral displays (Raguso, 2004;

Leonard et al., 2012) which produce diverse floral cues in different sensory modalities (Kevan and

Lane, 1985; Bhagavan and Smith, 1997; Whitney et al., 2009; Hempel de Ibarra and Vorobyev,

2009; von Arx et al., 2012; Lawson et al., 2017b). These signals allow pollinators to find and locate

flowers (Spaethe et al., 2001; Chittka and Spaethe, 2007), and also allow pollinators to learn and

recognise them (Heinrich, 1979; Raine and Chittka, 2008). Bees and other pollinators adjust their

foraging behaviour to favour visits to more rewarding species found in their environment (Hein-

rich, 1979), avoiding ‘mistake visits’ to less rewarding flowers in order to enhance their foraging suc-

cess (Raine and Chittka, 2008). Similarly, a floral display that is easily learnt and distinguished from

others in its environment ensures greater visitation to the flower (Galen and Newport, 1988;

Lynn et al., 2005) and thus greater reproductive success (Ashman et al., 2004; Bell et al., 2005;

Schiestl and Johnson, 2013). Identifiable floral cues are therefore critical to both plant and

pollinator.

One flower cue bees can use to recognise flowers is floral temperature (Whitney et al., 2008;

Hammer et al., 2009; Norgate et al., 2010). Warming of flowers can occur due to floral thermogen-

esis (Seymour and Schultze-Motel, 1997; Seymour and Matthews, 2006; Seymour et al., 2009),

but is more frequently the result of captured solar radiation (Totland, 1996; Sapir et al., 2006;

Rejšková et al., 2010; Zhang et al., 2010; Atamian et al., 2016). The absorption of sunlight and

heat loss is influenced by pigmentation (Kay et al., 1981; Sapir et al., 2006), structure
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(Rejšková et al., 2010; Whitney et al., 2011) and heliotropism (Totland, 1996; Zhang et al., 2010;

Atamian et al., 2016), all of which will contribute to how much a certain flower will heat up in given

conditions. This can create differences in temperature between different flower species

(Rejšková et al., 2010; Kovac and Stabentheiner, 2011). Using thermal detectors in their antennae

and tarsi (Heran, 1952), bumblebees (Dyer et al., 2006; Whitney et al., 2008), honeybees

(Hammer et al., 2009; Kovac and Stabentheiner, 2011) and stingless bees (Norgate et al., 2010)

can distinguish flowers based on differences in overall temperature. Greater differences in tempera-

ture between flowers appear to be easier for bees to detect (Hammer et al., 2009), although bees

have been shown to be able to detect differences in temperature as little as 2˚C (Heran, 1952). Flo-

ral temperature can also function as a floral reward by keeping pollinators warm while they feed

(Rands and Whitney, 2008; Herrera, 1995). Warmer flowers help insect visitors maintain a body

temperature above their minimum threshold for flight (Heinrich, 1979a; Heinrich, 1979c). This

allows pollinators to forage and collect nectar in colder conditions (Herrera, 1995), and avoid the

metabolic costs they might incur if they have to warm themselves for flight (Rands and Whitney,

2008). Therefore, floral temperature cues are likely to be salient to insect pollinators.

As well as being sensitive to differences between the flower and its environment (Whitney et al.,

2008; Hammer et al., 2009), insects should also be sensitive to differences within a floral display.

When flowers are observed using infrared thermography (thermal imaging), it is apparent that floral

temperature is not necessarily distributed uniformly across the flower surface (Rejšková et al., 2010;

Dietrich and Körner, 2014; Ladinig et al., 2015; Atamian et al., 2016). It has not been investigated

whether any pollinators can learn to recognise flowers based on which parts of the flower are hotter

or colder, which will determine the flower’s temperature pattern. Understanding whether pollinators

can detect temperature patterns within the flower will improve our understanding of how pollinators

interact with flowers, and how floral displays have evolved.

In this study, we investigate the capacity of these floral temperature patterns to function as a flo-

ral cue. We demonstrate floral temperature patterns are common by taking thermographs of the dis-

plays of 118 plant species, that are visited by a range of pollinator groups and show a variety of

flower forms, under good weather conditions. We further ask whether bumblebees, frequently a

eLife digest Bees experience the world in a different way to humans. The plants that they visit

exploit the bee’s senses to make sure that a searching bee can easily find, handle and pollinate

flowers. For example, bumblebees can learn to choose between flowers that are different

temperatures, using heat as a way of identifying the best flowers.

Some wild flowers are warmer than others when they grow in their natural environment. Recent

advances in technology mean that scientists are now able to take a more detailed look at flower

temperature than ever before. Harrap et al. used this technology to look at 118 species of plant,

including daisies, rockroses and poppies.

Over half of the plants examined had flowers with complex patterns of heat across their petals,

echoing the colourful patterns that we see with our own eyes. On average, some parts of the petals

were 4–5˚C warmer than the rest. In further experiments, artificial flowers that replicated these

patterns showed that bumblebees are able to tell apart flowers with different temperature patterns

across their petals.

These newly discovered floral heat patterns appear widespread in nature. It is likely that these

patterns are a hidden signal to pollinators that, together with other cues like colour and scent,

attracts them to the flowers and helps them locate any reward, like nectar.

As well as opening up a new field of research in understanding the interactions between plants

and their pollinators, these findings are potentially important given current concerns about climate

change. If pollinators are partly reliant on subtle differences in temperature across the surface of a

petal, then even small changes in the temperature of the environment could have a large and

unanticipated influence on how efficient bees and other pollinators are when they are visiting

flowers with hidden heat patterns.

DOI: https://doi.org/10.7554/eLife.31262.002
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generalist pollinator group (Heinrich, 1976; Williams, 1989; Goulson et al., 2005), can learn to dis-

tinguish rewarding from non-rewarding artificial flowers, based solely on temperature pattern differ-

ences comparable to those observed in real flowers.

Results

Diversity of floral temperature patterns
The thermographs of flowers of 118 species in different taxa reveal the variety of temperature pat-

terns of different shapes, sizes and locations that pollinators may encounter (Figure 1 and

Supplementary file 1). Some species had little to no detectable temperature differences across their

surface, for example Dahlia coccinea and Pelargonium echinatum (Figure 1). However, most species

observed showed some part of the flower that differed in temperature from the rest of the flower,

thus displaying a temperature pattern (Figure 1 and Supplementary file 1). Most often there was a

temperature contrast between the flower centre and its periphery, although the extent and shape of

contrasting regions varied greatly. In such cases the centre of the flower was often hotter, as in Bellis

perennis and Geranium psilostemon, (but not always, as with Papaver rohoeas or Hydrangea macro-

phylla) (Figure 1). Warming or cooling of a protruding section of the flower, such as ‘landing pad’

petals of zygomorphic flowers such as Crinum, or the reproductive structures of Papaver (Figure 1),

also frequently created contrasting regions of temperature. Flowers of all sizes showed temperature

patterns, such as the large Hermerocallis ‘autumn red’ and small Bellis perennis flowers (Figure 1).

Of the 118 species thermographed, 65 species (55%) showed within-flower temperature differen-

ces of at least 2˚C (Supplementary file 1). So more than half the species observed show tempera-

ture contrasts which at least bees would be able to detect (Heran, 1952). Within these 65 species

the average temperature difference was 4.89˚C ± 2.28 (mean ± SD). While the temperature patterns

that can vary greatly between species, we must determine whether pollinators can use such differen-

ces in temperature patterns to inform foraging in order to show these differences can be used as flo-

ral cues.

Bumblebees discriminate between flowers with different temperature
patterns
We carried out two conditioning experiments investigating the ability of bumblebees to detect tem-

perature patterns. Bumblebees are an appropriate choice of pollinator for investigating whether any

pollinators can respond to the observed diversity of temperature patterns. Many bees are generalist

pollinators (Waser et al., 1996; Fenster et al., 2004), and it is known that generalist bees will visit

many flower forms and families (Heinrich, 1976; Heinrich, 1979a; Williams, 1989; Fenster et al.,

2004; Fontaine et al., 2008; de Vere et al., 2017). Bees also visit flowers which they may not polli-

nate to carry out larceny (Inouye, 1980; Manning et al., 2002; Castellanos et al., 2004;

Fenster et al., 2004). There is great variation in size and tongue length both within and between

bumblebee species, with long tongued species tending to be specialist, and shorter tongued bum-

blebees (such as Bombus terrestris) tending to be generalist (Heinrich, 1976; Heinrich, 1979a; Wil-

liams, 1989; Goulson et al., 2005). Bumblebees also occur all over the globe (Heinrich, 1979a).

Thus, bumblebees, both as individual species and as a large functional group, will experience a large

portion of the diversity of floral temperature patterns observed in our survey. This includes some of

the species with the most contrasting temperature patterns, and flowers showing near to no temper-

ature pattern at all (Williams, 1989; Goulson et al., 2005; Larsson, 2005; Fontaine et al., 2008;

Smith, 2010). Additionally, the temperature sensitivities of bumblebees are understood better than

many other pollinators (Heinrich, 1979a; Dyer et al., 2006; Rands and Whitney, 2008;

Whitney et al., 2008) and techniques for bumblebee conditioning experiments used here are well

established (Dyer and Chittka, 2004; Raine and Chittka, 2008), making them ideal for investigating

pollinator responses to floral displays.

In each of the two experiments bumblebees B. terrestris were presented with artificial flowers,

either small (40 mm in diameter) or large size (85 mm in diameter) depending on experiment

(Figure 2a and b). The two experiments with different sized flowers allow us to determine the

impact of the size of temperature patterns on the identification of rewarding flowers. By using elec-

trical heating elements, we were able to present differing temperature patterns on both sets of
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artificial flowers. On each flower size, these temperature patterns had two variants in layout and

shape, but did not differ in either overall flower temperature, within-flower temperature contrast, or

total area heated, to exclude other means by which bees could recognise variants. Small artificial

flowers produced temperature patterns where either the edges of the flower’s lid were hotter than

the rest of the flower (the ‘circle pattern’), or a rectangular section across the middle of the centre of

the flower’s lid was hotter than the rest of the flower, (the ‘bar pattern’) (Figure 2c). These circle-

Figure 1. Floral thermographs demonstrating the range of floral temperature patterns observed. Floral thermographs demonstrating the range of

floral temperature patterns observed. Colour indicates temperature in ˚C as indicated on the scale bar to the right of each panel. The flower species is

labelled below each thermograph. Human colour images corresponding to each thermograph are available in Figure 1—figure supplement 1.

Supplementary file 1 summarises the temperature differences measured across all 118 species observed, and thermographs of each species can be

found in Supplementary Data available at https://doi.org/10.5061/dryad.qp244 (Harrap et al., 2017).

DOI: https://doi.org/10.7554/eLife.31262.003

The following figure supplement is available for figure 1:

Figure supplement 1. Human colour images of each flower species shown in Figure 1.

DOI: https://doi.org/10.7554/eLife.31262.004
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Figure 2. The artificial flowers used in the bumblebee learning experiments. Panels a and b: how both variants of artificial flowers used in the small (a)

and large (a) artificial flower experiments appear. Panels c and d: thermographs of both artificial flower variants in in the small (c) and large (d) flower

experiments, demonstrating how artificial flowers within each experiment differ in temperature patterns but not visually. Panels e and f: bumblebees

feeding from the small (e) and large (f) artificial flowers.

DOI: https://doi.org/10.7554/eLife.31262.005

The following figure supplement is available for figure 2:

Figure supplement 1. The heating elements stuck to the underside of the small (panel a) and large (panel b) artificial temperature flowers used in the

conditioning experiments.

DOI: https://doi.org/10.7554/eLife.31262.006
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and bar-shaped temperature patterns were comparable to those displayed by real flowers: flowers

with colder centres and hotter peripheries, such as Papaver rhoeas and Hydrangea macrophylla (Fig-

ure 1), relating to the circle pattern; flowers with hot centre and colder periphery, such as Bellis per-

ennis, Geranium psilostemon or Eschscholzia californica (Figure 1) relating to the bar pattern.

Consequently, the differences in temperature patterns between small artificial flowers reflected a

large aspect of temperature pattern diversity. Both of the large artificial flower variants used had

hotter flower centres: one where the heated parts radiated out from the centre in a ‘cross pattern’,

and one where heated parts spanned across the flower centre in another ‘bar pattern’ (Figure 2d).

These larger temperature patterns are similar to those of flowers with hotter centres but differ in the

size and shape of the hotter regions of which there are several (compare varieties of Cistus and

Geranium, Figure 1 and supplementary materials).

Flower naı̈ve bumblebees, Bombus terrestris audax, were allowed to visit artificial flowers which

provided a drop of sucrose solution (rewarding flowers), or water (nonrewarding flowers), in the cen-

tre of the flower hidden in a small well (Figure 2e and f). There were three test groups: (i) ‘Bar

rewards’ group where the bar temperature pattern was rewarding, and the distractor pattern nonre-

warding (cross in large or circle in small flowers); (ii) ‘Circle/cross rewards’ group where reciprocally

the circle or cross temperature pattern was rewarding, and the distractor nonrewarding (bar pat-

tern); (iii) ‘Control’ group where heating elements in the flowers were disconnected, and thus neither

rewarding or nonrewarding flowers showed temperature patterns. The relationship between forag-

ing success (probing or feeding from flowers rewarding with sucrose solution, as well as not probing

when visiting on nonrewarding flowers offering water) and the experience bees had of the flowers

(number of flower visits the bees made) was compared between the three test groups.

When foraging on small artificial flowers, bumblebees learnt to identify rewarding flowers when

they differed in temperature patterns (Figure 3), but did not learn in the control group. When mod-

els of bumblebee foraging success in the learning phase were compared, the relationship between

Figure 3. Bumblebee learning within our small artificial flower experiment. Panel a: the relationship between bees’ foraging success and experience of

the small artificial flowers (flower visits made) during the learning phase. The dotted line indicates the 50% success level. Solid lines indicate the mean

foraging success of bees in the previous 10 visits. Error bars represent ± SEM. Colour and label of solid lines and error bars correspond with test group:

black, the control group, labelled ‘Con.”; orange, Circle rewards group, labelled ‘C.”; blue, Bar reward group labelled ‘B.”. Panel b shows mean

foraging success ± SEM of bees in different test groups during the nonrewarding test phase. Letters above bars denote groups as defined by post hoc

Tukey’s tests where p < 0.05. 12 bees completed this experiment in each test group (36 bees in total from four different nests).

DOI: https://doi.org/10.7554/eLife.31262.007
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success and experience varied between test groups (Figure 3a), with models that allowed test group

to have an interacting effect with experience producing a lower AIC (�226.3 vs. �216.9, DAIC = 9.4)

and a better fit (Ddeviance = 13.4, df = 2, p < 0.01) than models that did not. Bees from the control

group foraged randomly throughout the experiment maintaining a 50% success rate, experience

having no effect on success (AIC �83.3 vs. �83.0 DAIC = 0.3; Ddeviance = 1.6, df = 1, p = 0.201).

When flowers differed in temperature pattern, bees began with a success rate comparable to the

control group but improved with experience; this occurred regardless of which temperature pattern

corresponded with rewards (Circle rewards: AIC �92.1 vs. �68.5, DAIC = 23.6; Ddeviance = 25.6,

df = 1, p < 0.001. Bar rewards: AIC �50.5 vs. �28.0 DAIC = 22.5; Ddeviance = 24.5, df = 1,

p < 0.001). When the conditioned preference was tested in nonrewarding tests, bees in the bar and

circle reward groups made more correct visits than the control group (F2,33 = 23.8, p < 0.001,

Figure 3b). These results demonstrate that bumblebees can learn and alter foraging decisions based

on differences in temperature patterns.

Bumblebees also showed the ability to perceive temperature patterns in large-sized flowers (Fig-

ure 4), although test groups showed similar shaped relationships between success and experience.

Models including an interaction between test groups and those that did not, were comparable in

terms of AIC (Richards, 2008) (AIC �290.88 vs. �287.72 DAIC = 3.16), but were a better fit

(Ddeviance = 7.16, df = 2, p = 0.03). Nevertheless, which test group bees were in still had a signifi-

cant effect on the level of success achieved (AIC �287.72 vs. �266.71 DAIC = 21.01,

Ddeviance = 25.01, df = 2, p < 0.001), with Bar and Cross reward groups achieving a greater level of

success than the control. Thus, the presence of temperature patterns improved bumblebee foraging

success, indicating their ability to use these larger patterns to distinguish flowers.

Figure 4. The relationship between bumblebees’ foraging success and experience of the large artificial flowers

(flower visits). Solid lines indicate the mean foraging success of bees in the previous 10 visits. Error bars

represent ±SEM. Colour and label of solid lines and bars correspond with test group: black, the Control group,

labelled ‘Con.”; orange, Cross rewards group (rewarding cross pattern), labelled ‘C.”; blue, Bar reward group

(rewarding bar pattern), labelled ‘B.”. 18 bees completed this experiment in the control and Cross rewards group

and 17 bees in the Bar rewards group (53 bees in total from seven different nests).

DOI: https://doi.org/10.7554/eLife.31262.008
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The increase in success rate in the control group in this experiment (unlike in the previous small

flower experiment) can be explained by the experimental set-up leading to spatial preferences

within the arena that developed during training. Three rewarding and three nonrewarding flowers

were present in the arena during the large flower experiment due to space constraints, and there

was a reduced ability for random re-arrangement of each flower due to wiring constraints. Bees

have a great capacity for spatial learning (Burns and Thomson, 2006; Robert et al., 2017), and

therefore the control group may have learnt to identify within each foraging bout which regions of

the arena contained more rewarding flowers. However, even with this spatial learning, the presence

of temperature patterns improved bumblebee foraging success on the large artificial flowers.

Discussion
The results of both of the conditioning experiments showed that temperature pattern differences

improved the ability of bumblebees to distinguish between rewarding and nonrewarding artificial

flowers (Figures 3 and 4). This suggests that floral temperature patterns can function as a floral cue.

The main variation observed in floral temperature patterns were between flowers with hot centres

and cold edges and vice versa (see Figure 1 and Supplementary file 1), and bees foraging on the

small artificial flowers were observed to be able to distinguish similar differences (Figure 3). Further-

more, bees foraging on large artificial flowers could distinguish between two differently-shaped pat-

terns where the centre of the flower was hotter (Figure 4), demonstrating that bumblebees can

detect more detailed aspects of temperature signals. Artificial flowers showed within-flower temper-

ature differences similar to that of real flowers (Figure 2 and Supplementary file 1). Real flowers

can show a greater degree of variety in the temperature differences than those used in our experi-

ments, which represented flowers showing the clearest temperature patterns (Supplementary file

1). However, bees have been shown to have a high sensitivity to differences in temperature

(Heran, 1952; Dyer et al., 2006) and are therefore likely to detect the lower temperature differen-

ces as well as the higher. The use of floral temperature cues might not be limited to bumblebees,

since other pollinating insects have been observed to detect and respond temperature differences

between different flowers (Sapir et al., 2006; Kleineidam et al., 2007; Hammer et al., 2009;

Kovac and Stabentheiner, 2011), and therefore may also be able to use temperature patterns as

cues. Furthermore, it did not appear that temperature patterns were limited to flowers associated

with bumblebees. Temperature patterns appear to be a floral phenomenon, rather than a ‘bee

flower’ phenomenon. Several of the Asteraceae (which are known to be visited by a variety of insects

including bumblebees, Goulson et al., 2005), as well as primarily bee pollinated flowers such as

Eschscholzia californica (Smith, 2010), were among those that produced the most contrasting tem-

perature patterns (Supplementary file 1). However, other plants attracting similar pollinators were

also observed to produce little temperature contrast across their surface. Additionally, some plants

associated with moths and hummingbirds, such as Crinium and Crocosmia (Manning et al., 2002;

Goldblatt and Manning, 2006), were also observed to produce contrasting temperature patterns

(Supplementary file 1).

Demonstrating that floral temperature patterns could present a floral cue raises the question as

to how they might be generated, and there are several potential mechanisms. Different flower spe-

cies differed in which structures generated temperatures patterns (Figure 1 and Supplementary file

1). Some patterns are created by hotter or colder parts of the petals, and others by hotter or colder

reproductive structures. The variation in shape and contrast of temperature patterns between differ-

ent plants derived from the same species (i.e. cultivars, subspecies) suggest that small changes in flo-

ral characters can influence temperature patterns. This is perhaps most evident in the various Cistus,

Gazania and Knautia flowers thermographed (Supplementary file 1). Floral morphology appears to

influence temperature pattern generation, as structures in a position more likely to capture light

tended to be warmer (e.g. the exposed petals in the landing pad of Crinum). Structures that were

more densely packed, and might retain heat better were often warmer (such as the florets of com-

posite inflorescences). Likewise, colour differences in the visible spectrum often appeared to occur

alongside temperature differences (Figure 1 and Figure 1—figure supplement 1). Such observa-

tions are in agreement with our understanding of the influence of solar radiation (Totland, 1996;

Sapir et al., 2006; Rejšková et al., 2010; Kovac and Stabentheiner, 2011) and floral structure

(Miller, 1986) on floral temperature. Additional potential influences on temperature include floral
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metabolism (Seymour and Schultze-Motel, 1997; Seymour and Matthews, 2006), active heat loss

by transpiration (Gates, 1968; Tsukaguchi et al., 2003) and petal epidermal cell shape effects

(Whitney et al., 2011). Further study of how these influences differ across the floral surface will help

us gain a greater understanding of floral temperature pattern generation.

Ecological factors might influence a flower’s capability to generate temperature patterns pollina-

tors can detect. The amount of sunlight captured limits floral warming in non-thermogenic plants

(Totland, 1996; Rejšková et al., 2010; Zhang et al., 2010). While Rejšková et al., 2010found that

artificially shaded Bellis perennis flowers maintained temperature patterns, overall temperature of

the flower and temperature contrast between regions decreased, and shaded Anemone nemorosa

cooled to even temperature across the flower. Pollinators may only be able to use temperature pat-

tern cues during sunny weather and when flowers grow in open non-shady environments. Under-

standing how floral temperature patterns change with environmental conditions, and the sensitivity

of pollinators to changing temperature patterns (including how small a contrast in temperature that

pollinators are able to detect), will reveal the level of influence that environmental factors have on

temperature patterns. It may be that flowers that grow in less sunny climates and in shadier habitats

may not be under strong selection to produce complex thermal cues such as temperature patterns.

Plants in these conditions may seldomly generate temperature patterns (Rejšková et al., 2010), and

pollinators may not be able to detect or respond to these patterns. Several of the flower species

that produced the greatest contrasts in temperature within the flower are associated with hot and

dry climates (e.g. Osteospermum and Dimorphotheca species) or with more open environments

(e.g. Geranium psilostemon and Eschscholzia californica, Supplementary file 1), even though all

samplings took place in similar conditions. This may reflect such plants experiencing greater selec-

tion to produce thermal cues.

Flowers are multimodal displays - they produce many different kinds of cues simultaneously

(Raguso, 2004; Leonard et al., 2012), despite pollinators often being able to distinguish flowers

based on a single cue (Bhagavan and Smith, 1997; Dyer and Chittka, 2004; Clarke et al., 2013).

The benefits of this multimodality are only just starting to be understood (Leonard et al., 2012;

Kaczorowski et al., 2012; Leonard and Masek, 2014; Lawson et al., 2017b; Lawson et al.,

2017a). ‘Novel’ sensory cues, such as floral electrostatic fields, have been found to be equally bene-

ficial in foraging maintaining accuracy (Clarke et al., 2013). The discovery of another floral cue that

bumblebees can use to recognise flowers, temperature patterns, encourages further investigation

into this apparent redundancy in floral signalling and the potential benefits multimodal signalling

confers. The frequent overlap of temperature patterns with structural and visual elements of the flo-

ral display perhaps makes them ideal for investigation of how floral signals interact within multimodal

displays.

Thermal imaging of floral temperature reveals that flowers show a diversity of temperature pat-

terns. It is known that bees can distinguish differences in temperature between flowers

(Whitney et al., 2008) and using temperature as a reward (Rands and Whitney, 2008), and we have

shown here that bumblebees can use these floral temperature patterns as a cue to recognise flowers

and make informed foraging choices based upon them. This ability does not seem to be influenced

by the size of the flower and its floral temperature pattern. Thus, floral temperature patterns may be

added to the growing number of floral cues (Raguso, 2004; Leonard et al., 2012) that pollinators,

at least bumblebees, may be able to utilise to identify more rewarding flowers in their environment.

Materials and methods

Sampling of floral temperature patterns
Thermographs of floral blooms (flowers or flowering heads) were taken in Royal Fort Gardens and

the University Botanic Garden, Bristol and in the National Botanic Garden of Wales, Carmarthen.

Species were selected with the aim of sampling flowers visited by a wide range of floral visitor

groups and as broad range of floral shapes, colours and phylogeny as possible. Due to thermal cam-

era limitations in minimum area of measurement (I.T.C, 2008; Usamentiaga et al., 2014) very small

flowers, when not part of a compound inflorescence, could not be sampled. Cultivars and subspecies

were also thermographed. Any additional cultivars and subspecies were counted as the same spe-

cies as the one they were derived from when calculating temperature pattern occurrence or average
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within flower temperature difference. In such cases whichever variant showed the lowest tempera-

ture difference was used, providing more conservative estimates. Thermographs were taken on clear

and sunny days, or inside a controlled glasshouse with near-UV permeable windows, while in sun-

light. Mean ambient temperature for during sampling was 14.3˚C (SD 4.7). More details on the

weather conditions are available in Supplementary files 2 and 3. All thermographs were taken with

a FLIR E60bx thermal camera (FLIR systems, Inc., Wilsonville, USA), to a standard acceptable for I.T.

C. guidelines (I.T.C, 2008; Usamentiaga et al., 2014). The thermal infrared emissivity was set at

0.98. This value is the estimate for vegetation (Rubio, 1997; López et al., 2012) and has been used

for floral tissue (Rejšková et al., 2010; Dietrich and Körner, 2014). For the sake of efficiency,

reflected temperature was kept at 23˚C for all thermographs, due to the high emissivity of floral tis-

sue this would have a minimal effect on temperature readings. All thermographs were viewed and

measurements taken using in FLIR tools software (Flir Systems INC, 2015). Using the point mea-

surement functions, the temperature differences between the hottest and coldest points on the

flower were measured and used to calculate the temperature range across each flower.

Bumblebee experiments
Established bumblebee differential conditioning techniques (Dyer and Chittka, 2004; Raine and

Chittka, 2008; Whitney et al., 2008; Whitney et al., 2009; Clarke et al., 2013) were used to inves-

tigate whether bumblebees could learn to tell apart flowers based on differences in temperature

patterns. All experiments were carried out in lab conditions, using flight arenas as described in

Clarke et al. (2013). Ambient temperature was maintained at 21˚C and flight arenas were ventilated

regularly when access hatches were opened to insert artificial flowers. Flower naı̈ve bumblebees,

Bombus terrestris audax, were supplied by Biobest (Westerlo, Belgium) via Agralan (Swindon, UK) or

Syngenta-Bioline (Clacton-on-Sea, UK).

Artificial flowers
Overview of flower design
Small and large artificial flowers were made from plastic cylinders with an insulated feeding well in

the centre of a plastic lid (Figure 2). Electric heating elements were stuck to the underside of the lid.

In the small flowers, this heating element was made from resistance wire and a pressure sensitive

putty (Blu Tack: Bostik, Paris, France) heat sink. In the large flowers, four 1 W resistors with a built-in

sink were used. In the small flowers, these heating elements could be altered in shape to create two

different temperature patterns: a ‘circle pattern’ about the edge of the lid, and a ‘bar pattern’ across

its centre (Figure 2c). Altering the arrangement of the resistors in large flowers created two pat-

terns: a ‘cross pattern’, where resistors radiated from the flower’s centre; and another ‘bar pattern’,

where resistors were equally spaced across the flower’s length (Figure 2d).

The small artificial flowers were powered by 1.2 V AA batteries wired inside the flower. All small

artificial flowers normally reached a temperature of 33˚C at the heated parts above the heat sink and

25˚C on the parts that were not heated, with temperature differences approximately 8˚C. These var-

ied slightly between flowers and with time as flowers heated over the experiment but not consis-

tently between temperature patterns in a way that could inform foraging decisions. Large artificial

flowers were wired in series to a variable power unit (voltage ranging from 1.5 V and 15 V). This cre-

ated a consistent voltage drop across each flower, thus the heating and area heated was the same

between patterns. The temperatures of large flowers were monitored during tests using the thermal

camera and a pair of flowers outside the arena wired into the same series as those presented to the

bees. By varying the voltage temperatures were maintained, at approximately 24˚C in cold parts and

30˚C in hot parts. The temperature difference was maintained between 5˚C and 7˚C. Static electric

signals generated by the larger artificial flowers were checked using a non-contact voltmeter and

found to be below the 10 V charge that bumblebees can detect (Clarke et al., 2013) and thus could

not conflate results. As flowers within each experiment had the same heading elements, differing

only in the shape, the area heated and the overall temperature of artificial flowers did not differ in a

way which could inform bee foraging decisions, only the temperature pattern (Figure 2). The tem-

peratures and within flower temperature differences reached by our artificial flowers are above the

average values observed in our survey, yet are within the range observed (see Figure 1 and
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Supplementary file 1). The aim of this study is to investigate bee’s capacity to detect temperature

patterns, thus they represent flowers that show well contrasting temperature patterns.

Detail of flower construction
Small artificial flowers were built from a specimen jar (Thermo scientific sterilin (Newport, UK), PS 60

ml, with white plastic lids). An upturned 0.5 ml Eppendorf (Hamburg, Germany) tube lid, insulated

by a section of 1 mm thick plastic foam, was stuck to the centre of the jar’s lid (see Figure 2a). This

Eppendorf tube lid functions as a feeding well to contain sucrose solution or water but, with the

plastic foam, also insulates it from heating. A 13 cm length of 0.32 mm, 17.87 W m-1 kanthal resis-

tance wire was cut and 11 cm of this was covered and stuck down to the underside of the feeders lid

with blu tack. This left two 1 cm ‘leads’ on each end of this heating element. Two patterns were cre-

ated by the blu tack (Bostik, Paris, France). The first, a circle about the rim of the jar’s lid, placed in

such a way that it was still inside the treading of the jars screw. The lipped design of the jar allowed

this to be done easily. In the second, where the wire was folded into an M shape along the centre of

the jars lid, the blu tack creating a bar shape. Care was taken for the blu tack not to cover more than

3 cm2 in each temperature pattern. The wires leads were then linked to a single AA battery in a cra-

dle using two cut free sections of a connector block (Figure 2—figure supplement 1). When a 1.2 V

AA battery was inserted into the cradle, the current begins to heat up the resistance wire thus caus-

ing the blue tack to function as a heat sink heating up the top of the flower lid creating a circle or

bar shaped temperature pattern depending on the shape of the blu tack heat sink (see Figure 2c).

As the length of the resistance wire and the battery type was the same in each flower, the amount of

heating varied little between flowers (Figure 2c). As the area covered by the blu tack was also kept

the same between patterns, the area heated was also the same between temperature patterns. This

battery in the cradle was placed inside the jar and the lid closed over it. Black electrical tape was

wrapped about the outside of the jar to conceal the content from bees and prevent the possibility

that bees may visually identify the shape of the blu tack heat sink.

Large artificial flowers were made using an 8 cm yellow cast acrylic disc that was built to slot into

an 5 cm tall cylindrical stand. Again, an insulated feeding cup was stuck to the centre top of the disk

(see Figure 2b). Four 1 W resistors with a built-in heat sink (Welwyn (TT Electronics, Woking, UK),

through hole wirewound resistors) were stuck to the underside of the disks with resin. These were

arranged in either a cross pattern radiating from the centre of the flower or a bar pattern spaced

equally across the underside (Figure 2—figure supplement 1 panel b). These resistors were wired

in series to two long blue insulated copper wires with connectors. These wire leads were covered by

a sleeve made of card and green tape to match the floor of the arena and minimise the distraction

to the bees. Eight of these artificial flowers were attached to each other again in series, to a variable

power supply (ranging between 1.5 V and 15 V). During the experiment, this allowed six artificial

flowers to be present in the area and the temperatures of a further two to be monitored outside the

area with a IR camera. When the power source was turned on the artificial flower’s top heated up

above the resistors. This created two patterns of temperature on the flower’s top, both hotter in the

centre of the flower but differing in shape according to the placement of resistors (Figure 2d). As

each flower had four resistors in series, all flowers heated up at the same rate and the area heated

was the same across all the flowers. Varying the voltage allowed us to control the heating within the

flowers. The cylindrical stand of the artificial flowers was transparent but clouded and thick, thus

bees were unlikely to be able to see though to recognise flowers by the pattern of resistors.

As the Perspex lid of the flight arena was non-transparent to the thermal infrared radiation that

the IR camera detects, a method was needed that allowed researchers, but not bees, to identify the

artificial flowers while bees foraged. To allow identification of the temperature pattern in a way

humans but not bees would manage, randomly generated even and odd numbers were written on

the side of both kinds of artificial flower corresponding with the flowers temperature pattern. These

numbers included several digits to allow even and odd digits to occur on all flowers thus bees could

not use the presence of the number’s shapes to recognise a flower. As jars and cylinder stands could

be switched we also were able to change whether even or odd numbers corresponded with rewards

(see Figure 2a and b).
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Learning experiments
Before bees began foraging they were assigned to one of three test groups described above (Cir-

cle/Cross rewards, Bar rewards, Control). This was done with the goal of balancing occurrence of

bees from the same nest across test groups, although this was subject to bee activity. An individual

bee only foraged in one test group and were not used in both experiments. Both conditioning

experiments began with a learning phase, where bees were presented with a choice of flowers

placed randomly about the flight arena floor. Bees were allowed to freely forage on the artificial

flowers, and return to their nest. This time between a bee departing the nest to forage and returning

was classified as a single foraging bout. During the learning phase feeding wells of the rewarding

artificial flowers (as determined by the bee’s test group) were filled with 25 �l of 30% sucrose solu-

tion and the feeding well of nonrewarding artificial flowers with 25 �l of water. In small flower tests,

sixteen flowers (eight of each temperature pattern) were presented to the bee. In large flower tests,

six flowers (three of each temperature pattern) were presented. Typically, bees made contact with

the flower top while hovering above it before quitting flight and landing. If a bee landed on the

flower it would normally approach the feeding well and extend its proboscis and attempt to feed

from the sucrose solution presented in rewarding flowers (Figure 2e and f). It could also decide to

depart without attempting to feed. As bees detect temperature via touch (Heran, 1952), physical

contact with the top of the flower was considered a landing, even if the bee did not quit flying. Bees

were each observed for 60 flower landings. Bees completed the learning phase in 5.69 ± 1.79 and

8.60 ± 2.63 foraging bouts (mean ± SD) for the small and large flower experiments, respectively,

making 10.53 ± 6.58 and 6.97 ± 3.96 landings per bout. At each landing, we monitored whether the

bee fed from the feeder or left without feeding. For small flower experiments the learning phase

was followed by a test phase. In the test phase, bees were allowed to forage freely as discussed

above. Here bees were presented with a fresh set of sixteen small temperature pattern flowers with

25 �l of water in feeding wells but presenting the same temperature patterns, or lack of patterns in

control group, the bee had experienced in the training phase. Bees were observed for twenty flower

landings in this test phase. A test phase was not carried out in the large flower experiment as the

large flowers limited the number that could be sensibly placed within the arena.

In small temperature pattern experiments, flowers were not interfered with by the experimenters

while the bee was in the flight arena foraging. This was to minimise disturbance of the foraging

bees. Once a bee had emptied the feeder of a flower any subsequent returns to that flower during

the same bout were not counted. This was done so that a bee’s foraging success was not influenced

by encounters with empty feeding wells. It is not possible to distinguish whether a bee withholds its

probing response because it is correctly responding to a nonrewarding flower (or incorrectly

responding to a rewarding flower) or because the feeding well is empty. In large temperature pat-

tern experiments, flowers were topped up after the bee departed and moved to a different point in

the arena, as the small number of flowers meant bees often had to visit flowers more than once in a

bout. Return visits were not counted unless the flower had been moved to a different location and

refilled whilst the bee was flying elsewhere in the arena. In both experiments after a bee returned to

the nest, the end of a foraging bout, all the artificial flowers were taken out of the arena. Flower

feeders were emptied and refilled to prevent differences in reward temperature developing. The

flower tops were then wiped down with ethanol removing any scent marks the bees could have left.

Thus, flowers were cleaned regularly preventing the bee from using these to recognise rewarding

flowers. Temperature patterns were then checked with the thermal camera before placing flower

feeders back in the arena, replacing any flower that ceased to present the temperature pattern due

to a fault.

Each flower landing was classed as correct or incorrect, as described in previous bee conditioning

studies (Whitney et al., 2008; Whitney et al., 2009; Clarke et al., 2013). In the learning phase

experiments extending their proboscis into the feeding well (probing and/or feeding) on a rewarding

flower, or not doing so when landing on a nonrewarding flower, was deemed a correct action. Doing

otherwise was deemed incorrect. In the test phase all flowers were non-rewarding, therefore scoring

flowers as ‘rewarding’ and ‘nonrewarding’ was determined by the reward scheme in the preceding

learning phase. So, probing the feeding well of flowers with the temperature pattern that had been

rewarding in that bee’s test phase, or not probing after landing on a flower showing the tempera-

ture pattern that had been non-rewarding were correct actions in the test phase. Success over the
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previous 10 visits (starting at visit 10, then 20, 30, etc.) in the learning phase and overall success rate

in the test phase were calculated for each bee. Comparing foraging success between the control

bees and bees that had foraged on flowers with temperature patterns differences allows us to evalu-

ate if temperature patterns aided bumblebee learning.

Statistical analysis
Data were analysed using R 3.1.1 (R Core Team, 2008). The success rate data from the learning and

test phase underwent an arcsine transformation in order to account for it being bound between 0

and 1. The arcsine of success probability across the whole test phase was compared between the

three test groups using analysis of variance. Bee identity was included as a random factor.

Generalised linear model techniques and AIC model simplification were used in our analysis of

bumblebee foraging success during the learning phase of our experiments. While differential condi-

tioning data are often analysed by t-tests on the first and last 10 visits bees make during learning

(Clarke et al., 2013), the model simplification technique used here has the advantage of including

all visits made throughout the learning phase in comparisons and allows more specific comparisons

of the influences on learning between each test group. For this reason, we feel the following model

simplification technique is more appropriate and informative for the learning data collected in this

study.

Not counting revisits to emptied flowers while scoring foraging success does mean the balance

between rewarding and non-rewarding flowers could change as flowers are emptied, especially dur-

ing the learning phase, as bees are more likely to empty the wells of rewarding flowers. This effect

was minimal in the large flower experiments, as flowers were refilled shortly after bees departed

from them. In the small flower experiments, there was a much larger number of flowers in the flight

arena and bees seldom visited all of them in a bout. Small flowers were refilled at the end of each

bout, on average every 10.53 visits. So, any changes in the balance of rewarding and unrewarding

flowers did not persist for long. Furthermore, bees can carry out correct foraging actions on reward-

ing and unrewarding flowers showing probing, or not, as described above. Thus, the capacity of

bees to forage correctly does not change as flowers are emptied, as long as some flowers still have

sucrose or water in their feeding wells. Consequently, the impact of a changing balance of rewarding

and non-rewarding flowers on scoring of pollinator foraging success is likely small and short-lived,

thus was not included within our analysis.

The following represents our full model before any simplification was applied:

ynx ¼ iþ lnx � lð ÞþT st þ lnx � ctð Þð ÞþC sc þ lnx � ccð Þð Þþ bnþ lnx � rnð Þð Þ . (1)

Where ynx is the arcsine success rate of bee n over the previous 10 visits to the artificial flowers, at

x flower visits. x is the number of the visits the bee has made to the artificial flowers, the data for y is

calculated in blocks of 10 (10, 20, 30, 40, 50, 60). i is the initial arcsine success rate, the intercept, for

bees in the bar rewards test group when x¼ 0. l dictates the change in arcsine success rate with

increased x in the bar test group, thus l is effectively the learning speed parameter and allows bee’s

experience to affect success rate. T and C are Boolean parameters which allow the model to alter y

depending on which test group the bee is in. C indicates whether the bee is in the control group,

where:

C¼
0; bee is not in the control group;

1; bee is in the control group;

�

: (2)

T indicates whether the bee is in the circle rewards or cross rewards test group, depending on

the experiment (see above and main text), where:

T ¼
0; bee is not in the cross or circle test group;

1; bee is in the cross or circle test group;

�

: (3)

sc and st are the change in initial arcsine success rate, relative to i, for bees in the control and cir-

cle or cross test groups respectively. cc and ct are the change in learning speed, relative to l, for

bees in the control and circle or cross test groups respectively. Variation between individual bees

was included in our model as a random factor. bn and rn represent the change in initial arcsine
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success rate and learning speed, for bee number n. In the model described in Equation (1) parame-

ters i; l; sc; st ; cc; ct ; bn and rn are parameters to be estimated.

Model simplification procedure involved paired comparisons between the standing ‘best model’,

beginning with the full model described in Equation (1), with a simpler model. Simpler models were

constructed from the standing best model but with further parameters removed (effectively forcing

the relevant parameters to equal 0), in the order described below. Should the removal of the param-

eter has no significant effect on AIC, as laid out by Richards, 2008, this simpler model would

become the best model for the next comparison. If removal of a parameter led to a significant

increase in AIC the standing best (more complex) model would remain the best for the next

comparison.

Initially, the effects of random factors were compared, a model without rn was compared to the

complete model. This allowed testing of whether individual bees differed only in intercepts or inter-

cepts and learning speed (as in the full model). In both experiments rn had no significant effect on

the model, and is thus not included in subsequent models below. Secondly interaction effects were

investigated by removing cc and ct. This created a model where the shape of the relationship

between x and y in all test groups was dictated only by l.

Should the best model according to AIC, find no significant interaction the effects of the test

groups would be investigated by removing T and C creating a model where all test groups both

showed the same intercepts and learning. Finally, the impact of experience on success was com-

pared by removing the learning parameter l. Should the best fitting interaction model include inter-

action effects individual models for each test group would be fitted as follows:

ynx ¼ iþ lnx � lð Þþ bn: (4)

For each test group, using the model described in Equation (4), we tested whether bee foraging

success changed with the number of visits the bee has made by removing l.

Acknowledgements
MJMH was supported by a Natural Environment Research Council studentship within the

GW4 +Doctoral Training Partnership [NE/L002434/]. HMW was supported by an ERC Starting Grant

(#260920). The authors would like to thank Natasha de Vere, Laura Jones and the National Botanic

Garden of Wales for use of their facilities; Nick Wray and the Bristol Botanic Gardens for use of their

facilities and assistance with plant species identification; Paul Chappell and Derek Carr for

manufacturing the large artificial flowers; and Andy Whitcher and the Infrared Training Centre for

training and advice concerning infrared cameras.

Additional information

Funding

Funder Grant reference number Author

H2020 European Research
Council

#260920 Heather M Whitney

Natural Environment Research
Council

NE/L002434 Michael JM Harrap

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Michael JM Harrap, Conceptualization, Data curation, Formal analysis, Investigation, Visualization,

Methodology, Writing—original draft, Writing—review and editing; Sean A Rands, Natalie Hempel

de Ibarra, Conceptualization, Supervision, Funding acquisition, Methodology, Writing—review and

editing; Heather M Whitney, Conceptualization, Resources, Supervision, Funding acquisition, Meth-

odology, Project administration, Writing—review and editing

Harrap et al. eLife 2017;6:e31262. DOI: https://doi.org/10.7554/eLife.31262 14 of 18

Research article Ecology Plant Biology

https://doi.org/10.7554/eLife.31262


Author ORCIDs

Michael JM Harrap, http://orcid.org/0000-0003-0515-2348

Sean A Rands, http://orcid.org/0000-0002-7400-005X

Natalie Hempel de Ibarra, https://orcid.org/0000-0002-0859-8217

Heather M Whitney, https://orcid.org/0000-0001-6450-8266

Ethics

Animal experimentation: No ethical permission was required for the experiments involving bumble-

bees, but the experiments were conducted according to ASAB/ABS guidelines.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.31262.015

Author response https://doi.org/10.7554/eLife.31262.016

Additional files
Supplementary files
. Supplementary file 1: A summary of the temperature patterns observed on each of the 118 species

thermographed, and the additional 18 cultivars and subspecies. Species are ordered taxonomically.

The temperature at the hottest and coldest region of the flower and the difference in temperature

between these points is also given. Plants derived from the same species where counted together

for occurrence or average temperature difference calculations. Plants not used in the calculations

are marked with a ‘*’ next to their D temp. value.

DOI: https://doi.org/10.7554/eLife.31262.009

. Supplementary file 2: Hourly weather data is provided for each hour thermographs were collected.

All weather data was obtained from the nearest Met Office weather station: for Bristol survey days,

Filton weather station (51˚31’15.6"N 2˚34’33.6"W); for Botanic Garden of Wales survey days, Aber-

porth weather station (52˚07’48.0"N 4˚32’20.4"W).

DOI: https://doi.org/10.7554/eLife.31262.010

. Supplementary file 3: Daily weather data for days where sampling took place. All weather data

was obtained from the nearest Met Office weather station: for Bristol survey days, Filton weather

station; for Garden of Wales survey days Saron weather station (52˚01’N 4˚37’W) for daily tempera-

ture and rainfall data, Aberporth weather station for all other data.

DOI: https://doi.org/10.7554/eLife.31262.011

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.31262.012

Major datasets

The following dataset was generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Harrap MJM, Rands
S A, Hempel de
Ibarra N, Whitney H
M

2017 Data from: The diversity of floral
temperatue patterns, and their use
by pollinators

https://doi.org/10.5061/
dryad.qp244

Available at Dryad
Digital Repository
under a CC0 Public
Domain Dedication

References
Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ,
Mitchell RJ, Morgan MT, Wilson WG. 2004. Pollen limitation of plant reproduction: ecological and evolutionary
causes and consequences. Ecology 85:2408–2421. DOI: https://doi.org/10.1890/03-8024

Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL. 2016. Circadian regulation of
sunflower heliotropism, floral orientation, and pollinator visits. Science 353:587–590. DOI: https://doi.org/10.
1126/science.aaf9793, PMID: 27493185

Harrap et al. eLife 2017;6:e31262. DOI: https://doi.org/10.7554/eLife.31262 15 of 18

Research article Ecology Plant Biology

http://orcid.org/0000-0003-0515-2348
http://orcid.org/0000-0002-7400-005X
https://orcid.org/0000-0002-0859-8217
https://orcid.org/0000-0001-6450-8266
https://doi.org/10.7554/eLife.31262.015
https://doi.org/10.7554/eLife.31262.016
https://doi.org/10.7554/eLife.31262.009
https://doi.org/10.7554/eLife.31262.010
https://doi.org/10.7554/eLife.31262.011
https://doi.org/10.7554/eLife.31262.012
https://doi.org/10.5061/dryad.qp244
https://doi.org/10.5061/dryad.qp244
https://doi.org/10.1890/03-8024
https://doi.org/10.1126/science.aaf9793
https://doi.org/10.1126/science.aaf9793
http://www.ncbi.nlm.nih.gov/pubmed/27493185
https://doi.org/10.7554/eLife.31262


Bell JM, Karron JD, Mitchell RJ. 2005. Interspecific competition for pollination lowers seed production and
outcrossing in mimulus ringens. Ecology 86:762–771. DOI: https://doi.org/10.1890/04-0694

Bhagavan S, Smith BH. 1997. Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity.
Physiology & Behavior 61:107–117. DOI: https://doi.org/10.1016/S0031-9384(96)00357-5, PMID: 8976540

Burns JG, Thomson JD. 2006. A test of spatial memory and movement patterns of bumblebees at multiple
spatial and temporal scales. Behavioral Ecology 17:48–55. DOI: https://doi.org/10.1093/beheco/arj002

Castellanos MC, Wilson P, Thomson JD. 2004. ’Anti-bee’ and ’pro-bird’ changes during the evolution of
hummingbird pollination in Penstemon flowers. Journal of Evolutionary Biology 17:876–885. DOI: https://doi.
org/10.1111/j.1420-9101.2004.00729.x, PMID: 15271088

Chittka L, Spaethe J. 2007. Visual search and the importance of time in complex decision making by bees.
Arthropod-Plant Interactions 1:37–44. DOI: https://doi.org/10.1007/s11829-007-9001-8

Clarke D, Whitney H, Sutton G, Robert D. 2013. Detection and learning of floral electric fields by bumblebees.
Science 340:66–69. DOI: https://doi.org/10.1126/science.1230883, PMID: 23429701

de Vere N, Jones LE, Gilmore T, Moscrop J, Lowe A, Smith D, Hegarty MJ, Creer S, Ford CR. 2017. Using DNA
metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability.
Scientific Reports 7:42838. DOI: https://doi.org/10.1038/srep42838, PMID: 28205632

Dietrich L, Körner C. 2014. Thermal imaging reveals massive heat accumulation in flowers across a broad
spectrum of alpine taxa. Alpine Botany 124:27–35. DOI: https://doi.org/10.1007/s00035-014-0123-1

Harrap MJM, Rands SA, Hempel de Ibarra N, Whitney HM. 2017. Data from: The diversity of floral temperature
patterns, and their use by pollinators. Dryad Digital Repository.

Dyer AG, Chittka L. 2004. Fine colour discrimination requires differential conditioning in bumblebees.
Naturwissenschaften 91:224–227. DOI: https://doi.org/10.1007/s00114-004-0508-x, PMID: 15146269

Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L. 2006. Bees associate warmth with floral colour. Nature
442:525. DOI: https://doi.org/10.1038/442525a

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination syndromes and floral
specialization. Annual Review of Ecology, Evolution, and Systematics 35:375–403. DOI: https://doi.org/10.
1146/annurev.ecolsys.34.011802.132347

Flir Systems INC. 2015. FLIR Tools Software Version 5.11.16357.2007. FLIR Systems Inc. Wilsonville,
Fontaine C, Collin CL, Dajoz I. 2008. Generalist foraging of pollinators: diet expansion at high density. Journal of
Ecology 96:1002–1010. DOI: https://doi.org/10.1111/j.1365-2745.2008.01405.x

Galen C, Newport MEA. 1988. Pollination quality, seed set, and flower traits in Polemonium viscosum:
complementary effects of variation in flower scent and size. American Journal of Botany 75:900–905.
DOI: https://doi.org/10.2307/2444010

Gates DM. 1968. Transpiration and leaf temperature. Annual Review of Plant Physiology 19:211–238.
DOI: https://doi.org/10.1146/annurev.pp.19.060168.001235

Goldblatt P, Manning JC. 2006. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Annals of
Botany 97:317–344. DOI: https://doi.org/10.1093/aob/mcj040, PMID: 16377653

Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME. 2005. Causes of rarity in bumblebees. Biological
Conservation 122:1–8. DOI: https://doi.org/10.1016/j.biocon.2004.06.017

Hammer TJ, Hata C, Nieh JC. 2009. Thermal learning in the honeybee, Apis mellifera. Journal of Experimental
Biology 212:3928–3934. DOI: https://doi.org/10.1242/jeb.034140, PMID: 19915136

Heinrich B. 1976. Resource partitioning among some eusocial insects: bumblebees. Ecology 57:874–889.
DOI: https://doi.org/10.2307/1941054

Heinrich B. 1979. "Majoring" and "minoring" by foraging bumblebees, Bombus vagans: An experimental
analysis. Ecology 60:245–255. DOI: https://doi.org/10.2307/1937652

Heinrich B. 1979a. Bumblebee Economics. Cambridge: Harvard University Press.
Heinrich B. 1979c. Thermoregulation of African and European honeybees during foraging, attack, and hive exits
and returns. The Journal of Experimental Biology 80:217–229.

Hempel de Ibarra N, Vorobyev M. 2009. Flower patterns are adapted for detection by bees. Journal of
Comparative Physiology A 195:319–323. DOI: https://doi.org/10.1007/s00359-009-0412-0, PMID: 19184039

Heran H. 1952. Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer
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