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Abstract5

For volcanoes, as for other natural hazards, the frequency of large events

diminishes with their magnitude, as captured by the magnitude-frequency

relationship. Assessing this relationship is valuable both for the insights

it provides about volcanism, and for the practical challenge of risk man-10

agement. We derive a global magnitude-frequency relationship for explo-

sive volcanic eruptions of at least 300 Mt of erupted mass (or M4.5). Our

approach is essentially empirical, based on the eruptions recorded in the

LaMEVE database. It differs from previous approaches mainly in our con-

servative treatment of magnitude-rounding and under-recording. Our es-15

timate for the return period of ‘super-eruptions’ (1000 Gt, or M8) is 17 ka

(95% CI: 5.2 ka, 48 ka), which is substantially shorter than previous esti-

mates, indicating that volcanoes pose a larger risk to human civilisation

than previously thought.
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1 Introduction

There are both fundamental science reasons and practical reasons for establish-

ing a global relationship between magnitude and frequency for explosive volcanic

eruptions. The magnitude-frequency relationship constrains rates of volcanism,25

provides potential insights into the underlying tectonic and igneous processes that

control volcanism and establish the conditions for explosive eruptions, and pro-

vides critical information to forecast future eruptions and assess attendant volcanic

hazards, including the effects on climate of large explosive eruptions.

More broadly, interest in extreme geohazard events and their consequences30

is increasing following a series of high-profile earthquakes, tropical cyclones and

tsunamis that have had substantial regional impacts (e.g., Plag et al., 2015). From

this perspective, the frequency of very large explosive eruptions is of particular im-

portance due to the potential for such eruptions to have not only regional but also

global environmental and societal effects. Although the magnitude-frequency rela-35

tionship for large-magnitude eruptions has been well-studied (Pyle, 1995; Siebert

et al., 2010; Deligne et al., 2010; Sheldrake and Caricchi, 2017), some uncertainty

remains, while the relationship for the largest-magnitude explosive eruptions is

not well known (although see Mason et al., 2004).

The challenge for estimating the magnitude-frequency relationship is that large40

explosive eruptions are rare. Records of the largest eruptions are extracted from

proxies in geological archives. Naturally, such proxies are are hard to interpret, and

the resulting values for dating and magnitude have substantial uncertainties and

may be systematically biased. The frequency of eruptions in a modern database

is also misleading, because the probability of an historical eruption leaving a45

trace that survives to be found and included in the database depends on the

time, location, and magnitude of the eruption. Thus, incautious use of recorded

large eruptions can lead to an inaccurate estimate of the magnitude-frequency

relationship. Our approach in this paper is conservative with respect to mis-
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recording, and all of our point estimates are accompanied by 95% confidence or50

credible intervals.

The plan of the paper is as follows. Section 2 describes the scale for magni-

tude, and two complementary ways to present the magnitude-frequency relation-

ship: the exceedance probability curve and the return period curve. Section 3

describes the database and the records it contains, highlighting two sources of55

inaccuracy. Section 4 describes our statistical model, and uses it to estimate a

semi-parametric approximation of the exceedance probability curve. Section 5 in-

troduces a parametric model better able to accommmodate the limitations in the

records. Section 6 presents our preferred estimate of the exceedance probability

curve, based on the parametric model, and compares our estimates of the return60

period with others in the literature. Section 7 concludes with a summary and a

brief discussion of the implications of our estimate.

2 The magnitude-frequency relationship

The magnitude scale is

M = log10(erupted mass in kg)− 7, (1)

as defined by Pyle (2000) and Mason et al. (2004). We prefer this scale to the65

widely used Volcanic Explosivity Index (VEI, see Newhall and Self, 1982) because

VEI is ordinal and so cannot be represented by a continuous function to describe

magnitude and frequency. Further, VEI is assigned to an eruption based on mul-

tiple criteria, including eruption column height, which cannot be directly related

to magnitude, so VEI is not consistently a measure of magnitude. However, the70

legacy of VEI creates difficulties in interpreting records of previous eruptions, as

discussed in section 3.

The global magnitude-frequency relationship for large explosive eruptions can
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be represented in two complementary ways. First, in terms of the ‘exceedance

probability’ curve, here denoted P̄ . The value P̄ (m) is the probability of at least75

one eruption of at least magnitude m happening somewhere in the world in the

next year. The largest recorded eruption since 100 ky is Toba (Indonesia), dated

73 ky, recorded atM = 9.1 (Costa et al., 2014). The value P̄ (9.1) is the probability

of another Toba (or worse) happening in the next year. In this paper we use ‘My’

and ‘ky’ to denote a point in time in years bp, and ‘Ma’ and ‘ka’ to denote a80

duration.

Second, the magnitude-frequency relationship can be represented in terms of

the ‘return period’ curve, denoted R. The value R(m) is the mathematical expec-

tation of the time to wait until an eruption with magnitude of at least m. Thus

R(9.1) is the expected time to wait, in years, until an eruption which is at least85

as large as Toba.

Both the exceedance probability curve and the return period curve can be de-

rived within a stochastic process model for eruption times and magnitudes. In our

marked Poisson process model they are complementary, because R(m) ≈ 1/P̄ (m)

if P̄ (m) is small (see section 6). However, the two labels ‘P̄ (m) = 0.001’ and90

‘R(m) = 1000 years’ will often be interpreted differently by non-experts. The

latter seems more user-friendly, but can give a very misleading impression, partic-

ularly in a changing environment (although this is more relevant to flooding than

to volcanoes).

There is another reason for preferring exceedance probabilities over return pe-95

riods, which is both technical and practical. The time to wait until an eruption is

an unbounded quantity, and consequently the value of its expectation is suscepti-

ble to very large values occurring with small probabilities; in fact, the expectation

may be infinite, particularly when integrating out the parameters in a Bayesian

approach. This is a general problem with expectations: they can provide poor100

summary values for unbounded quantities. Therefore, we prefer to represent the

magnitude-frequency relationship as the exceedance probability curve. Where re-
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turn periods are required, we adopt the convention of using the reciprocal of the

exceedance probability, providing that this probability is small.

3 The volcanic record105

The Large Magnitude Explosive Volcanic Eruptions database (LaMEVE) pro-

vides a global compilation of data on magnitudes and ages during the Quaternary

(Crosweller et al., 2012; Brown et al., 2014). LaMEVE has been developed to

complement the Volcanoes of the World (VOTW) database of the Smithsonian

Institution for the Holocene and is based on literature for pre-Holocene entries.110

This analysis is based on version 3.1 of the database, relased in Oct. 2015. How-

ever, in the light of our preliminary results we initiated a revision of all records

of eruptions since 100 ky with M ≥ 7, and some uncertain records at lower mag-

nitudes. The results will be incorporated into the next version of LaMEVE, but

in the meantime our dataset is available as a spreadsheet in the supplementary115

information to this paper.

This paper focuses on records in LaMEVE that are dated to have occurred

since 100 ky, 1379 eruptions in total. This section considers the difficulties in

interpreting these records. One difficulty which we need not consider, except

in passing, is the challenge of dating an eruption from its trace in the geological120

record. This is because we sidestep dating uncertainty by using a statistical model

which is time-invariant, at the global scale. This ‘stationarity’ assumption is

discussed in more detail in section 4.

3.1 Magnitude accuracy

Pyle (2016) summarises the methods for assessing magnitude from geological data,125

and the many sources of error, and thus of uncertainty. He does not provide uncer-

tainty estimates. However, an assessment of volume estimates from isopach maps

of tephra fall deposits with at least 20 data thickness points indicates uncertainties
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Figure 1: Recorded magnitudes from the LaMEVE database, for eruptions dated
to have occurred since 100 ky, using the magnitude scale of Pyle (2000), expressed
to the nearest 0.1. The vertical scale is logarithmic. The lefthand panel show the
raw values; the righthand panel shows the values in bins of width 0.5. There is
strong evidence of rounding to the nearest integer, even after removing a subset
of values for which rounding is known to be present.

typically exceeding M ± 0.3 (Engwell et al., 2015).

Measurement errors are fairly unsystematic, being a source more of noise than130

of bias. However, inspection of the frequencies of recorded magnitudes reveals a

systematic error and thus a potentially large source of bias. The lefthand panel of

Figure 1 shows that recorded frequencies pile-up on the integer magnitude values,

which must be an artefact; see also Brown et al. (2014).

By going back through the database and the supporting papers, we identified135

one source of rounding. A subset of the records are eruptions with a recorded

VEI of v (an integer) but without a reported magnitude, and these were coded

as M = v.0. However, a VEI value of v corresponds to a magnitude of v.0 to v.9.

There were 163 such eruptions in records dated since 100 ky. This is ‘rounding

down’, which shifts the exceedance probability downwards, understating the ex-140

ceedance probability of large explosive eruptions, and overstating the length of

the return period for large explosive eruptions.

Figure 1 also shows the frequencies of recorded magnitudes after removing

the subset identified above. The frequencies still pile-up on the integer magnitude
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values, indicating that there is another source of rounding. The righthand panel of145

Figure 1 shows that widening the bins from width 0.1 to width 0.5 does not remove

the piling up. We suspect that this source is rounding towards the nearest integer.

We speculate—and it is no more than that—that a volcanologist who assesses a

magnitude that is close to an integer may well round to the integer, in the light

of her own assessment of uncertainty, in order not to give a spurious impression150

of accuracy. However, as a reviewer notes, there is an issue about whether the

volcanologist assesses volume and then rounds, and then the rounded value is

converted to mass using a standard density such as 2500 kg/m3, or whether the

volcanologist assesses mass directly and rounds that. In due course a better

operational understanding of rounding might change our results. We return to155

this topic in the discussion of Table 2 in section 6.

In order to make progress, we will group the recorded magnitudes into integer-

width bins centred at the integers, reflecting our view, supported by Figure 1, that

rounding to the nearest integer is the dominant source of piling-up on the integer

magnitude values. Any aggregation into bins will reduce the effect of rounding,160

even if it does not remove it completely. We will exclude recorded magnitudes

below M = 4.5 for which there is no integer-width bin, because the LaMEVE

database is for M ≥ 4. Further screening for under-recording, described immedi-

ately below, removes all but one of the records in the rounding-down subset iden-

tified above, so that they no longer contribute downward bias to the exceedance165

probability. The one remaining record from this subset is a VEI = 6 eruption

from an unknown source, dated 1808ce, which we recoded as M = 6.3.

3.2 Under-recording

The second source of error is variations in the recording probability, which is the

probability that a past eruption appears in the LaMEVE database. Figure 2170

shows a simple diagnostic of under-recording by magnitude and time (see, e.g.,
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Guttorp and Thompson, 1991; Rougier et al., 2016). Under the hypothesis that

the eruption rate in a magnitude bin is effectively time-invariant, non-linearity

in the cumulative number of eruptions through time indicates that the recording

probability varies in time, and convexity indicates that it decreases going back in175

time.

Figure 2 shows that under-recording is a serious problem in the database,

and that the recording probability varies by magnitude, and—broadly speaking—

decreases going back in time, as would be expected. The scale and nature of

the under-recording casts doubt on studies extending back over the last 100 ka180

which have made no adjustment for under-recording, particularly those which

claim to find differences in eruption behaviour by magnitude, when this could

easily reflect differences in under-recording by magnitude (see, e.g., Tatsumi and

Suzuki-Kamata, 2014).

For the bin 7.5 ≤M , the gaps in the recorded eruptions are suggestive of185

unrecorded eruptions. The compelling evidence of substantial under-recording

at lower magnitudes makes this a simpler explanation than invoking some kind

of episodic tectonic process. Below, we will allow for the possibility of missing

eruptions. This is an advantage of using a time-invariant binned approach: it is

easy to adjust for specified instances of possible under-recording without having190

to consider when the missing eruptions occurred, and precisely how large they

were.

Now consider the smaller-magnitude bins in Figure 2. The recording proba-

bility is currently 1, for all large magnitudes, in our populous era of global moni-

toring. Thus the first upward bend, elbow, or gap, going back in time from now,195

suggests the time at which the recording probability drops substantially below 1.

Figure 3 zooms-in to the recent past, and identifies, by eye, the point at which

the recording probability can be taken to be effectively 1, for M < 7.5. Deciding

on the precise timing of an abstract event is always going to be subjective, but

we believe that the human eye, aided by our knowledge of recording practices,200
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Figure 2: Cumulative numbers of eruptions by time, where each panel shows
a different magnitude bin. Convexity indicates that the recording probability
decreases going back in time. In the final panel, the eruptions are shown with
their names and magnitudes.

is more refined than a statistical test. In any event, the precise location of the

vertical lines is not important, because a recording probability of a little below 1

is close enough, given our inability to make fine distinctions about the eruption

rates.

This screening for under-recording drops a large number of records (the num-205

bers remaining are given in Figure 4). In our analysis we favour reducing bias and

carefully quantifying variability, because the alternative, a downward-biased esti-

mate of the exceedance probability curve with small variability, could be seriously

misleading.
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Figure 3: The same as Figure 2, except zoomed in to the most recent 5 ka. The
vertical dashed line indicates the point in time at which the recording probability
appears to reach 1, judged by eye.

4 Statistical modelling210

Turning these historical counts into an exceedance probability curve for the future

requires a statistical model. At the global scale, we treat explosive eruptions of

magnitude exceeding M = 4.5 as an homogeneous (stationary) Poisson process

with unknown rate λ (units of yr−1), the rate being effectively constant over the

historical time-interval (a, b) plus into the future, where in our case a = 100 ky and215

b = 2015ce. This model has a long history in volcanology; see De la Cruz-Reyna

(1991) and the discussion in Rougier et al. (2016).

Our assumption of stationarity deserves some attention as there is strong em-

pirical evidence of local and regional fluctuations of eruption rates, in particular

related to glacial and interglacial cycles (e.g., Nowell et al., 2006; Huybers and220

Langmuir, 2009; Watt et al., 2013; Rawson et al., 2016). At high latitudes en-

hanced volcanism is associated with warming periods and deglaciation, which can
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Table 1: Notation for the recorded erup-
tions by magnitude.

m1, . . . ,mk+1 : breaks for the magnitude
bins.

a1, . . . , ak : ai is the earliest date at which
the recording probability for M ≥ mi is
effectively 1. See Figure 3. ∆i = b − ai,
the length of time between ai and ‘today’
(b = 2015ce).

n1, . . . , nk : ni is the number of recorded
eruptions in the bin mi ≤ M < mi+1 in
the time-interval (ai, b).

µ1, . . . , µk : µi is defined in (2).

be explained by mantle decompression due to unloading, and changes in the stress

state of the lithosphere related to unloading. However, after screening for under-

recording, most of the records in this study are within the late Holocene (last225

2 ka), except for M ≥ 7.5 eruptions where we have gone back to 100 ky. Thus our

study is within a narrow time-window compared to the above cited studies, which

investigated non-stationarity in volcanic rates related to much longer periods. For

M ≥ 7.5 the records are from eruptions at low and intermediate latitudes where

the direct effects of glacial unloading are greatly diminished or not apparent. It230

is possible that the approximately 140 m global change in sea level might influ-

ence rates at low latitude, although it is unclear whether this would lead to an

increase or decrease in rates. There is no evidence to suggest that rates of extreme

magnitude eruptions (i.e. M ≥ 7.5) are non-stationary since 100 ky.
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4.1 ML estimation of rates235

The magnitudes of the eruptions are treated as IID ‘marks’ with an unknown

distribution function FM , for which FM(m1) = 0. According to the Marking

Theorem (Kingman, 1993, sec. 5.2), times and magnitudes together comprise a

Poisson process over (a, b)× (m1,∞), with mean function λ · dFM .

Continuing with the notation, let there be k bins for magnitude with breaks240

(m1,m1, . . . ,mk+1), and let ai (i = 1, . . . , k) be the earliest date at which the

recording probability for eruptions with magnitude M ≥ mi is effectively 1; let

∆i = b − ai, the length of time between ai and b. Denote the observations as

(n1, . . . , nk), where ni is the number of recorded eruptions in the set (ai, b) ×

(mi,mi+1). See Table 1 for our notation.245

The quantity ni is Poisson-distributed with expectation equal to ∆i µi, where

µi := λ

∫ mi+1

mi

dFM(m), (2)

and, consequently,

λ =
k∑
i=1

µi. (3)

As these sets are disjoint, the likelihood function for (µ1, . . . , µk) is

L(µ1, . . . , µk) ∝
k∏
i=1

Pois
(
ni; ∆i µi

)
, (4)

where ‘Pois’ is the Poisson probability mass function (PMF), with specified ex-

pectation. Under this model, the maximum likelihood (ML) estimator for µi is250

µ̂i =
ni
∆i

, i = 1, . . . , k. (5)

This estimator will tend to overfit, for example by setting µ̂i = 0 if ni = 0. How-

ever, it is very intuitive, and is much used in practice, possibly without appreci-

ating the statistical model, the Poisson process theory, and the estimation theory
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which justify it. More useful is a 95% confidence interval for each µi. The problem

of choosing a confidence procedure for a Poisson model is still open. We use the255

procedure originally proposed by Garwood (1936) and adapted by Blaker (2000):

see Swift (2009) for a discussion.

Figure 4 shows the ML estimates and confidence intervals for the µi’s. This

figure has two striking features. First, the smoothness of log10 µ̂i as a function

of mi: the relationship looks nearly linear. Second, on the basis of that smooth-260

ness, additional evidence that the 4th bin, namely 7.5 ≤M < 8.5, has several

unrecorded eruptions since 100 ky, given that the estimate and confidence inter-

val of µ4 appear to be displaced downwards relative to the smooth relationship

of the other estimated µi values. There is also a suggestion that µ3 might be

displaced upwards, so possibly some of the eruptions recorded as 6.5 ≤M < 7.5265

should have been recorded as 7.5 ≤M < 8.5. But only one eruption in the 3rd

bin is recorded at M = 7.4, Changbaishan (on the border of China and N Korea,

dated to 946 ce), and the next-largest is M = 7.1.

We cannot think of a physical reason which would lead to a kink around

M = 7.5, and suggest that there are systematic biases in the estimate of volumes270

and therefore magnitudes for very large explosive eruptions. All eruptions with

M ≥ 7 form calderas and there are typically three components to the deposits,

namely outflow ignimbrites, intracaldera infills and very extensive tephra fall de-

posits. Johnston et al. (2014) raised the DRE (dense rock equivalent) volume for

the Minoan eruption of Santorini from 60 km3 (Sigurdsson et al., 2006) to 78–275

86 km3 with the addition of the intracaldera pyroclastic deposits. This volume

change equates to a magnitude change from 7.1 to 7.3. Likewise the proportion of

distal tephra fall deposits turns out to be comparable to the proximal ignimbrite

volumes for those cases where the deposits have been studied in detail. So a sys-

tematic underestimate of volumes for M ≥ 7 can explain some of the discrepancy,280

but there are not enough eruptions at the top of the 3rd bin to explain it all.

Another possibility is that there is some non-stationarity at work and that this
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Figure 4: Maximum likelihood (ML) estimates of
µi computed using (5) (dots), and 95% confidence
intervals (error bars). The estimates are plotted
against the lower end of their bins (i.e., µ̂i is plot-
ted at mi, see Table 1). The dot at (9.5, log10(0))
cannot be shown. The value above each bar shows
the number of records in the bin.
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is manifested in the very different time windows we use for the 6.5 ≤M < 7.5 bin

and the 7.5 ≤M < 8.5 bin. For example if the eruption rates in the last 10 ka

have been higher than in the previous 90 ka then the count in the M < 7.5 bins285

would be displaced upwards relative to the M ≥ 7.5 bins. However, as we explain

in section 4, we do not think that non-stationarity is a major issue for our analysis.

Therefore, on balance, we favour the idea that there are several 7.5 ≤M < 8.5

eruptions since 100 ky waiting to be identified.

Ultimately, Figure 4 is slender grounds on which to start moving records be-290

tween bins. Nevertheless, the numbers of records in these bins are influential in

estimating the return period of very large eruptions, and so the possibility of error

should not be ignored. Below, we will adopt a weaker hypothesis, that the number

of records in 6.5 ≤M < 7.5 is possibly an over-count, and the number of records

in 7.5 ≤M < 8.5 is possibly an under-count.295

Readers wanting simple estimates of exceedance probabilities and return peri-

ods should note that the exceedance probability for mi is approximately equal to

µi, and the return period for mi is approximately equal to 1/µi. These approxi-

mations follow from the exact formulae given in section 6. Therefore Figure 4 also

provides approximate ML estimates for exceedance probabilities (directly) and300

return periods (taking the reciprocal). For example, the exceedance probability

for M = 8 is, by eye, about 5×10−5, and the return period for M = 8 is therefore

about 20 ka. This suprisingly low value for the return period of M = 8 will be

confirmed in our more detailed analysis below, and discussed in section 7.

5 Parametric model305

The previous assessment, including Figure 4, was semi-parametric, assuming a

homogeneous Poisson process for global large explosive eruptions, but making no

further assumption about the nature of the magnitude distribution FM . However,

a parametric model for FM allows us to interpolate the point estimates in Figure 4
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to all intermediate values of m, to recognise the possible mis-recording in the two310

bins 6.5 ≤M < 7.5 and 7.5 ≤M < 8.5, and to impose a finite upper limit on M .

In the statistical model, FM represents the aggregate properties of many volca-

noes. An understanding of the physics of a single volcano (see, e.g., Cashman and

Sparks, 2013) does not necessarily translate into constraints on FM . Consider the

simple case in which there are two volcanoes, with eruption rates λ1 and λ2, and315

magnitude distribution functions F1 and F2. Using the Poisson process model for

each volcano, and invoking the Superposition Theorem (Kingman, 1993, sec. 2.2),

λ = λ1 + λ2, and

FM =
λ1
λ
F1 +

λ2
λ
F2.

(6)

This result generalises immediately to any number of volcanoes. Therefore FM

is a convex combination of the distribution functions of all of the volcanoes, and

as such it will tend to be much smoother than the distribution function of any320

individual volcano. For example, if volcanoes of class A have an interesting kink

in their distribution function at magnitude m, then this will be smoothed out in

FM when combined with volcanoes from other classes where there is no kink at

m. This result justifies adopting a smooth parametric model for FM , but at the

same time it limits the insight we can derive about an individual volcano, on the325

basis of the estimated FM .

We choose the Generalized Pareto distribution (GPD) as our model for FM ,

a two-parameter distribution with positive support. First, the GPD has the ca-

pability to be linear for low values of m, as suggested by Figure 4, although it

would not be linear in general. Second, it has a closed-form expression for its330

distribution function, which is very convenient for calculations. The GPD model

for FM is chosen for empirical and practical reasons, not for its connection with
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the theory of extreme values. After truncating at M = mu,

FM(m) =
GPD(m−m1;σ, ξ)

GPD(mu −m1;σ, ξ)
(7)

for m ≤ mu, and 1 above, where the GPD distribution function is

GPD(x;σ, ξ) := 1−
{

1 + ξ · (x/σ)
}−1/ξ

(8)

subject to the limits of 0 and 1, where σ > 0 is a scale parameter and ξ is a shape335

parameter.

We impose the limit mu = 9.3, which we consider to be a conservative upper

bound for maximum explosive eruption size; this is similar to Mason et al. (2004,

p. 743), who suggest an upper bound of 9.2. The largest known explosive eruption

is Fish Canyon Tuff (27.8 My), with an erupted mass of 1.8 × 1016 kg (M = 9.2,340

Lipman, 1997), which equates to approximately 7.2×103 km3 (assuming a magma

density of 2500 kg/m3). For comparison, current estimates of crustal melt stored

within the Yellowstone magmatic system are< 103 km3 (Farrell et al., 2014; Huang

et al., 2015), and the largest known melt reservoir in the crust—the Altiplano Puna

Magma Body in the Andes—may exceed 105 km3 (Ward et al., 2014; Comeau et al.,345

2015). In both cases, however, the melt resides within a mostly crystalline ‘mush’

region and is therefore not accessible to a single volcanic eruption (Cashman et al.,

2017). Table 3 of Bryan et al. (2010) is a compilation of the largest known silicic

eruptive units from large igneous provinces (LIPs), and the very largest of these

is recorded at M = 9.33 (Paraná-Etendeka, 132 My). As a sensitivity analysis, we350

also truncated at other values of mu, but there was no discernable effect on the

fitted exceedance probabilities below M = 8.5; see Figure 6(a), below.

The two bins 6.5 ≤M < 7.5 and 7.5 ≤M < 8.5 have a non-standard treat-

ment in the likelihood function, with the number of records in the latter bin

which are wrongly allocated to the former bin treated as uncertain and integrated355
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out. We assume that this number can be 0, 1, or 2, with equal probability. In

addition, the recorded number of eruptions in 7.5 ≤M < 8.5 plus the number

that transfer in from the previous bin is treated as a lower bound on the actual

number of eruptions in 7.5 ≤M < 8.5. In other words, we allow that there might

be more missing records in 7.5 ≤M < 8.5 than just the number that transfer in360

from the previous bin.

A Frequentist inference is more complicated within this model, and we prefer

not to rely on asymptotic approximations. Therefore we switch to a Bayesian

inference with the vague prior density function

π(λ, σ, ξ) ∝ λ−
1
2/σ (9)

on the parameter space, and zero outside it. λ−
1
2 is the Jeffreys prior for the365

Poisson model; 1/σ is a standard prior for a scale parameter, and ξ has a uniform

prior. Choices such as these tend to have credible intervals with accurate coverage

properties in the Frequentist sense, as will be confirmed in our application (see

Figure 5). For point estimates we use the maximum a posteriori (MAP) estimator,

while for uncertainties we use 95% equitailed credible intervals (CIs) from the370

marginal posterior distribution. The resulting values are λ = 0.22 yr−1 (95% CI:

0.18, 0.26), σ = 0.49 (0.38, 0.59), and ξ = −0.026 (−0.089, 0.056). According to

these estimates, globally an explosive eruption of M ≥ 4.5 happens on average

about once every five years.

6 Exceedance probabilities and return periods375

Let

λ(m) := λ

∫ ∞
m

dFM(m′). (10)

Under the Poisson process model in section 4, the exceedance probability and
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return period are

P̄ (m) = 1− exp{−λ(m)} (11a)

R(m) = λ(m)−1 (11b)

for m ≥ m1. When λ(m) � 1, say λ(m) < 0.1, P̄ (m) ≈ λ(m), and hence

R(m) ≈ 1/P̄ (m). The exact expression in (11a) is used to estimate the exceedance

probability curve, given in Figure 5, and the approximation is used to deduce

return period estimates, given in Table 2, as discussed in section 2.380

The ML estimator of the µi’s provides an approximate ML estimator of the

exceedance probabilities at the mi values (i = 1, . . . , k), based on

P̄ (mi) = 1− exp
{
−
∑

j≥i
µj

}
≈ 1−

{
1−

∑
j≥i

µj

}
=
∑

j≥i
µj ≈ µi, (12)

assuming that µ1 � 1 and µi+1 � µi.

Figure 5 shows the estimated exceedance probability curve. One prominent

feature is the non-linearity. We show that this is a consequence of the data, and385

not a necessary feature of the truncated GPD model for FM . Figure 6(b) shows

error bars from a synthetic dataset for which the relationship should be linear. The

estimated log exceedance probability curve is indeed linear up until the very high

values of magnitude where the truncation at M = 9.3 forces it to turn downwards.

As an aside, the truncated GPD model might be useful in seismology, where390

there is thought to be a strongly linear relationship, as embodied by the Gutenberg-

Richter law. There, as here, the truncation point must be imposed, but a sen-

sitivity analysis (e.g., Figure 6(a)) can be used to trace its effect back towards

magnitudes of more direct concern.

A comparison of the width of the 95% confidence intervals (error bars) and395
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Figure 5: Exceedance probability curve, using a
fully parametric approach to FM (section 5). The
solid line is the maximum a posteriori (MAP) esti-
mate, and the grey bar is the pointwise 95% credi-
ble interval, both based on the vague prior density
function given in (9). The error bars are from Fig-
ure 4, justified by the approximation in (12). The
dotted grid lines indicate the exceedance proba-
bility for M = 8.
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(a) Sensitivity analysis to examine the effect
of changing the upper bound on magnitude.
The estimated exceedance probabilities below
M = 8.5 are not affected by the choice of upper
bound.

(b) Synthetic dataset, to demonstrate the ca-
pacity of the truncated GPD model for FM to
fit a linear relationship between magnitude and
log exceedance probability. Thus the curved
relationship in Figure 5 is a consequence of the
data, not the choice of model.

Figure 6: Additional tests for the exceedance probability curve in Figure 5.

95% credible intervals (grey bars) shows that the latter are slightly narrower,

notably for large magnitudes. This is expected, because the credible intervals use

all records, not just those in a bin. The scarcity of large-magnitude eruptions

makes this difference more prominent at large magnitudes.

Figure 5 also highlights the downward displacement of the number of eruptions400

in the fourth bin (7.5 ≤M < 8.5), and the possible upward displacement of the

number of eruptions in the third bin. Crudely, it looks as though number of

eruptions in the fourth bin should be about three times larger. There are currently

4 eruptions in this bin (Figure 4), suggesting that the number of eruptions with

7.5 ≤M < 8.5 waiting to be identified is about 8, or fewer if some of the eruptions405

in the previous bin have been mis-allocated. This seems high, but it is consistent

with the size of the gaps in the bottom-righthand frame of Figure 2.

Table 2 contrasts our results with other estimates of the return period by

magnitude. There are sizable differences at all magnitudes across the estimates;

ours are similar to those of Siebert et al. (2010) for M ≤ 7, and substantially410
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different from those of Mason et al. (2004) for M = 8.

There are several reasons to expect differences between our estimates and

previous values, including that we have used different time periods, and that,

compared to Pyle (1995) and Mason et al. (2004), we have used a more modern

database.415

We suspect that another reason for the M ≤ 7 divergence is the magnitude-

rounding discussed in section 3, and shown in Figure 1. Compared to Sheldrake

and Caricchi (2017), who use the same version of LaMEVE as we do (although

without our update, see section 3), our return periods for M ≤ 7 are much longer.

Sheldrake and Caricchi (2017) noted the rounding issue, and attributed it, as we420

do, to rounding to the nearest integer. They also binned their magnitudes, but

centred on the 0.5’s, not the integers; i.e. they used 4 ≤ M < 5, etc. These are

sensible bins for rounding down, but they cause a systematic bias in the presence of

rounding to the nearest integer: more records get rounded into the bin 5 ≤M < 6

from 4.5 ≤ M < 5 than get rounded out of the bin from 5.5 ≤ M < 6, and so425

on. The estimated exceedance probability curve is pushed upwards, leading to

shorter return periods. We identify a source of rounding down and eliminate it

from our analysis, through our screening for under-recording (section 3); we treat

what remains as rounding to the nearest integer, and use integer-centred bins.

But, as we state in section 3.1, we really need a better operational understanding430

of rounding.

The database compiled by Mason et al. (2004) uses 42 M ≥ 8 eruptions over

the past 36 Ma; that is, they use a much longer time scale than our study. This

introduces two problems, as the authors recognise. First, although there is no

good estimate of under-recording probabilities over these time scales, the under-435

recording is likely to be severe. For example, some older ignimbrites can be

eroded, buried or incorporated into complex orogenic deformation belts (Wilson,

1991; van Zalinge et al., 2016). Failure to account for under-recording would

lead to an artificially long return period. Second, the stationarity of eruption
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Table 2: Estimates of the global return period in years for large explosive erup-
tions.
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Us 95% CI

5 8 10 8 6 14 11, 17

6 59 200 35 51 110 80, 170

7 420 1–2 ka 370 420 1200 680, 2100

8 45–714 ka 17 ka 5.2 ka, 48 ka

Pyle (1995): eq. 6, p563, based on VEI and using a density of 2500 kg/m3.

Mason et al. (2004): p745, λ for M ≥ 8 is 1.4–22× 10−6 yr−1.

Siebert et al. (2010): p38, based on VEI.

Deligne et al. (2010): Table 6, p14, Holocene, u = 4.0; see their Figure 10 for

confidence intervals.

Sheldrake and Caricchi (2017): Based on the text above their Figure 4, applying the

percentage differences to the values from Pyle (1995).

rates over long time-periods is questionable. For example, the 36 Ma window440

includes two ignimbrite ‘flare-ups’ (Lipman, 1984; de Silva and Gosnold, 2007),

which suggests that over time-periods of millions of years, the rate of very large-

magnitude eruptions may reflect changes in regional tectonics.

By only using M ≥ 8, Mason et al. (2004) do not constrain their return pe-

riod estimate with smaller-magnitude eruptions. This constraint is helpful under445

the assumption of smoothness which we discuss in section 5, but it would not

be appropriate under the hypothesis that mechanisms for M ≥ 8 eruptions are

fundamentally different from those for smaller-magnitude eruptions.
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7 Conclusion and discussion

We have derived new estimates of the global magnitude-frequency relationship for450

large explosive volcanic eruptions, presented in terms of the exceedance probability

curve, and also summarized in terms of return periods (section 2). Our headline

number is that the return period for a M = 8 eruption is 17 ka (95% CI: 5.2 ka,

48 ka), much shorter than the previous estimate, but all of our estimates differ

substantially from previous estimates.455

Our estimates are largely empirical, based on the records in the LaMEVE

database, interpreted within an homogeneous Poisson process model. They differ

from previous results mainly in our conservative treatment of magnitude-rounding

and under-recording (section 3). The semi-empirical results can be seen in Fig-

ure 4. This figure already contains the kernel of our estimated exceedance proba-460

bility curve (Figure 5), and return periods (Table 2). We prefer to use a parametric

model for the reasons given at the start of section 5, but these are ‘second order’

corrections, as is clear from a comparison of the figures. Nevertheless, we believe

that these corrections are important, and the results derived from the parametric

model are the results we favour, particularly for quantifying variability.465

Plag et al. (2015) provide an up-to-date assessment of the risk posed by geo-

hazards, particularly extreme events. They identify volcanoes (and bolides) as

hazards capable of producing events large enough to “return humanity to a pre-

civilisation state” (Plag et al., 2015, p11). Plag et al. (2015) compute, on the

basis of the Mason et al. (2004) return period range for M = 8 eruptions (‘super-470

eruptions’), that the expected benefit of a global volcano monitoring system is

at least ten times the total cost, and could be “hundreds or thousands of times

greater than the total cost” (ibid., p39). On this basis, they assert that human-

ity is under-prepared for extreme geohazard events (see their Summary of Key

Findings, p6, and Conclusions and Recommendations, p9).475

Our analysis has produced a much shorter return period for super-eruptions:
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a point estimate of 17 ka compared to a lower bound of 45 ka in Mason et al.

(2004). So volcanoes are even riskier than previously thought, and Plag et al.

(2015)’s assessment that humanity is under-prepared for extreme geohazard events

like super-eruptions holds even more strongly. This low value of 17 ka also has480

important implications for other areas of risk management, which we will explore

elsewhere. Briefly, though, we question whether it is cost-effective to manage a

risk down to a probability of exceedance of less than 1/(17×103), if its impact on

an entity (such as a country) is much smaller than the impact of a super-eruption

happening somewhere in the world.485

Therefore our results are interesting not just to volcanologists, but also much

more widely, to policy-makers and planners involved in disaster risk reduction

(DRR), and to regulators and risk managers.
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