

Tierney, J. E., Damsté, J. S. S., Pancost, R., Sluijs, A., & Zachos, J. C. (2017). Eocene temperature gradients. *Nature Geoscience*, *10*, 538-539. https://doi.org/10.1038/ngeo2997

Peer reviewed version

Link to published version (if available): 10.1038/ngeo2997

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature at https://www.nature.com/articles/ngeo2997 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Eocene temperature gradients

Jessica E. Tierney¹, Jaap S. Sinninghe Damsté^{2,3}, Richard D. Pancost⁴, Appy Sluijs³, James C. Zachos⁵

¹University of Arizona, Department of Geosciences, 1040 E 4th Street, Tucson, Arizona, 85721 USA; ²NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1797AB Den Burg, Texel, The Netherlands; ³Department of Earth Sciences, Faculty of Geosciences, Utrecht University. Heidelberglaan 2 3584CS, Utrecht, Netherlands; ⁴Organic Geochemistry Unit, School of Chemistry, Cabot Institute, University of Bristol, Bristol BS8 ITS, United Kingdom; ⁵University of California, Santa Cruz, Department of Earth and Planetary Sciences, 1156 High Street, Santa Cruz, California, 95064 USA.

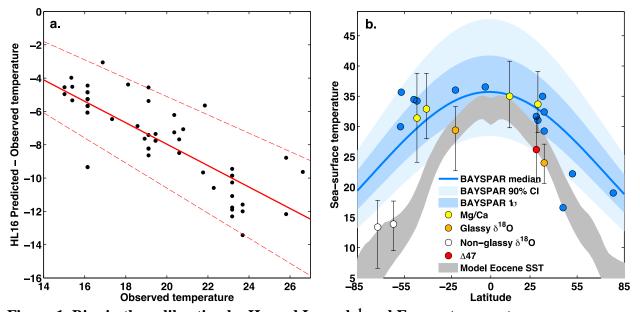
To the Editor,

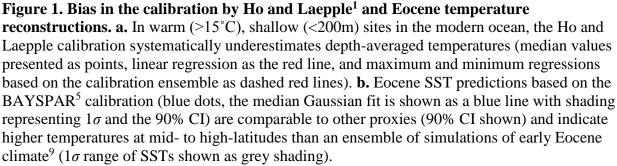
Sze Ling Ho and Thomas Laepple¹ argue that the TEX_{86} palaeothermometer should be calibrated to deep subsurface ocean temperature and that doing so resolves a discrepancy between data and climate model simulations for the early Eocene. Here we argue that their proposed calibration of TEX_{86} is incompatible with ecological evidence and inappropriate for the largely shallow-water Eocene data. In addition, early Eocene TEX_{86} data agree reasonably well with other proxy data, such that warm poles and a flat meridional temperature gradient are not unique to TEX_{86} .

The primary assumption behind Ho & Laepple's reinterpretation of Eocene TEX₈₆ data is that the Thaumarchaeotal lipids (GDGTs) that comprise the proxy are derived from 0-1000m water depth. However, microbial, ecological, and oceanographic observations indicate the sedimentary TEX₈₆ signal predominantly represents the shallow subsurface (ca. 50-300m). This is where maxima in intact polar GDGT and Thaumarchaeotal gene (16S rRNA and *amoA*) abundances occur^{2,3}, consistent with their ecological niche as ammonium oxidizers. Although Thaumarchaeota exist in deeper waters, their cell numbers decline sharply below about 300 m³ and export to the sediment is less efficient⁴. Hence, sedimentary TEX_{86} values closely match those of the upper water column, indicating preservation of an upper ocean signal⁴.

This evidence justifies several approaches to TEX₈₆ calibration. Despite the Thaumarchaeotal niche in the shallow subsurface, TEX₈₆ can be used as a sea-surface temperature (SST) proxy due to the high correlation between subsurface temperatures and SSTs⁵. This necessarily assumes surface and subsurface temperatures maintain similar variability through time. Although the assumption that surface and subsurface temperatures maintain similar variability through time can be violated, it is reasonable for inference of long-term mean SSTs. A similar assumption is made in δ^{18} O paleothermometry, which relies on foraminifera that reside throughout the upper mixed layer. Shallow subsurface (0-200 m) instead of surface calibrations for TEX₈₆ are also appropriate and have been applied^{5,6}. Laboratory mesocosm experiments independently confirm a TEX₈₆-temperature sensitivity similar to the surface and shallow subsurface calibrations (slope ~ 0.015 TEX₈₆ units per °C)⁷, supporting a shallow-water depth origin for sedimentary GDGTs.

Despite this observational evidence, Ho and Laepple compare the power spectra of paired alkenone $U^{K'}_{37}$ and TEX₈₆ records, and use this result as the basis of their argument that TEX₈₆ must integrate temperatures to at least 550 m and possibly as deep as 950 m. The result is a calibration with a TEX₈₆-temperature sensitivity that is twice as large as that found in previous work (slope ~ 0.030), which is difficult to reconcile with the evidence discussed above. Their approach is flawed in several ways. First, their Fig. 2a demonstrates that all of the variance and explanatory power derives from shallow waters (0-300 m); extending the calibration down to 1,000 m merely dilutes the regression with relatively invariant data. Second, they assume that U^{K'}₃₇ represents true SST variability, which is unjustified. An appropriate comparison between proxies requires formal modeling of uncertainties associated with both systems, including structural errors relevant to U^{K'}₃₇ such as non-linear temperature sensitivity, diagenetic alteration, and lateral advection⁸. Furthermore, even if U^{K'}₃₇ and TEX₈₆ do show different variability in some places it does not follow that TEX₈₆ is incorrectly calibrated; slight differences in seasonality and depth of production can and do impart variance differences between the proxies.


Using their deep-water calibration, Ho and Laepple revisit published Eocene TEX₈₆ data and argue that they can resolve discrepancies between proxies and climate models. We identify two major fallacies in their approach: first, the majority of sites with early Eocene TEX₈₆ data are shallow (water depths between 0 and 200m; Supplementary Table 1). Applying a calibration that predicts 0-550 to 0-950m average water temperature is inappropriate. By way of example, we apply the Ho and Laepple calibration to warm (T > 15°C), shallow (0-200m) sites in the modern surface sediment dataset (see Supplementary Information), which have TEX₈₆ indices analogous to the Eocene values. Their calibration underestimates depth-averaged temperatures by 7.5°C in the modern ocean (Fig. 1a), and the underestimation trends with temperature, such that the warmest sites are under-predicted by a greater amount (~12°C, Fig. 1a). Their calibration will therefore produce an artificially flat gradient between tropical and subtropical temperatures: both in the modern, and in the Eocene, oceans.


Second, TEX₈₆-inferred SSTs are not significantly different from those provided by other proxies (Fig. 1b). There is no evidence that TEX₈₆-based temperatures are too high – or produce a gradient that is too flat – relative to other proxies within uncertainties. Only foraminiferal δ^{18} O data from ODP Sites 690 and 738 indicate substantially lower temperatures (Fig. 1b); however, these data are probably biased by diagenetic alteration. In the Southwest Pacific, Mg/Ca and TEX₈₆ both indicate remarkably high SSTs (~30°C). These locations may not be representative of their latitudinal band globally; however, even if early Eocene polar temperatures were near 20°C, as indicated by the Arctic site (Fig. 1b), these are difficult to reproduce with models (Fig. 1b)⁹. Such temperatures are not at all unlikely and are corroborated by independent evidence, such as the presence of palms, baobab and crocodiles at polar latitudes^{10,11}. The equable climate problem – the lingering mismatch between proxy data and model simulations – cannot be put to rest.

TEX₈₆ data have played a critical role in constraining early Cenozoic temperatures. Indeed, although we disagree with their approach and conclusions, Ho and Laepple never question the fundamental utility of the proxy. This contrasts with the News & Views accompanying the article¹², which suggests that temperature is not the dominant control on TEX₈₆. This view discounts the large body of literature that demonstrates the validity and robustness of the paleothermometer, as well as the simple fact that ocean temperature explains over 70% of the variance in modern TEX₈₆ data⁵. TEX₈₆ has revolutionized our view of past warm climates, and we expect that it will continue to do so.

References:

- 1. Ho, S. L. & Laepple, T. Nature Geosci. 9, 606-610 (2016).
- 2. Church, M. J. et al. Environ. Microbiol. 12 679-688 (2010).
- 3. Schouten, S. et al. Geochim. Cosmochim. Acta 98, 228-243 (2012).
- 4. Wuchter, C., Schouten, S., Wakeham, S. G., & Sinninghe Damsté, J. S.
- Paleoceanography, 21, PA3013 (2005).
- 5. Tierney, J. E. & Tingley, M. P. Sci. Data 2, No. 150029 (2015).
- 6. Kim, J.-H. et al. Geophys. Res. Lett. 39, (2012).
- 7. Wuchter, C., Schouten, S., Coolen, M. & Sinninghe Damsté, J. S. *Paleoceanography* 19 PA4028 (2004).
- 8. Conte, M. H., et al. Geochem. Geophys. Geosys. 7, Q02005 (2006).
- 9. Lunt, D. J. et al. Clim. Past 8, 1717-1736 (2012).
- 10. Markwick, P. J. Palaeogeogr. Palaeoclimatol., Palaeoecol. 137, 205-271 (1998).
- 11. Pross, J. et al. Nature, 488, 73-77 (2012).
- 12. Ingalls, A. Nature Geosci. 9, 572-573 (2016).

