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ARTICLE

Cryo-EM structure of Saccharomyces cerevisiae
target of rapamycin complex 2
Manikandan Karuppasamy1, Beata Kusmider2, Taiana M. Oliveira1, Christl Gaubitz2, Manoel Prouteau2,

Robbie Loewith2,3 & Christiane Schaffitzel 1,4

The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes,

conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase

activity is not inhibited by the macrolide rapamycin. Here, we present the structure of

Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains

six subunits assembling into a 1.4MDa rhombohedron. Tor2 and Lst8 form the common core

of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT

repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the

mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the

FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive

and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to

the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an

edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment.
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The target of rapamycin (TOR) genes were first discovered
in an elegant genetic dissection of Saccharomyces cerevisiae
mutants exhibiting resistance to rapamycin1, a macrolide

produced by a soil bacterium from Easter Island2. This study also
demonstrated that rapamycin requires a co-factor for toxicity, a
12 kDa proline isomerase named FKBP12 for FK506 (a macrolide
similar to rapamycin)-binding protein. Subsequent to its dis-
covery in yeast, a mammalian ortholog (mTOR) was described3–5

and indeed it is now appreciated that TOR is widely conserved in
eukaryotes6. Unlike yeast, which encodes two TOR genes, TOR1
and TOR2, higher eukaryotes encode only a single TOR gene. The
amino acid sequence of Tor initially suggested that it would
function as a lipid kinase7,8. However, Tor is a Ser/Thr protein
kinase and the founding member of a family of related proteins
including DNA-PKcs, SMG1, ATR and ATM, known as
phosphatidyl-inositol-kinase-like kinases (PIKKs), which all
resemble phosphatidyl-inositol kinases but are in fact Ser/Thr
protein kinases9. Among the PIKKs, only Tor, at its FKBP12-
rapamycin-binding domain (FRB) in the N-terminus of the
kinase domain, can be bound, and thus inhibited, by a complex of
rapamycin and FKBP12.

Biochemical purification of Tor1 and Tor2 from yeast
demonstrated that Tor exists in two different multiprotein com-
plexes named TORC1 and TORC210–12. Like TOR, these com-
plexes are widely conserved, and, in mammals, are known as
mTORC1 and mTORC213–17. Both complexes are heterodimeric
and are 1.2 MDa and 1.4 MDa in size, respectively18. TORC1
(mTORC1) is composed of either Tor1 or Tor2 (mTOR), Kog1
(Raptor), Lst8 (mLst8/GβL) and Tco89 (no ortholog).
Rapamycin-FKBP12 binding to the FRB of Tor in TORC1 inhi-
bits kinase activity via steric occlusion of the active site19. In
humans, abnormal mTORC1 activity is associated with a wide
range of clinical presentations for which rapamycin or related
compounds are often indicated20. These include cancer, loss of
metabolic homoeostasis, immune dysfunction and ageing. Rapa-
mycin has also been a useful tool for basic scientists to study
TORC1 signalling. Indeed, the mechanisms by which upstream
regulators (eg, nutrients, abiotic stress and growth factors) reg-
ulate TORC1, as well as the downstream targets by which TORC1
regulates its distal effectors (eg, lipid, nucleotide and protein
synthesis/degradation) are becoming increasingly well
understood20–23.
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Fig. 1 Overall architecture of S. cerevisiae TORC2. a Schematic representation of TORC2 proteins. Domains of known function and structural motifs are
indicated. b Cryo-EM structure of TORC2 at an overall resolution of 7.9 Å (FSC criterion 0.143) is shown in a surface representation at 7.5 sigma contour
level in four different views. In the palm view, TORC2 lobes are annotated as Thumb and Fingers (1–4) for one protomer. Scale bar= 5 nm. FAT stands for
Frap, ATM, TRRAP domain; FRB, FKBP12-rapamycin-binding domain; FATC, FRAP, ATM and TRRAP, C-terminal domain; Armadillo, armadillo repeat
domain; ANK, ankyrin repeat domain; CRIM, conserved-region-in-the-middle domain; RB, Ras-binding domain; PH, pleckstrin homology domain; HbrB,
HbrB-like domain
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TORC2 (mTORC2) is composed of Tor2 (mTOR), Lst8 (mLst8/
GβL), Avo1 (hSin1), Avo2 (no ortholog), Avo3 (Rictor) and Bit61
or its paralog Bit2 (Protor1 or Protor2). The FRB domain of Tor2
has been suggested to be inaccessible in TORC2, which would
explain why the kinase activity of this complex is insensitive to
acute treatment with rapamycin24. Like mTORC1, mTORC2 dys-
regulation is implicated in cancer and metabolic perturbations20,25,
but unlike mTORC1, specific small-molecule inhibitors of
mTORC2 are not presently available. Consequently, the mechan-
isms of upstream regulators (eg, plasma membrane tension and
growth factors) and downstream effectors (eg, endocytosis, lipid
biosynthesis, genome stability, survival and proliferation) of TORC2
are relatively less well characterized26–30. Further insights into the
TOR complexes have come from recent structural studies that have
revealed the molecular architecture of TORC1. From N-terminus to
C-terminus, Tor contains two blocks of HEAT (Huntingtin, EF3A,
ATM, TOR) repeats, a block of TPR (tetratricopeptide) repeats
known as the FAT (Frap, ATM, TRRAP) domain, and the kinase
domain, which includes the FRB domain inserted in its N-terminal
part and the FAT C-terminal (FATC) domain19,31 (Fig. 1a). Lst8 is
composed entirely of WD40 repeats (Fig. 1a). A crystal structure of
the FAT-FRB-Kinase-FATC domain of mTOR in complex with
mLst8 demonstrated that the catalytic domain adopts a canonical
protein kinase fold, cradled by the FAT domain19. Moreover,
this study showed that binding of FKBP12-rapamycin to the
FRB domain would further occlude access to an already deeply
recessed active site.

More recently, combinations of electron cryo-microscopy (cryo-
EM) and crystallographic studies, using proteins from mammals
and thermo-tolerant yeast, have yielded additional insight into the
organization of TORC119,32–34. These structures revealed that the
N-terminal HEAT blocks assemble into two α-helical solenoid
super-structures, respectively, referred to as the “spiral”33 or
“horn”32 and the “bridge” that is followed by an extended linker
referred to as the “railing” (Fig. 1a). These solenoids form the bulk
of the interface between the two protomers in TORC1 although the
armadillo repeats of Raptor also contribute to this interaction32,34.
The conserved N-terminus of Raptor is juxtaposed to the kinase
active site, in agreement with its role in recruiting protein
substrates32.

We provided preliminary insights into the molecular archi-
tecture of S. cerevisiae TORC2 using negative stain EM and
crosslinking/mass spectrometry (XL/MS)24. This work defined a
rhombohedral shape for TORC2, globally similar to, but slightly
larger than mTORC135. We found that deletion of the C-terminal
157 amino acids of Avo3 made the kinase activity of
TORC2 sensitive to inhibition with rapamycin-FKBP12 and
accordingly, the C-terminus of Avo3 was suggested to lie in
proximity to the FRB domain of Tor228. The PH domain located
in the C-terminus of Avo1 was placed at the obtuse edge of the
rhombohedron. Curiously, in the recent high-resolution
mTORC1 structures, this region is clearly occupied by mLst832,34.

Here, we describe the cryo-EM structure of S. cerevisiae TORC2
at 7.9 Å resolution. TORC2 adopts a twofold symmetric rhombo-
hedral structure comprising two copies of each subunit. We reveal
the subunit architecture of the complex, the topology of Lst8 and
Tor2 in the complex and the interactions at the dimer interface. We
find that Avo3 interacts with Tor2 in a manner analogous to the
interaction of Raptor with mTOR in mTORC1, sterically excluding
Kog1/Raptor incorporation in TORC2. Avo3 additionally occupies
volume adjacent to the Tor2 FRB domain that prevents rapamycin-
FKBP12 binding and thus renders TORC2 rapamycin insensitive
and serves to further restrict access to the already recessed active
site. Density that we attribute to Avo1 resolves poorly, suggesting
that this subunit is highly mobile. In agreement with XL/MS
experiments24, we propose that the PH domain of Avo1 appears to

float above Lst8 and that its conserved-region-in-the-middle
(CRIM) domain lines the active site pocket. We corroborate this
localization by subunit localization experiments using negative stain
EM. Our placement of the CRIM domain is consistent with its
proposed role in substrate recruitment36.

Results
The architecture of TORC2. TORC2 was purified from a
S. cerevisiae cell extract via protein-A affinity purification of
Bit61-TAP from a Bit2 knockout strain (Supplementary Fig. 1a).
After confirming the integrity of the purified complex by negative
stain EM (Supplementary Fig. 1b), the same preparation was used
for cryo-EM grid preparation. Cryo-EM data were collected on a
Titan Krios electron microscope with a direct electron detector
(DED) (Supplementary Fig. 2a). The initial data set comprised
111,022 particles of which 16,190 were included in the final
reconstruction (Supplementary Fig. 2b, c). Subsequently, a second
data set of 71,519 particles was collected and, after multiple
rounds of sorting at two-dimensional (2D) and three-dimensional
(3D) levels, an additional 10,663 particles were included in
the final TORC2 reconstruction (26,853 particles in total).
The low-resolution TORC2 negative stain reconstruction24

(Supplementary Fig. 1c) was used as an initial 3D model, yielding
a final reconstruction of the TORC2 rhombohedron (Fig. 1b)
with an average resolution of 7.9 Å (Supplementary Fig. 2d). The
central part of TORC2 possesses a narrow cavity with sur-
rounding density, which is well resolved up to 5 Å. In contrast,
the peripheral portions of the complex are resolved to a resolution
of ~10–12 Å (Supplementary Fig. 2e) suggesting that they are
relatively more dynamic. As described below, we fitted available
atomic models for Tor2 and Lst8 into this cryo-EM map. Sub-
sequently, we placed models of the ankyrin repeats of Avo2, and
the armadillo-like helical domain of Avo3. Finally, we propose
localizations for the PH and CRIM domains of Avo1, which given
their low resolution, appear to be highly mobile.

Tor-Lst8 are similarly organized in TORC2 and mTORC1. The
well-resolved helical secondary structure elements of the centre of
the complex, visible as tubes in the map contoured at 7.5 sigma level
(Supplementary Fig. 2e), facilitated the fitting of a homology model
of Tor2-Lst8 into the cryo-EM structure (Supplementary Movie 1).
This S. cerevisiaemodel was built using the structure of the thermo-
tolerant yeast Kluyveromyces marxianus (Km) Tor-Lst8 dimer33

(Fig. 2a). In agreement with previous structures19,32–34, Lst8 is
bound to the catalytic kinase domain and positioned at the obtuse
angle of the rhombohedron (Fig. 2a), clearly sticking out from the
central part of the complex. Lst8 forms two contacts to the kinase
domain; the major connection involves the Lst8-binding element
(LBE)19 and a minor connection is formed by the Lst8-binding loop
(LBL) (Supplementary Fig. 3). Both connections were also present
in the Km Tor-Lst8 dimer33.

Overall, the conformation of S. cerevisiae Tor2 (Sc Tor2) in
TORC2 is very similar to the Tor conformation in the Km Tor-
Lst8 dimer structure33, (Supplementary Fig. 4a, b). After fitting,
the average root-mean-square deviation for Sc Tor2, modelled
from Km Tor, is 3 Å. C-alpha deviations of more than 4 Å from
the Km Tor conformation are observed in the N-terminal
residues of Tor2 (81–450) corresponding to part of the spiral
domain and residues in the bridge domain (Supplementary
Fig. 4a, b), indicating that there are conformational changes in
these Tor2 domains upon assembly of TORC2. Moreover, the
spiral and bridge domains of Tor2 form the majority of the
protomer-protomer interface in TORC2, the Tor-Lst8 complex
and also in mTORC133,34. Specifically, in Sc TORC2, the dimer
interface is mediated by four contacts between helices Nα25, 27,
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29 of the spiral of Tor2 in one protomer, and helices Nα44, 46, 48,
50 of the bridge of Tor2 in the second protomer (Fig. 2b).

The overall shape and dimensions of TORC2 and
mTORC132,34 are very similar (Supplementary Fig. 5). However,
the central cavity in TORC2 is significantly smaller and an
interaction of the Tor2 molecules is observed in the centre of the
complex. This is due to the fact that the Tor2 FAT domains,
which cradle the kinase domain on one side and line the longer
sides of the cavity on the other, are more closely packed in
TORC2. Consequently, the distance between the Lst8 centre-of-
masses is reduced to 158 Å in TORC2 compared to 172 Å in the
mTORC1 structures.

As in mTORC1, and described further below, the active site in
TORC2 is also deeply recessed, situated in the crevasse between the
Thumb, formed by Lst8 and Finger1 (Fig. 2c, Supplementary
Fig. 1c).

Placement of TORC2-specific subunits. Beyond crystal struc-
tures of the 13 kDa pleckstrin homology (PH) domains of S.
cerevisiae and human Avo1/hSin137 and an nuclear magnetic
resonance spectroscopy (NMRs) structure of the 16 kDa CRIM
domain of the Schizosaccharomyces pombe Avo1 ortholog,
Sin136,38, high-resolution structures of TORC2-specific subunits
are lacking.

We attributed the remaining density of TORC2 building on
previous XL-MS and EM subunit localization experiments24.
These suggested that: Avo1 is located in the Thumb, Avo3
occupies the central part of the complex including regions close to
the FRB domain; Bit61 forms the acute angle of the rhombohe-
dron, which corresponds to Finger2 in the negative stain EM
reconstruction (cf. Supplementary Fig. 1c) and Avo2 occupies
Finger3, adjacent to Avo3 (Fig. 3a).

Avo2: The N-terminal portion of Avo2 is predicted to contain
five ankyrin repeats (residues 4–171). We built a homology model
for Avo239 (Supplementary Table 1) and placed it into the density
corresponding to Finger3, which shows clear alpha-helical
features (Fig. 3b, c, Supplementary Table 2, Supplementary
Movie 1). In this position, Avo2 forms one contact with the
Tor2 spiral at the loops between helices Nα18 and 19 and
between Nα20 and 21 (Fig. 3b) and a second contact with the
Tor2 FAT domain (residues 1510–1513) (Fig. 3c).

Avo3: Avo3 comprises an armadillo-like helical domain that
could be crosslinked to the HEAT, FAT and kinase domains of
Tor224. Accordingly, in the cryo-EM structure, we attribute the
density in the central part of the complex, next to the Tor2
proteins, to Avo3. We built a partial Avo3 model fitting the well-
resolved tube-shaped helices in the map (Fig. 3a, d, Supplemen-
tary Tables 1 and 2, Supplementary Movie 1). This central
position of Avo3 and the extensive interactions between Avo3
and Tor2 suggest a role for Avo3 in forming and stabilizing the
dimer interface. This is consistent with biochemical studies in
which TORC2 integrity was found to depend upon Avo318. In
our model, Avo3 contacts the bridge of Tor2 (helices Nα46,48,50)
in the same protomer and the spiral of Tor2 (helices Nα27 and
Nα29) in the other protomer (Fig. 3d, e). Notably, in human
mTORC1 the central armadillo domain of Raptor similarly
contacts the bridge of mTOR in one protomer and the spiral of
mTOR in the second protomer34 (Supplementary Fig. 6). In
conclusion, Avo3 and Raptor occupy the same region of the
interface formed by the Tor2/mTOR HEAT domains, committing
the complexes to TORC2 and TORC1 assembly, respectively.
This provides a structural basis for the prior biochemical studies
that demonstrated that Avo3 and Kog1/Raptor binding to Tor-
Lst8 is mutually exclusive10,14,17.
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Strikingly, significant density is positioned above and next to
the Tor2 FRB domain (Fig. 3f). Indeed, when superimposing the
FKBP12-rapamycin-FRB structure40 onto the FRB in the fitted
Tor2-Lst8 model, it becomes apparent that the rapamycin-
binding site of FRB is not accessible in TORC2 (Fig. 3f). Due to
the lack of a high-resolution Avo3 structure, we are unable to
unambiguously assign this density surrounding the FRB domain.
However, we found that deletion of the C-terminal 157 amino
acids of Avo3 restores access of FKBP12-rapamycin to the FRB
domain of Tor224. Therefore, it is reasonable to assume that it is
the C-terminal part of Avo3 that contacts the rapamycin-binding
site of the FRB domain in the cryo-EM structure. The extensive

contacts between Avo3 and the FRB domain additionally cause
the TORC2 active site to be deeply recessed, even more than the
active site of mTORC1 (Fig. 3f; Supplementary Fig. 6). This
elongation of the active site and the extensive contacts of Avo3
with the FRB domain are likely to affect substrate selection.

Avo1: Previous data from negative stain EM suggested that the
C-terminal PH domain of Avo1 is localized to the Thumb of
TORC224. However, in the high-resolution cryo-EM structure,
the density forming the Thumb is clearly occupied by the WD40
domain of Lst8 (Fig. 2). We found an explanation for this
apparent discrepancy: closer inspection of the reference-free
cryo-EM 2D class averages reveals a halo of density around the
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Thumb/Lst8 region (Fig. 4a). This suggests that an additional
protein, Avo1, is localized to this region, but the corresponding
protein is very flexible and therefore poorly resolved. Localisation
of Avo1 next to the Thumb is supported by XL/MS experi-
ments24, which yielded several specific crosslinks between the
middle part of Avo1 (adjacent to the CRIM domain) and Lst8
(Supplementary Movie 2). Consistently, we observe additional
density in the same regions in projections of the TORC2 cryo-EM
map as well (Fig. 4a). Attempts to improve the resolution of the
density in this region of the map by focused classification and

refinement were unsuccessful. Based on present observations and
our previous localization efforts with negative stain EM involving
TORC2 preparations in which the PH domain was either deleted
or C-terminally tagged and labelled with an antibody24, we
propose that the density on top of Lst8 corresponds to Avo1,
including its PH domain that tethers TORC2 to the membrane41.

The apparent flexibility of the PH domain prompted us to
further analyse an additional, less-resolved density next to Lst8:
decreasing the contour level showed extra density present along
the Thumb, lining the edge of the active-site-cleft (Fig. 4b).
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extends the Thumb is highlighted (red circle). b Surface representations of the TORC2 map in a short side view (left) and the palm view (right). Above:
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additional density near the Tor2 active site. The domain contacts the rim of the Lst8 β propeller (purple) and the FRB-Avo3 interface. The map (transparent
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negative stain 2D class averages. New density is highlighted by white stars in the panel above; the active site of TORC2 is marked by white triangles below
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Specifically, this low-resolution density stretches from the Tor2
FRB domain/Avo3 lobe to the rim of the Lst8 β propeller and
then occupies part of the face of the β propeller (Fig. 4b). At a
contour level of 3 sigma, it is possible to fit the NMR structure of
CRIM36 into this region (Fig. 4c). Consistent with this placement,
we found that insertion of green fluorescent protein (GFP) into
Avo1 immediately after the CRIM creates new density inside the
active site cleft, adjacent to the Thumb (Fig. 4d). Although we
cannot rule out that this new density represents a displacement of
a native TORC2 subunit, collectively, these observations suggest
that Avo1 localizes to the length and the tip of the Thumb, in
proximity to the active site cleft, but adopts multiple conforma-
tions limiting the resolution of this region. Compared to
mTORC1, Avo1, together with Avo3, significantly reshapes the
active-site-cleft of TORC2 and further restricts the access of
substrates (Fig. 4c).

Discussion
Here, we describe the cryo-EM structure of TORC2 at an overall
resolution of 7.9 Å. Into this structure, we could unambiguously
place Tor2, Lst8, the ankyrin repeats of Avo2 and parts of Avo3
(Fig. 5). Tor2-Lst8 adopts a very similar structure in TORC2 and
mTORC1, indicating a conserved core in both complexes.
Compared to mTORC1, however, the kinase domains of Tor2 in
TORC2 are closer to each other, which leads to a more compact
complex with a smaller central cavity (Supplementary Fig. 5). As
in mTORC1, the protomer-protomer interface of TORC2 is
mediated largely by the HEAT repeats of Tor2 (Fig. 2). This
interface is further stabilized by the armadillo-like helical domain
of Avo3 (Fig. 3d, e) and by additional, weaker contacts formed by
the helical repeats of the FAT domain lining the cavity in the
middle of the complex (Fig. 5a; Supplementary Fig. 5). Impor-
tantly, Avo3 in TORC2 and Raptor in mTORC1, respectively,
bind to exactly the same regions of the HEAT domains of the Tor

kinase (Supplementary Fig. 6b, c). Thus, we propose that dis-
crimination occurs at this stage in the molecular assembly of the
complexes as incorporation of Raptor/Kog1 and Avo3 is mutually
exclusive, priming the formation of TORC1 or TORC2.

As we move out from the centre of TORC2 that is resolved up
to 5 Å, the resolution drops (Supplementary Fig. 2e), indicating
flexibility of the peripherally localized TORC2 subunits. For
example, despite the fact that we purified TORC2 via tagged Bit61
from cells lacking Bit2, the density for the Bit61 subunit is not
well-defined, and beyond a general localization to Finger2, we
cannot conclude more. Although the ankyrin repeats of Avo2 are
placed with high confidence (Figs. 3b and 5), the localization to
Finger3, distal from the kinase active site, does not readily suggest
the function of this other, non-essential TORC2 subunit.

Avo1 that is an essential TORC2 subunit also appears to be
highly mobile: specifically, in both reference-free cryo-EM 2D
class averages and in projections of the TORC2 cryo-EM map, we
observe a halo of density around the Thumb/Lst8 (Fig. 4a).
Antibody labelling of the Avo1 PH domain, acquisition of a
negative stain EM data from TORC2 lacking the Avo1 PH
domain, GFP-tagging of the CRIM (Fig. 4d) and XL/MS data24 all
support the notion that the PH and CRIM domains of Avo1
localized to the vicinity of the Thumb of TORC2, which in the
cryo-EM structure is occupied by Lst8 (Fig. 5, Supplementary
Movie 2). Although we cannot exclude that its flexibility is a
consequence of the preparation method that requires detergents,
it is interesting to consider that Avo1’s mobility might be required
for its function in membrane binding or even membrane-tension
sensing26.

The notion that Avo1 might be mobile relative to the core of
TORC2 prompted us to look for additional, low-resolution den-
sity in our 2D class averages and to analyse the map at lower
contour levels. This led to the discovery of additional density
adjacent to the β propeller of Lst8, along an edge of the active-site
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Fig. 5 Atomic model of S. cerevisiae TORC2. The atomic model is complete for Tor2 (spiral in blue, bridge in cyan, FAT and kinase domain in orange-yellow
and FRB in dark red) and for Lst8 (purple). In addition, the N-terminal five ankyrin repeats of Avo2 (magenta) as well as 17 individual alpha helices
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cleft, which can accommodate the CRIM domain of Avo1
(Fig. 4c). Supporting this localization, residues adjacent to the
CRIM domain crosslinked to Lst824 and we found that insertion
of a GFP module immediately after the CRIM sequence of Avo1
created new density inside the active site cleft (Fig. 4d). Placement
of the CRIM domain in such close proximity to the active site is
consistent with the recently proposed role of this domain in
binding and recruitment of substrate to TORC236. Thus, the
CRIM domain could be functionally analogous to the meta-
caspase-like domain of Raptor, which, in mTORC1, is proposed
to be similarly involved in substrate recruitment32.

Notably, our present TORC2 cryo-EM structure demonstrates
that Avo3 is localized in proximity to the FRB domain of Tor2
and sterically interferes with FKBP12-rapamycin binding. This is
the molecular basis of TORC2’s insensitivity to rapamycin.
Accordingly, deletion of the C-terminal part of Avo3 can render
TORC2 rapamycin sensitive24. By binding to the FRB domain,
Avo3 severely recesses the active site cleft and restricts substrate
access to the active site. This notion is consistent with work from
the Pavletich lab19 wherein it was proposed that the regulation of
Tor kinase activity is mediated largely by controlling access of
substrates to the active site cleft. Yang et al.19 also proposed that
the FRB serves as a docking site for mTORC1 substrates. Our
data suggest that this cannot be the case in TORC2 as the FRB
domain is occluded by Avo3. This conclusion also calls into
question previous proposals that mTORC2 activity is regulated
through binding of phosphatidic acid to the FRB domain of
mTOR24,42,43.

Taken together, the kinase active site cleft of TORC2 is sur-
prisingly different from Km Tor-Lst8 and mTORC1. TORC2’s
active site is shaped by Avo1 and Avo3, which both restrict access
to the active-site cleft. These TORC2 subunits are thus perfectly
positioned to mediate and control selection and access of
TORC2 substrates.

Methods
Purification of S. cerevisiae TORC2. TORC2 was prepared through pull-down of
TAP-tagged Bit61 from yeast extracts lacking Bit224. Bit61-TAP expressing strains
were grown in synthetic complete media to an equivalent optical density at 600 nm
of 5.0. Cells were pelleted, snap frozen in liquid nitrogen and pulverized using
Retsch MixerMill 400 or manually with a mortar and pestle. The pellet was
resuspended in 1.5 volumes of extraction buffer (50 mM HEPES-KOH, pH 7.5,
5 mM CHAPS, 300 mM KCl, 0.5 mM DTT, complete protease inhibitor cocktail
(Roche; 1 tablet per 50 ml) and 1 mM PMSF). After centrifugation, TORC2 was
purified from the supernatant by ProteinA affinity purification using IgG-coated
dynabeads (M270 Epoxy, Invitrogen). After washing (50 mM HEPES pH 7.5,
0.2 mM CHAPS, 300 mM KCl, 0.5 mM DTT), TORC2 was released from the beads
by incubation with TEV protease (1 h at 18 °C).

Cryo-EM grid preparation. Holey carbon grids (Quantifoil, type R2/2 300 mesh)
were coated with a thin continuous carbon foil on top. Glow-discharged grids were
incubated onto drops of 10–15 μl of TORC2 at 4 °C in order to increase the particle
concentration on the grid. After 10 min incubation, the grids were blotted for 2–3 s
at 4 °C and 100% relative humidity inside a Vitrobot Mark IV chamber (FEI,
Eindhoven) and subsequently plunge-frozen in liquid ethane.

Data collection and image processing. Single-particle cryo-EM data were col-
lected using a FEI TITAN Krios microscope operated at 300 kV at EMBL Hei-
delberg. The data were recorded on a FEI Falcon II DED using automated data
acquisition software (FEI EPU). A total of 4189 dose-fractionated movies each
containing 40 frames with an accumulated total dose of 50 e/Å2 were recorded at a
nominal magnification of ×59,000 corresponding to a pixel size of 1.38 Å and a
total exposure time of 2.3 s. Images were acquired with a defocus range of −2 μm to
−4 μm in steps of 0.1 μm. A second data set was collected from the same micro-
scope using a K2 Summit detector (Gatan) with an energy filter. A total of 2847
dose-fractionated movies each containing 40 frames (0.5 s per frame) with a
accumulated total dose of 47 e/Å2 were recorded semi-automatically using Seri-
alEM44 at a nominal magnification of ×105,000 in super-resolution mode. Images
were recorded with a defocus range of −1.5 μm to −3.5 μm. Subsequently, cropping
in Fourier space resulted in a pixel size of 1.35 Å.

The movie frames from the Falcon II DED were aligned, dose-filtered and
summed in Unblur1.0.245. The individual movie frames from the K2 Summit
detector were gain-corrected, aligned with the “patch” option, dose-weighted and
summed using the MotionCor2 program46. The CTF parameters for both data sets
were estimated from CTFFIND447, integrated in Relion1.448.

Automated particle picking was carried out in e2boxer.py from EMAN249 with
Gauss option with the box size of 320 pixels. All automatically picked particles were
subjected to two rounds of 2D classification in Relion resulting in a pool of 111,196
good quality particles for data set 1 (from Falcon II). The TORC2 negative stain
reconstruction (EMDB: 2990; ref. 24) was filtered to 60 Å and used as initial
reference for 3D classification. At every step of classification, the data were grouped
into two volumes (Supplementary Fig. 2). After three rounds of successive 3D
classification with K= 2, a stable class with 16,190 particles yielded a well-defined
volume (Supplementary Fig. 2). The second data set (from K2 Summit) consisting
of 71,519 particles was sorted according to the same protocol and gave rise to
additional 10,663 particles. The two data sets were combined after rescaling the
second data set to a pixel size of 1.38 Å. The volume was further refined with a
molecular shape mask (5 pixel Gaussian fall-off) and post-processed in Relion48

with C2 symmetry imposed. The resolution of the final volume was determined to
be 7.9 Å based on the Fourier shell correlation (FSC) = 0.143 criterion50

(Supplementary Fig. 2d). During post-processing, the volume was corrected for the
modulation transfer function of the detector and the effect of mask was checked by
phase randomization51. The final map was sharpened with a B-factor value of
−130 Å2. The local resolution analysis of the map was carried out using the
program ResMap52.

Focused classification and refinement of Avo1 density. The final, combined set
of 26,853 particles was used for 3D classification without any alignment to two
classes based on the molecular shape mask covering only the Lst8 and Avo1 part of
the map. The classification converged with one volume populated with 94.6% of
the particles and a featureless second volume from the residual data. Three-
dimensional auto refinement using the 94.6% particles of first volume did not yield
an improved map. Second, focused 3D refinement alone was performed with the
mask described above. This also did not improve the density in this part of the
map. This may be because the region of interest is very small compared to the total
volume of the map and has a poorer signal. In addition, Avo1 appears to be highly
flexible.

Model building and generation of atomic model. The atomic model derived
from the 6.1 Å map of the Km Tor–Lst8 complex33 was used as a template
structure to obtain the homology model for S. cerevisiae Tor2. Homology mod-
elling was performed in the Phyre2 homology modelling server53. The model was
adjusted to fit into the map manually using COOT54 with the TORC2 map con-
toured at 7.5 sigma where individual helices are clearly visible as tubes (Supple-
mentary Fig. 2 and Fig. 2). The remaining unfilled density was examined to fit
other subunits (Avo1, Avo2 and Avo3). The secondary structure prediction of
Avo1 indicates that this TORC subunit is largely unstructured, with the exception
of the 13 kDa PH domain (aa 1076–1176; 3ulb; ref. 37) and the 16-kDa CRIM
domain (aa 638–786; 2rvk; ref. 36). SwissModel55 was used to build a homology
model for Avo1_CRIM based on the NMR structure of the Sin1 CRIM domain
from fission yeast (2rvk; ref. 36). The Avo1_CRIM model (residues 647–792) fitted
into the density between the Tor2 FRB domain and Lst8 (at 3.5 sigma level; cc of
0.87 in Chimera56). The N-terminal part of Avo2 has been predicted to contains
five ankyrin repeats (residues 4–171)39. The homology model of the N-terminal
part of Avo2 (aa 4–163) was generated in Phyre2 using the pdb structure 1n11
(chain A) as template. The Avo2 model fits well into the density previously
assigned to Avo224 connecting the Tor2 spiral domain on one side and the Tor2 C-
terminal domain (cc of 0.94). For Avo3, a set of 17 helices of average length of 20
amino acids could be modelled into EM density contoured at 7.5 sigma. Secondary
structure prediction suggests that the middle part of Avo3 contains an armadillo-
like helical domain. Accordingly, we assign these alpha helices to the Avo3
armadillo-like domain. Moreover, the localization of these helices agrees with the
predicted central position of Avo3 deduced from XL-MS and from negative stain
EM domain localization experiments24. The partial model of TORC2 was refined
against the density in real_space using the “phenix.real_space_refine” program57.
The cross-correlation values for the docked atomic coordinates into the corre-
sponding subunit EM map are listed in Supplementary Table 2 and the overall
fitting was assessed by calculating the FSC between the atomic model and the
corresponding parts of the map and the half maps using REFMAC58 (Supple-
mentary Fig. 7). The refined model was used for all the interpretation. The figures
were prepared in Chimera56 and PyMol (http://www.pymol.org/) (DeLano Scien-
tific, San Carlos, CA, USA).

Data availability. The cryo-EM map is available from the Electron Microscopy
Data Band with accession code EMD-3896. The partial atomic model has been
deposited in the Protein Data Bank with the accession code 6EMK. The data that
support the findings of this study are available from the corresponding author
upon request.
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