
                          Murali, K., Sparkes, H., Pandiyan, B. V., & Prasad, K. J. R. (2017).
Synthesis, photophysical properties and DFT analysis of highly substituted
pyrido carbazole-based "push pull'' chromophores. New Journal of
Chemistry, 41(16), 8242-8252. https://doi.org/10.1039/c7nj00643h

Peer reviewed version

Link to published version (if available):
10.1039/c7nj00643h

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Royal Society of Chemistry  at
http://pubs.rsc.org/en/Content/ArticleLanding/2017/NJ/C7NJ00643H#!divAbstract. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/132201423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1039/c7nj00643h
https://doi.org/10.1039/c7nj00643h
https://research-information.bris.ac.uk/en/publications/synthesis-photophysical-properties-and-dft-analysis-of-highly-substituted-pyrido-carbazolebased-push-pull-chromophores(066c06c1-3a75-408a-adae-5cbe1a467c2a).html
https://research-information.bris.ac.uk/en/publications/synthesis-photophysical-properties-and-dft-analysis-of-highly-substituted-pyrido-carbazolebased-push-pull-chromophores(066c06c1-3a75-408a-adae-5cbe1a467c2a).html


Synthesis, Photophysical Properties and DFT analysis of Highly substituted Pyrido 

Carbazole-based “push pull” chromophores 

Karunanidhi Murali a, Hazel A. Sparkes b, Baskaran Vijaya Pandiyan c,  

Karnam Jayarampillai Rajendra Prasad a* 

a* Department of Chemistry, Bharathiar University, Coimbatore 641046, India. 

b School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom. 

c Department of Physics, Bharathiar University, Coimbatore 641046, India. 

 

Abstract 

A series of new fluorscent pyrido[2,3-a]carbazole derivatives were synthesized in 

excellent yield through an efficient and single step strategy based on a four-component reaction 

with 2,3,4,9-tetrahydro-1H-carbazol-1-one, malononitrile, and aryl/heteroaryl aldehydes as 

synthetic inputs and sodium ethoxide (NaOEt) as a catalyst in methanol under reflux condition. 

The structures of the compounds were established by FT-IR, 1H NMR, 13C NMR, X-ray 

diffraction and elemental analysis. The photophysical features of the synthesized compounds 5 

(a-q) containing “push-pull” scaffolds are investigated and reported with the aim of achieving 

good fluorescent materials. The UV-vis absorption and fluorescence emission of the compounds 

were studied in solvents of varying polarities and showed an increase in the solvent polarity led 

to an increase in the Stokes shift. This study revealed that the investigated compounds are highly 

fluorescent molecules (φfl = 0.27-0.65) with lifetimes in the range 7-9 ns. Furthermore, we 

analyzed for band gap energy associated with HOMO-LUMO, through DFT studies.  
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1. Introduction 

Development of organic fluorescent heterocyclic compounds has been the subject of 

intense study because of its rapidly expanding applications in molecular probes,1 non-linear 

optics (NLO),2 fluorescent makers,3 organic light emitting diodes (OLED),4 photovoltaic cells5 

and in traditional textile and polymer field.6 Organic compounds containing both electron 

donating (D) and accepting (A) substituents in a single molecule, exhibit interesting optical and 

spectral properties due to intramolecular charge transfer (ICT). This phenomenon has long been 

a topic of great interest in photochemistry owing to fundamental scientific value7 as well as 

potential applications in photoelectronic and nonlinear optical devices,8,9 and understanding 

photochemical and photobiological processes.10 ICT is particularly important in fluorescent 

compounds which act as polarity probes or ionophores.11  

Organic molecules with large delocalized π-electron systems have attracted significant 

interest due to potential applications associated with strong emission behavior and large 

nonlinear optical properties.12-14 The presence and nature of electron donating and accepting 

groups play significant roles in such properties. Compounds of this class show solvent polarity 

dependent changes in their photophysical properties such as fluorescence quantum yield, 

maximum emission wavelength and fluorescence lifetime. In past decades, the donor-π-acceptor 

molecules have been extensively used for second order NLO applications due to their high β 

hyper polarizability.  

Carbazole is a nitrogen containing π-conjugated heterocyclic unit that has interesting 

optical and electronic properties such as photoconductivity and photorefractivity.15,16 Carbazole-

based compounds are known for their intense luminescence17,18 and widely used on OLEDs as 

emitters.  Carbazole is well known for its electron donating properties19 and incorporation of 

some electron withdrawing groups on carbazole raise the highest occupied molecular orbital 

(HOMO) energy levels and reduce the barrier height for hole injection. The introduction of 

additional heterocyclic structure in to the donor moiety of chromophores could dramatically 

influence the chromophores’ hyper polarizability.20 Due to the high electron affinity, pyridines 

are excellent candidates for incoporation as electron-withdrawing groups in push-pull scaffolds 

favoring intramolecular charge transfer (ICT). Su, et al.21 showed that the combination of a 

carbazole electron-donor and a pyridine electron-acceptor could give bipolar host materials; for 

example, 2,6-bis[(3-(carbazol-9-yl)phenyl)]pyridine and 3,5-bis[(3-(carbazol-9-



yl)phenyl)]pyridine. These host materials were doped with iridium(III) bis[(4,6-

(difluorophenyl)pyridinato-N,C2’)]picolinate to create phosphorescent OLEDs. Dailey, et al. 

described the poly(2,5-pyridinediyl) (PPY) as an efficient electron transport layer in bilayer 

polymeric LEDs. The OLEDs with a PPY layer exhibited an external quantum efficiency 60-

times greater than that of similar devices without a PPY layer.22  

Heterocyclic substituents such as thiophene and oligomers 23-25 and combined thiophene-

isophorone26 in chromophores have enhanced nonlinearities and improved stability. Thiophene, 

in particular, is an appealing class of linkers in optoelectronics and influencing magnitude of the 

bandgap which induces ICT.27,28 A derivative with methoxy substitution is of great importance to 

achieve high thermal stability and nonlinear optical response.29 However, it is difficult to 

synthesize pyrido annulated carbazole compounds with D-π-A structure, because it requires 

multistep synthetic procedure, harsh reaction conditions and expensive starting material or 

catalyst.30 

In this paper, we report the synthesis and photophysical properties of pyridocarbazole 

based push-pull scaffolds containing methoxy group as a donor and cyano group as an acceptor 

with aryl/heteroaryl substituents at C-4 position through an efficient one-pot strategy. We 

disclose here full details and discussion of synthetic approaches, structural characteristics and 

fluorescent responses using both solvatochromic shift method and theoretical method.  

 

2. Results and discussion 

2.1. Chemistry 

The reaction of 2,3,4,9-tetrahydro-1H-carbazol-1-one (1), malononitrile (2) and 

aryl/heteroaryl aldehydes (3) in the presence of a catalytic amount of sodium ethoxide (NaOEt) 

under reflux in methanol targeting pyrano[2,3-a] carbazole 4 as the product. On the basis of 

spectral data and X-ray diffraction the structure 4 was easily ruled out and these data indicate the 

formation of structure 5 as the product (Scheme 1). 



 

In our initial endeavour, we investigated the reaction of 8-methyl-2,3,4,9-tetrahydro-1H-

carbazol-1-one 1a with malononitrile 2 and benzaldehyde 3a using various base catalysts in 

methanol (Scheme 2 and Table.1). 

 

 

Table.1 Optimization of reaction conditions of 5aa 

Entry Solvent Base Temperature (°C) Time (h) Yieldb 

1 MeOH - RT 12 - 

2. MeOH - 60 12 - 

3. MeOH Et3N 60 8 58 

4. MeOH DABCO 60 8 50 

5. MeOH NaOH 65 8 63 

6. MeOH KOH 65 8 67 



7. MeOH NaOEt 70 3 78 

8. MeOH NaOEt 80 3 85 

9. MeOH Piperidine 80 5 55 

a The reaction was performed with 1a (1.0 mmol), malononitrile 2 (1.0 mmol) and 

benzaldehyde 3 (1.0 mmol) using NaOEt (0.023g in 1mL EtOH)  under MeOH reflux. b 

Isolated yields, -Trace product. 

 

The effects of a variety of organic bases on the reaction efficiency and yield were screened. 

In the absence of catalyst, we did not observe any of the four-component products both at room 

temperature and reflux conditions even after 12 h stirring in methanol (Table 1, entries 1-2). 

Interestingly, when the same reaction was carried out in the presence of catalytic amounts of 

Et3N and DABCO in refluxing methanol the desired four-component product 5a was obtained in 

moderate yields (entries 3-4). Encouraged by these results we attempted to optimize this reaction 

by using different bases such as NaOH, KOH, NaOEt and piperidine. Among all these, NaOEt 

was found to be optimum base for this domino transformation, where a yield of 85% of the 

product 5a was obtained in 3 h (entry 8). Finally, the optimum reaction temperatures was also 

examined and find that the reaction proceeded smoothly and that almost complete conversion of 

reactants was observed at 80 ͦC to afford the desired product 5a. 

The structures of all new compounds were fully characterized by spectroscopic techniques. 

For example, the FT-IR spectrum of compound 5a revealed the absence of any band due to a 

carbonyl functional group. The prominent absorptions at 3337 and 1556 cm-1 were due to the 

presence of indole NH and C=N groups respectively. The cyano group (CN) stretching vibration 

was assigned to a strong band at 2217 cm-1. The 1H NMR spectrum showed a broad singlet at δ 

8.65 ppm due to indole NH. The signals due to C9, C8 and C7 protons appeared as a multiplet in 

the region of δ 7.52-7.44 ppm while the C'4 proton accounted for a multiplet signal centered at δ 

7.42 ppm. The signals due to C'6, C'2, C'5 & C'3 protons were visible as two multiplets in the 

region δ 7.34-7.31 and 7.10-7.04 ppm, and three protons from the methoxy group resonated as a 

singlet at δ 4.18 ppm. Methylene protons of C6 and C5 appeared as two multiplets centered at δ 

2.94 and δ 2.85 ppm respectively. A singlet at δ 2.57 ppm accounted for the three methyl protons 

at C10 position. The 13C NMR spectrum of 5a displayed 24 resonances in agreement with the 

proposed structure. The resonance signals at δ 117.5 and 54.4 ppm were attributed to cyano and 

methoxy carbons respectively. The exact mass of 5a observed as a 365.1525, which is very close 



to its theoretical value of 366.1530 (C24H19N3O)+. Further, 5a was confirmed unambiguously by 

a single crystal X-ray diffraction (Fig. 1). 

 

 

Fig. 1. X-ray crystal structure of 5a with ellipsoids depicted at the 50% probability level and atomic 
labeling shown. Hydrogen atoms are omitted for clarity. 

 

To generalize this methodology, we subjected a series of other aryl and heteroaryl 

aldehydes having electron-donating as well as electron-withdrawing substituents to obtain the 

corresponding 2-methoxy-4-aryl/heteroaryl-5,6-dihydro-11H-pyrido[2,3-a]carbazole-3 

carbonitriles 5 (b-q). It is note worthy that there is no reaction with aliphatic aldehydes under 

similar condition (entries 18 and 19) and the results are presented in Table 2. The structures of 

the synthesized compounds were consistent with their FT-IR, 1H NMR, and 13C NMR spectra, 

elemental analysis and single crystal X-ray diffraction. In general, the reactions were clean and 

no side products were detected. 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Scope of various substituted pyrido[2,3-a]carbazole derivatives 5 (a-q). 

 

   

   

  
 

   

  
 



  

 

 

2.2. Single Crystal X-ray Diffraction 

X-ray diffraction experiments for 5a, 5d, 5h, 5j and 5k were carried out at 100(2) K on a 

Bruker APEX II diffractometer with CCD area detector using Mo-Kα radiation (λ = 0.71073 Å). 

Intensities were integrated31 and absorption corrections were carried out based on equivalent 

reflections using SADABS.32 All of the structures were solved using superflip,33 all of the 

structures were refined against F2 in SHELXL34 using Olex2.35 All of the non-hydrogen atoms 

were refined anisotropically. While all of the hydrogen atoms were located geometrically and 

refined using a riding model, with the exception of the N-H in 5a, 5h and 5j which were located 

in the difference map and refined freely. The CCDC numbers are 1498651-1498655. The crystal 

structure of compounds 5d, 5h, 5j and 5k are shown in Figs.2-5. 

 
Fig.2. X-ray crystal structure of 5d with ellipsoids depicted at the 50% probability level and atomic 

labeling shown. Hydrogen atoms are omitted for clarity. 



 
Fig.3. X-ray crystal structure of 5h with ellipsoids depicted at the 50% probability level and atomic 

labeling shown. Hydrogen atoms are omitted for clarity. 

 

 
Fig.4. X-ray crystal structure of 5j with ellipsoids depicted at the 50% probability level and atomic 

labeling shown. Hydrogen atoms are omitted for clarity. 

 

 
Fig.5. X-ray crystal structure of 5k with ellipsoids depicted at the 50% probability level and atomic 

labeling shown. Hydrogen atoms are omitted for clarity. 

 

A plausible mechanism for the formation of compound 5 is depicted in Scheme 3. 

Initially, the aryl / heteroaryl aldehyde undergoes Knoevenagel condensation with malononitrile 



in the presence of base to give arylidene / heteroarylidene malononitrile I. The subsequent base 

promoted 1,4-Michael addition of intermediate II derived from 2,3,4,9-tetrahydro-1H-carbazol-

1-one (1), affords the dinitrile intermediate III followed by prototropic shift and methanol 

addition to form an imino intermediate V through the intermediate IV . Then V undergoes 

cyclization followed by dehydration and aerial oxidation to yield the final product 5. The 

formation of the expected product pyranocarbazole 4 from the intermediate IV is ruled out 

because of the more stability of the observed aromatic product 5 than the unstable pyrano 

product 4.  

 

 

 



2.3. Photophysical properties 

Table 4 provides data from the photophysical characterization of the synthesized 

compounds 5 (a-q). The main purpose of evaluating the photophysical properties of these 

compounds was (i) to evaluate the effect of varying the donor or acceptor strength of the 

aryl/heteroaryl groups at the C-4 position of the pyrido[2,3-a]carbazole chromophore (ii) 

evaluating any solvatochromic effects in the absorption and emission spectra, so the 

photophysical characteristics of each molecule were evaluated in a series of organic solvents 

such as dichloromethane (DCM), chloroform (CHCl3), methanol (MeOH) and N,N-

dimethylformamide (DMF) with different polarities. The UV-vis absorption and emission 

spectra of compounds 5 (a-q) were studied in the range of 200-500 nm (λabs) and 400-700 nm 

(λem), respectively. Further, the fluorescence quantum yield of each compounds were also 

determined by the standard literature method using Rhodamine-6G as a reference standard.36-38 

The absorption (λabs), emission  (λemi) spectra, quantum yield (φfl) and Stokes shifts values in 

different solvents are presented in Table 4. 

Table 4. Photophysical properties of pyrido[2,3-a]carbazoles 5 (a-q) 

DCM 

Compounds λabs (nm) λemi (nm) Φfl Δν (cm-1) ε (L mol-1 cm-1) 

5a 393 459 0.51±0.04 3659 38790 

5b 397 461 0.56±0.03 3497 37630 

5c 395 461 0.41±0.055 3625 41120 

5d 396 459 0.48±0.06 3466 39146 

5e 400 462 0.53±0.05 3355 43010 

5f 402 461 0.49±0.07 3184 43130 

5g 399 464 0.44±0.04 3511 39790 

5h 401 463 0.48±0.065 3339 41320 

5i 392 451 0.28±0.03 3338 47670 

5j 393 458 0.34±0.05 3611 45490 

5k 396 454 0.24±0.075 3226 44660 

5l 395 450 0.30±0.06 3094 41030 

5m 397 458 0.33±0.045 3354 39980 



5n 400 460 0.31±0.06 3261 40910 

5o 389 455 0.47±0.05 3728 38940 

5p 390 458 0.39±0.035 3807 39790 

5q 389 463 0.43±0.05 4108 40150 

 

It can be seen from Table 4 that these compounds exhibit absorption maxima (λabs) in the 

UV-vis region (390-407 nm) and emission maxima (λem) yellow to red region (464-504 nm). It 

was observed that the absorption maxima of compounds 5(a-q) exhibits two peaks in the UV 

region and near visible region which are due to the π-π* and n- π* transitions respectively. The 

shift of the absorption spectrum with solvent polarity observed for a solvatochromic compound 

is a well-known phenomenon. A change of solvents from DMF to DCM resulted in a little blue 

shift (2-9 nm) of the absorption maximum. Fig. 6 represents normalized overlay absorption and 

emission spectra of the compounds 5 (a-d) in DCM solvent. 

 
Fig. 6. Absorption (left) and fluorescence (right) spectra of 5 (a-d) in DCM 

 

The maximal emission peaks of compounds 5 (a-q) are mainly located at about 464-504 

nm with Stokes shift ranging from 2931-4729 cm-1. The fluorescence peak displays a dramatic 

red shift compared to absorption maxima with increase in polarity of solvents. This is due to the 

more polar nature of the emitting state compared to ground state. Similar to absorption 

experiments, the emission spectra shifts to higher wavelengths with increasing solvent polarity 

(bathochromic shift) from DCM to DMF, conforming a π-π* transition. As an example, the 



spectra registered for compound 5h the emission wavelength at λem = 463 nm in the least polar 

solvent DCM is red-shifted by about 41 nm in DMF (λem = 504 nm). To check the emittive 

colour of these compounds, we illuminated our compounds in a UV transminallator and the 

results are represented in inset of respective images, which clearly indicate that the pyrido[2,3-

a]carbazoles are highly emittive. The light pale yellow coloured solution (normal light) of the 

compounds emitted cyan colored fluorescence under UV light at 365 nm. 

It is observed that the fluorescence spectra showed significant solvatochromism. An 

increase in the solvent polarity led to increase in the stoke shifts. This finding supports a highly 

polarized excited singlet state generated by the intramolecular charge transfer from the donor 

carbazole moiety to the acceptor cyano group. The large Stokes shifts are also indicative of the 

high polarizability of these systems due to the presence of both donor and acceptor groups 

coupled by a π-conjugated spacer.  

It is intriguing to note that the presence of aryl/heteroaryl substituents at C-4 position 

make an impact on absorption and emission maxima. Both absorption spectra and emission 

spectra in better agreement with the increase of electron-withdrawing ability of the substituents. 

In particular, the thiophene group induces more red shift in both absorption and emission spectra 

and exhibited highest quantum yield value (Φfl=0.65).  

The relative fluorescence quantum yield (𝜑𝑓𝑙) of the pyrido[2,3-a]carbazoles was 

calculated using the following equation 

𝜑𝑓𝑙 = 𝜑𝑟𝑒𝑓 

𝐼𝑠𝐴𝑟𝑒𝑓 

𝐼𝑟𝑒𝑓𝐴𝑠

𝑛𝑠
2

𝑛𝑟𝑒𝑓
2 … … … (1) 

Where A is the absorbance at the excitation wavelengths, I is the integrated emission intensity, 

and n is the refractive indices of the solvents. The subscripts s and ref refer to the tested 

compounds and reference samples, respectivel . The quantum yield changed from 0.48 to 0.65 

for compound 5h with increasing solvent polarity. Compared to other solvents, DCM possesses 

the lowest dielectric constant and dipole moment, followed by CF, MeOH and DMF and the 

lowest quantum yield was also observed in DCM. That is, there was a correlation of quantum 

yield with dielectric constant and solvent polarity. 

 

 



2.4. Fluorescence lifetime 

Fluorescence life time (τ) is an intrinsic property of a fluorophore. The lifetime of 

photophysical processes vary significantly from tens of femtosecond for internal 

conversion to nanoseconds for fluorescence and microseconds or seconds for 

phosphorescence. Fluorescence lifetime can be considered as a state function because it is 

independent of wavelength of excitation, duration of light exposure, one-or multiphoton 

excitation, method of measurement, fluorescence intensity, fluorophore concentration and not 

affected by photobleaching. The Fluorescence life time measurements enables better 

understanding of excited state properties of molecules. Time resolved acquisition methods are 

used to determine the time decay of fluorophores. Table.5 provides data from fluorescence 

decay analysis of compounds 5 (a-q) and the life time are relatively long from 7.14 to 9.13 ns. 

The lifetime is calculated using curve fitting algorithms, if the fit is monoexponential, the output 

provides a single fluorescent lifetime with goodness of fit parameters such as χ close to unity. 

Most decay curves can be well fitted with a single exponential value χ range 0.96 to 1.10 (Fig.7 

& Fig.8). 

 
Fig. 7. Fluorescence decay curves of compounds 5a & 5e 

 



 
Fig. 8. Fluorescence decay curves of compounds 5i & 5o 

 

Table 5. Fluorescence lifetime analysis of pyrido[2,3-a]carbazoles 

Compounds  a1  a2  a3 avgns χ 

5a 2.23 0.018 4.45 -0.08 8.90 1.062 9.13 1.00 

5b 2.27 0.021 3.98 0.019 8.78 0.960 8.55 1.02 

5c 2.14 0.040 4.13 0.080 8.68 0.880 8.05 0.98 

5d 1.98 0.080 3.75 0.020 7.67 0.900 7.14 0.97 

5e 2.05 0.014 3.97 0.016 8.24 0.970 8.08 1.09 

5f 2.13 0.019 4.25 0.001 8.45 0.980 8.32 1.06 

5g 2.18 0.070 4.36 0.020 8.73 0.910 8.18 0.96 

5h 1.89 0.006 3.76 0.009 7.89 0.980 7.79 1.01 

5i 1.96 0.030 4.05 0.009 8.02 0.961 7.82 1.05 

5j 2.03 0.022 3.74 0.011 8.11 0.967 7.93 1.10 

5k 2.67 0.056 4.32 0.023 8.83 0.921 8.38 1.06 

5l 2.11 0.032 3.59 0.009 7.97 0.951 7.67 1.03 

5m 2.36 0.029 4.46 0.017 8.87 0.954 8.60 0.98 

5n 2.10 0.043 4.25 0.014 8.38 0.943 8.06 1.01 

5o 2.48 0.038 4.19 0.001 9.07 0.961 8.83 1.07 

5p 2.26 0.031 4.45 0.012 8.86 0.957 8.60 0.99 

5q 1.95 0.042 3.56 0.007 8.75 0.951 8.42 1.03 

‹τavg› = τ1a1 + τ2a2 + τ3a3 

 



2.5. DFT calculations 

In order to understand the electronic properties of the synthesized compounds, density 

functional theory (DFT) calculations were carried out using the Gaussian 09 program package. 

At first, the molecular structures were optimized to find the ground state structures through M06-

2X/6-31G** level of theory. Since significant improvement of M06-2X, a DFT functional for 

electronic calculations reported by E.G. Hohenstein et al.,39 for this, we used corresponding 

coordinates extracted from the crystal lattice using Mercury software. The geometrical 

parameters (bond length and angle) of the optimized structures are not much varying 

(approximately same) with experimental results and the structures were clearly showed in Fig. 9. 

The UV- visible absorption spectra of the π-conjugated organic molecules originates from π-π* 

and n-π* transitions. These transitions involve electron transfer between the Highest Occupied 

Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO), called the 

Frontier Molecular Orbitals (FMO). The comparison of these HOMO and LUMO values and 

energy gap for selective compounds were visualized in Fig. 10 using M06-2X/6-31G** level of 

theory with gas phase medium. This figure clearly shows the localized electron density region at 

HOMO and LUMO position for the corresponding molecules. The results point out that, the 

compound 5h bearing thiophene moiety exhibited lowest value of energy gap (5.469eV) 

compared with other compounds due to higher overlapping of HOMO-LUMO orbital's and 

displayed high conducting property. This compound also showed bathochromic shift in emission 

spectra and high fluorescence quantum yield. Furthermore we compared these results with more 

level of theories such as M06-2X, M05-2X, M06-HF and B3LYP with the same basis set 6-

31G** with gas phase medium (Table 6). By comparing all level of theories, energy gap values 

are observed with around 5eV except in the case of B3LYP/6-31G** which is around 3eV. From 

this, it was observed that the results of B3LYP functional are comparable with the experimental 

maximum absorption wavelength of all five molecules. Furthermore, we have the experimental 

maximum absorption wavelength for different solvent medium (DCM, CF, MeOH and DMF). In 

order to compare the energy gap, we analyzed with different solvent phase mediums at 

B3LYP/6-31G** level of theory. These results also well correlated with experimental results of 

maximum absorption wavelength in eV (changes upto only ˷0.4 eV). The results were listed out 

in Table 7 for DCM, CF, MeOH and DMF medium. 

 



 
5a       5d 

 
5h      5j 

 
5k 

Fig. 9. Optimized structures of 5a, 5d, 5h, 5j and 5k using M06-2X/6-31G** level of theory 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5a   5d  5h  5j   5k 

Fig. 10. FMO energy levels of compounds 5a, 5d, 5h, 5j and 5k calculated using M06-2X/6-

31G** level of theory. 

 

 

 

 

 

 

Table 6. Electrochemical properties of the compounds 5a, 5d, 5h, 5j and 5k calculated with gas 

phase medium by FMO calculation. 
Molecule M052X M062X M06HF B3LYP 

 



HOMO 

Ev 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

5a -6.658 -1.003 5.655 -6.599 -1.060 5.539 -8.147 0.005 8.153 -5.384 -1.794 3.589 

5d -6.695 -1.038 5.658 -6.635 -1.094 5.541 -8.186 -0.026 8.159 -5.420 -1.830 3.590 

5h -6.714 -1.132 5.582 -6.654 -1.185 5.469 -8.210 -0.127 8.082 -5.436 -1.914 3.522 

5j -6.627 -0.968 5.660 -6.569 -1.027 5.543 -8.122 0.036 8.157 -5.350 -1.755 3.595 

5k -6.664 -0.999 5.664 -6.605 -1.057 5.548 -8.160 0.007 8.167 -5.385 -1.790 3.595 

 

Table 7. Electrochemical properties of the compounds 5a, 5d, 5h, 5j and 5k in DCM, CHCl3, 

MeOH and DMF in  phase medium using B3LYP/6-31G** level of theory by FMO calculation. 
Molecule DCM CHCl3 MeOH DMF 

HOMO 

Ev 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

HOMO 

eV 

LUMO 

eV 

Band 

gap 

5a -5.420    -1.896    3.524 -5.413    -1.878    3.535 -5.427    -1.912   3.514 -5.427    -1.913    3.514 

5d -5.449    -1.920    3.529 -5.443    -1.903    3.540 -5.455    -1.936    3.519 -5.455   -1.936    3.519 

5h -5.458    -1.997     3.460 -5.452    -1.981   3.471 -5.464    -2.012     3.451 -5.464    -2.013    3.451 

5j -5.408      -1.877    3.532 -5.397     -1.855    3.542 -5.418     -1.897    3.521 -5.418    -1.898    3.520 

5k -5.433   -1.899     3.534 -5.424    -1.879    3.544 -5.441    -1.917     3.524 -5.441    -1.918    3.523 

 

3. Conclusions  

In conclusion, we have devised a versatile, convenient, and efficient approach to 

construct the structurally diverse and fluorescent pyrido[2,3-a]carbazoles via four-component 

one-pot reaction of 2,3,4,9-tetrahydro-1H-carbazole, malononitrile and aldehydes through 

domino Knoevenagel condensation in the presence of NaOEt in MeOH. The advantage of 

operational simplicity, generality, fairly fast reaction times, economic viability, generality, atom-

economy make this protocol a very efficient alternative to literature methods. The synthesized 

compounds were subjected to photophysical studies and DFT theoretical evaluation. The 

photophysical properties of the synthesized compounds were systematically studied in four 

organic solvents having different polarities. The UV absorption and fluorescence emission of 

compounds were found to be solvent dependent and showed positive solvatochromic behavior in 

both absorption and emission spectra. Fluorescence quantum yield (φfl) and Stokes shift (Δѵ) are  

strongly influenced by the polarity of the solvents. Fluorescence decays of compounds 5 (a-q) in 

methanol fitted with monoexponential functions indicating emission from the singlet excited 

state in all cases. The synthesized compounds were subjected to DFT computational study using 

different functional theories. The calculated HOMO and LUMO energies show that charge 



transfer occurs within the molecule. The photophysical properties displayed by the synthesized 

pyrido[2,3-a]carbazoles conclude that these compounds are promising candidates for fluorescent 

probes and fluorescent makers due to their strong fluorescence properties. Further scope of the 

methodology has been exploited and various biological application studies are currently 

underway in our laboratory. 
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