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ABSTRACT
The widely used Hu� model is designed to estimate the spatial
probability distribution of shopping centre patronage based on
a shopping centre’s attractiveness and the cost of a customer’s
travel. Here, we calibrate the Hu� model for the city of Shenzhen,
China, using GPS taxi trajectory data for one million taxi journeys.
Using Geographical Weighted Regression to �t the model, we show
that there is signi�cant geographical variation in best estimates
of the Hu� parameters of attractiveness and cost. To explain this
variation, we use open-source house price sales’ data as a proxy for
customers’ wealth in each region. Regression results demonstrate a
signi�cant linear relationship between localised house prices and
the Hu�model parameter of attractiveness, suggesting that wealthy
customers are more sensitive to shopping centre attractiveness than
customers with less wealth. We present this as a novel discovery.

CCS CONCEPTS
• Information systems application → Geographic informa-
tion systems; • Information systems applications→ Data an-
alytics; • Operations research→ Transportation;
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1 INTRODUCTION
Retail is an important driving force of urban development [4] and
customers’ shopping patterns a�ect both business and urban de-
velopers. There are many models that can be used to analyse retail
trading areas, like gravity assumptions [11], discrete choice models
[9], and logit models [7]. However, the calibration of spatial interac-
tion models is a signi�cant challenge. Without accurate calibration,
a model is almost useless for either description or prediction [17].
Traditionally, researchers used survey and interview methods to
calibrate models. However, these traditional methods are labour
intensive, time consuming, and costly. As such, the amount of data
that can be obtained is often limited and of low resolution. This
leads to reduced model prediction accuracy.

One example of an automatically generated data stream is GPS
taxi trajectory data. Taxis are a widely used mode of transport in
most major cities, and their journeys can be automatically tracked.
By regularly recording a taxi’s GPS location and status (occupied or
free), a signi�cant coverage of a city’s transportation network and
behaviour can be automatically captured in high resolution, and at
relatively little cost. GPS taxi trajectory data has previously been
used to explore patterns in travel behaviour [24], urban design [21],
human behaviour analysis [20], and taxi service promotion, such
as customer searching model [22].

First introduced in 1964, the Hu� model [11] is one of the most
widely used models in retail trading analysis. Following simple
gravity assumptions, the Hu� model estimates the spatial probabil-
ity distribution of shopping centre patronage based on a shopping
centre’s attractiveness (often considered as size) and the customer’s
cost of travel. Despite the simplicity of the model, if calibrated
accurately, the Hu� model has strong explanatory power [20, 23].

It has previously been shown that taxi trajectory data can be
used to successfully calibrate the Hu� model [23]. Here, we per-
form spatial calibration using taxi trajectory data from the emerging
metropolitan city of Shenzhen. Using Geographical Weighted Re-
gression (GWR) to �t Hu� model parameters, we demonstrate that
exponents of attractiveness, � , and distance, � , are spatially variant.
That is, in di�erent regions of Shenzhen, shoppers exhibit di�erent
shopping behaviour tendencies.

To explain this variation, we hypothesise that more a�uent shop-
pers are more sensitive to attractiveness and distance (i.e., shoppers
with more wealth are: (1) more likely to be more selective in the

(C) John Cartlidge 2017. This is the author’s version of the work. 
It is posted here for your personal use. Not for redistribution. 
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centres they choose to patronise; and (2) more likely to be prepared
to travel farther to patronise a centre). We test these hypotheses by
using house price data for each local region of Shenzhen as a proxy
of wealth, and perform Ordinary Least Squares (OLS) regression
to explore whether there is a signi�cant relationship. Results show
that, while there appears to be no signi�cant relationship between
distance travelled and wealth, there is a strongly signi�cant linear
relationship between � (sensitivity to attractiveness) and wealth
(average house price). That is, wealthy shoppers are more sensitive
to (are more likely to choose) shopping centres that are large and
popular—see equations (10) and (11). To our knowledge, this is the
�rst time this relationship has been shown using real data.

We believe this is a very interesting new �nding which can po-
tentially have major impacts on city planning. Given that property
prices around the world and in particular in booming economic
regions have experienced rapid changes (rises) over the years, our
�nding suggests that similar studies should be carried out in other
major metropolitan regions to include house prices as an impor-
tant factor in planning city infrastructures and facilities, such as
the choice of brands in the store, choice of target customer, and
investment options for infrastructure constructions.

In Section 2, we review related work. In Section 3, the taxi data
is introduced and our method of cleaning and categorising the data
is described. In Section 4 we detail our �rst study: calibrating the
Hu� model using taxi data. In Section 5 we detail �ndings using
factor analysis of house price data. Finally, Section 6 concludes.

2 RELATEDWORK
The Hu� model [10] is designed to estimate the spatial probability
distribution of shopping centre patronage. The classic form is often
written as follows:

Pi j =
S�ij C

�i
i j

Pm
j=1 S

�i
j C

�i
i j

(1)

where Pi j represents the probability that a customer from origin
i will visit shopping cente j; Ci j is the travel cost from i to j; Sj is
the attractiveness of shopping centre j; �i and �i are, respectively,
the parameters of attractiveness and distance decay at each origin
i , estimated from empirical observation; andm is the total number
of shopping centres.

Previous studies have shown that shopping centre size and prox-
imity to competition are of signi�cant importance [3], while dis-
tance is able to explain approximately 70% of the variation in actual
retail sales at regional shopping centres [18]. Therefore, in this
study, we use size as one of the factors considered for shopping
centre attractiveness, and distance as the factor considered for cost.1

To estimate Hu� model parameters � and � , four attraction
and cost function combinations were introduced by O’Kelly [16],
covering exponential and power in�uence of both variables. We
label these, below, as K1 to K4 (equations (2) to (5)):

K1 : Ti j = exp (�Sj � �Ci j ) (2)

K2 : Ti j = exp (�Sj � �LnCi j ) = exp (�Sj )C
��
i j (3)

1Since we only consider one travel mode—metered taxi—we assume journey costs per
unit distance are approximately constant (subject to �uctuations in tra�c congestion).

K3 : Ti j = exp (�LnSj � �Ci j ) = S�j exp (��Ci j ) (4)

K4 : Ti j = exp (�LnSj � �LnCi j ) = S�j C
��
i j (5)

where Ti j equates to the numerator in equation (1). Note that K4 is
identical to the traditional Hu� model (1), with � and � parameters
a power of S andC , respectively. In K1, which O’Kelly found to best
�t the data [16], � and � parameters are both exponents.

In addition, Nakanishi and Cooper [15] proposed the following
equation (6), which is the log-transformed-centred form of OLS, to
estimate parameters in Hu�:

OLS : Ln(Pi j/P̄i ) = �iLn(Sj/S̄ ) + �iLn(Ci j/C̄i ) (6)
where P̄i , S̄ and C̄i are the geometric means of Pi j , Sj andCi j over j.
To enable comparisons with the literature, we use all �ve estimation
methods to �t one pair of Hu�model parameters (� and �)—i.e., one
global �t—and make comparisons between di�erent time periods.

Subsequently, equations (2) to (6) are applied using Geographi-
callyWeighted Regression (GWR) to �t spatially variant parameters
(i.e., to estimate best �t values for � and � at each locale; rather than
one global estimate for each). GWR is a non-stationary technique
that models spatially varying relationships. Compared with a global
regression, the coe�cients in GWR are functions of spatial location
[8]. The general form of a GWR model is:

�i = �i0 +
mX

k=1
�ikxik + �i (7)

Where �i is the dependent variable at location i; xik is the k th

independent variable at location i;m is the number of independent
variables; �i0 is the intercept parameter at location i; �ik is the local
regression coe�cient for the k th independent variable at location
i; and �i is the random error at location i . Since the Hu� model
has two parameters to estimate, so k = 2, and �ik in equation (7)
corresponds to � and � for each location i .

After �tting the Hu� model using GWR (Section 4), we attempt
to address the following issues:

(1) How do parameters � and � change over time?
(2) How do � and � vary geographically?
(3) How to explain the spatial-temporal variation of � and �?

3 DATA CLEANING
The taxi data includes taxi location (longitude, latitude), speed,
direction angle, and status (0: taxi has no passenger; 1: taxi has
passenger). For each taxi, the data collection time interval is be-
tween 30 seconds to 1 minute. Eight-days of taxi trajectory data
(24 hours/day) were collected between 13–20 October 2013, cap-
turing more than one million journeys from approximately 15,000
taxis. Although Sunday 13 October 2013 was a Chinese holiday, we
con�rm taxi data is consistent with Sunday 20 October 2013, so
consider the holiday as a normal Sunday.

3.1 Taxi data and choice-based samples
Choice-based samples—groups that have chosen to visit a particular
destination; i.e., shopping centres—are normally used in calibrat-
ing spatial interaction models [16, 19]. The ultimate goal of using
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Figure 1: Shopping centre trading areas, radii equal to max-
imum distance of closest 80% of journeys, for: Nanshan (N),
Baoan (B), Dongmen (D), Huaqiangbei (H), and Futian (F).

choice-based samples is to make inferences about the full popula-
tion, therefore the samples must be representative and unbiased. As
taxi fares are relatively expensive compared to other transportation
modes, we are aware that the data are naturally biased on customer
income and distance travelled. While we acknowledge this limita-
tion, we believe the large data sample is representative enough to
explain general shopping behaviours in Shenzhen.

3.2 Extracting choice-based samples
As the raw taxi data includes a large proportion of journeys that
are not shopping activities, it is necessary to extract choice-based
samples. We initially segment Shenzhen and all taxi data into a grid
of square cells of side 400 meters, with range boundary 113.80�–
114.63� longitude and 22.46�–22.80� latitude. For non-empty cells,
the mean number of taxi pick-up points is 67, making 400 meters
a suitable minimum resolution. Choice-based samples are then
extracted using the method employed in [23]. First, we select all
taxi drop-o� points located within a 500 metres bu�er radius of the
�ve target shopping centres. It has been shown that the average
walking trip of customers when they go to a shopping centre in
China is 500 metres [6]. While this distance may seem large, and
not immediately applicable to taxi journeys, it enables us to include
journeys to smaller boutique shops and restaurants that tend to
aggregate near shopping centres. Elsewhere, 300 metres has been
used as a bu�er radius [18]. We have repeated our analysis using a
bu�er radius of 300 metres and, although the model performs less
well, results show no substantial di�erence.

Once drop-o� (or destination) points have been selected, we then
extract the respective taxi pick-up point (or origin) for each. We
refer to these as Origin-Destination (O-D) pairs. As most of the
shopping centres in Shenzhen open from 10am to 10pm, we �lter
to extract taxi O-D pairs in which GPS time is from 10am to 10pm.

Finally, we order all O-D pairs by distance of origin from target
shopping centre, and then keep only the closest 80%. This follows
Applebaum’s process of de�ning a shopping centre’s primary trad-
ing area [2]. Fig. 1 displays the primary trading areas—plotted as
circle with radius equal to the maximum distance travelled for the
closest 80% of journeys—of the �ve major shopping centres of Shen-
zhen that we consider in this paper. Plots are generated using R’s

ggplot2 and ggmap packages. We see that Nanshan has the largest
trading area, while Futian’s trading area is smallest.

3.3 Training data and testing data
To verify the prediction accuracy of the calibrated Hu� models, we
split the data into two subsets: training data (used for calibrating
the Hu� model), and testing data (used to verify the prediction
accuracy of the calibrated model). The full set of extracted choice-
based data (see Section 3.2) is initially sorted by GPS time. Every
tenth O-D pair is then selected for the test set, the other 90% of
data are used for the Hu� model calibration. Both sets are further
segmented into �ve subsets categorised by time of day and day
of week. These are: weekend, weekday all, weekday 10am–1pm,
weekday 1pm–5pm, and weekday 5pm–10pm.

4 CALIBRATING THE HUFF MODEL
4.1 Methodology
The Hu� model, equation (1), has two variables representing shop-
ping centre attractiveness (S) and travel cost (C). To calculateC , we
use O-D route distance returned from Baidu.com’s API. To calculate
S , we consider two factors: (a) size of shopping centre (S = Ssize ),
the traditional method used in the literature, e.g., [23]; and (b) num-
ber of journeys (S = Sjourne� ), equivalent to footfall, calculated
directly from the data.

To calibrate these models, we use the �ve parameter estimation
methods (K1–K4, and OLS) introduced in Section 2. For example,
we �rst use K1 to calibrate the Hu� model. Five factors are consid-
ered: shopping centre attractiveness (S = {Ssize , Sjourne� }), route
distance, pick-up time, and pick-up locations. K1 is then linearised,
as:

Ln(Ti j ) = �Sj � �Ci j (8)
Weekend training data is then transformed into this format and
substituted into the GWR model, shown in equation (7). We used
R’s spgwr package to perform GWR �tting. One global pair of best-
�t parameter values are calculated for � and � , and a set of local
best-�t parameter values �i and �i are also calculated for each
geographic location, i .

After calibrating the Hu� model, the prediction accuracy is veri-
�ed using Kullback-Leibler (KL) divergence on the test data [12].
KL-divergence is a statistical technique used to quantify the diver-
gence between an expected probability distribution, P , and a gener-
ated probability distribution,Q . The general form of KL-divergence
is expressed as:

D (P | |Q ) =
X

(Pi )lo�(Pi/Qi ) (9)
Where P is the observed patronage probability (in the test dataset)
and Q is the patronage probability predicted by the calibrated Hu�
model. A KL-divergence value of 0 represents perfect prediction
accuracy; values close to 1 represent very poor prediction accuracy.

4.2 Results and Discussion
A summary of results of Hu� model calibration and testing are
presented in Table 1. For data during weekday working period
(10am–5pm), the model calibration produces relatively high error
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Table 1: Hu�model calibration and testing. Global calibration on training data using best �t model (highest R2, lowest sum of
squares); and KL-divergence of calibrated models on test data (smaller values indicate greater accuracy of model prediction).

Attractiveness Time Estimator Global Hu� Calibration KL-Divergence

� � Residual S.E. R2 Sum of squares Global Local

Size weekend K1 0.062 -0.236 0.025 0.763 0.206 0.51 0.22
weekday K1 0.199 -0.234 0.028 0.814 0.186 0.50 0.11

Journey weekend K2 0.134 -0.289 0.024 0.773 0.197 0.42 0.09
weekday K2 0.126 -0.281 0.028 0.814 0.185 0.40 0.05

rates. This is likely due to the proliferation of journeys during this
period that are non-shopping related. Therefore, calibration results
are only considered for weekend and weekday data after 5pm.

4.2.1 Global parameter calibration. Table 1 shows best �t cali-
bration results when S = Ssize and S = Sjourne� .

When S = Ssize , K1 estimator gives the best global calibration,
with � = 0.062 and � = �0.236 on weekends, and � = 0.199 and
� = �0.234 on weekday evenings. While there is little variation in � ,
we see that � is much higher on weekday evenings. Since S = Ssize ,
this suggests that customers care more about shopping centre size
on weekday evenings than they do at weekends. One interpretation
of this could be that because customers have less time on weekday
evenings, they prefer large shopping centres that are more likely to
contain all of the items they would like to purchase. Conversely, at
weekends, shopping centre size is less important as shoppers have
more time to browse.

When S = Sjourne� , K2 estimator gives the best global calibra-
tion, with � = 0.134 and � = �0.289 on weekends, and � = 0.126
and � = �0.281 onweekday evenings. This suggests that customers’
sensitivity to shopping centre popularity does not vary between
weekday evenings and weekends.

Under both measures of attractiveness, K3 and K4 estimators
have high error rates and return unintuitive negative estimates
for � . This suggests that the functional forms of K3 and K4 (in
particular assuming � is a power rather than exponent of Sj ) is
not a good descriptor of our taxi data. The OLS estimator (6) also
performs poorly. Therefore, we only consider calibration results
from K1 and K2 regression estimators.

4.2.2 Local parameter calibration. Table 1 also shows the pre-
dictive accuracy (KL-divergence) of the calibrated models on the
test data. We see that: (1) the Hu� model with local parameters
(i.e., calibrated using GWR; right-hand column) has greater predic-
tive accuracy (lower KL-divergence) than Hu� calibrated with one
pair of global parameters; (2) the prediction accuracy of the model
using attractiveness S = Sjourne� is better than the model using
S = Ssize , suggesting that calculating the attractiveness of shop-
ping centres directly from the number of taxi journey destinations
(i.e., footfall) is more accurate than the traditional method of esti-
mating attractiveness using shopping centre size; (3) the prediction
accuracy is better for weekday evenings than weekends.

We consider each of the above results in turn. (1) Using GWR
to �t parameter values locally o�ers much higher resolution than
�tting one pair of global parameters. Therefore, unless the taxi data
exhibits uniformity, GWR is always likely to give a more accurate

result. (2) Since S = Sjourne� is a direct measure of footfall mea-
sured from the taxi data, it is perhaps unsurprising that this direct
measure provides more accurate prediction than the traditional
low-resolution technique of using a shopping centre’s size. We
present this as direct evidence of the utility of calibrating the Hu�
model from taxi trajectory data. (3) At weekends, people generally
have more time available for leisure activities than during weekday
evenings. Therefore, at weekends, people may travel between mul-
tiple shopping centres while browsing for goods and/or integrate
other leisure activities into their schedule. For this reason, with
fewer shopping journeys originating at home (an explicit assump-
tion of the Hu� model), the weekend data set is more noisy and
hence less predictable.

Fig. 2 presents the results of GWR calibration graphically. The
districts mapped are: Baoan, Nanshan, Futian, and Luohu. Fig. 2a
and Fig. 2c display qualitatively similar geographic variation in � .
In particular, � is positive highest (blue) in Nanshan district and
negative highest (red) in Baoan district. This suggests that people
who live in Nanshan are more likely to prefer shopping at attractive
stores (the largest, and the most popular), whereas people who live
in Baoan prefer the opposite—that is unattractive stores—possibly
because they o�er cheaper, low-quality goods. In Futian (where
Huaqiangbei and Futian shopping centres are located) and Luohu
(where Dongmen shopping centre is located), � values are close to
0. In these regions, shoppers pay less attention to the attractiveness
of shopping centres when deciding where to shop.

In Futian the value of � is consistently negative, indicating that
people living in this area prefer to shop a short distance from home.
Given it is a city centre district, this is perhaps unsurprising. In other
regions, we see that � tends to be negative when S = Ssize , and
positive when S = Sjourne� . This suggests that, in these regions,
people are not prepared to travel far to visit a large shopping centre;
but are prepared to travel far to visit a popular shopping centre.
Perhaps this suggests that there is a greater homogeneity in large
shopping centres, whereas popular shopping centres have more
individuality.

5 HOUSE PRICE ANALYSIS
5.1 Methodology
GWR demonstrates high geographic variability in sensitivity to �
and � . To explain this variability, we hypothesise that more a�uent
shoppers are more sensitive to � and � (i.e., shoppers with more
wealth are (1) more likely to be more selective in the centres they
choose to patronise, and (2) more likely to be prepared to travel
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Figure 2: GWR calibration (weekends) for Shenzhen. The four regions shown are: Baoan, Nanshan, Futian, and Luohu.
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Figure 3: House price distribution, ��� (RMB/m2m2m2), across four
districts of Shenzhen: Baoan, Nanshan, Futian, and Luohu.

farther to patronise a centre). Here, we test this hypothesis by
using house price data for each region as a proxy of wealth, and
perform OLS regression to explore whether there is a signi�cant
relationship.

House price data has previously been used in urban design, and
a relationship between house prices and retail trade has been ob-
served [1, 5, 13, 14]. However, to our knowledge, there is no previous
research using house price data to provide an explanation for the
spatial variance of people’s shopping behaviours.

We collect second-hand house price sales’ data for Shenzhen
during the �rst quarter of 2017, and calculate average house price
corresponding to each geographical cell in the segmented taxi data
(1324 cells in total). All house price data were retrieved on 01 April
2017 from Fang.com, the largest and most comprehensive open-
source repository for house price sales in China. The average house

Table 2: OLS regression of best �t geographical Hu� model
on house prices

S OLS regression Value S.E. |T value| P value

size house price (� ) 0.37 0.11 3.31 9.71 ⇥ 10�4
size intercept 0.25 0.03 8.17 <7.37 ⇥ 10�16
journey house price (� ) 1.50 0.17 8.58 <7.37 ⇥ 10�16
journey intercept 0.56 0.05 11.73 <7.37 ⇥ 10�16

price distribution for each area is presented in Fig. 3. There appears
to be a clear visual correlation between values of � and house prices
throughout Shenzhen. We attempt to quantify this relationship in
the next section.

5.2 Results and discussion
We test whether local values of house price, � , are positively cor-
related to � . Table 2 presents results of OLS regression, used to
explore the linear relationship between these two variables. OLS
regression was performed using R’s sp package, with normalised �
and � values.

In all cases, p and T values evidence a statistically signi�cant
linear relationship between distribution of parameters � and � . The
best-�t relationships are given by:

�size = 0.37� + 0.25 (10)
and

� journe� = 1.50� + 0.56 (11)
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As an individual’s wealth increases—and therefore capacity for
consumption grows—the attractiveness of a shopping centre be-
comes increasingly important when deciding where to shop. When
S = Sjourne� (equation (11)), � is much more sensitive to wealth—
i.e., the multiplier of � , or gradient of best �t, is larger—than when
S = Ssize (equation (10)). Therefore, as wealth and income increase,
sensitivity to popular shopping centres grows more quickly than
sensitivity to large shopping centres. This may suggest that wealthy
individuals prefer more fashionable places.

The strong correlation that we have identi�ed between wealth,
� , and parameter of attractiveness, � , has potential for considerable
positive impact. For data scientists, transportation modellers, and
urban planners, it suggests open source house price data can be
used for accurate modelling of city-wide shopping behaviours. In
particular, we believe urban planners could use this information for
optimal location of new retail and residential centres. In addition,
by monitoring the �uctuation of house prices in regions of a city,
one may be able to predict changes in tra�c �ow and congestion,
by modelling the expected resultant changes in shopping behaviour.
City regions that are undergoing a period of gentri�ciation may be
likely to o�er the best opportunities for this type of modelling.

6 CONCLUSIONS
Wehave presented aHu�model calibration for shopping behaviours
in the city of Shenzhen, using taxi trajectory data containing ap-
proximately one million journeys over an eight day period. Results
demonstrate that �tting the model geographically using GWR—
returning local calibration values for each local region—provides
much higher predictive power than using one global value for each
parameter in the model. Where su�cient data are available for Hu�
model calibration, we therefore suggest that GWR is a superior
regression technique that should be used more widely.

We also demonstrated that using the number of journeys to
each shopping centre as a measure of a attractiveness provides
greater predictive power than using size to measure attractiveness.
Although size is easy to calculate and generally available, we sug-
gest that where data are available, more direct measurements of a
shopping centre’s attractiveness should be used.

Finally, we presented results demonstrating that the geograph-
ical variation is consumers’ behaviour can be largely explained
by consumers’ wealth. Using house price sales’ data for each local
region as a proxy for wealth, we showed a signi�cant linear rela-
tionship between wealth and sensitivity to attractiveness. As far
as we are aware, this is the �rst time this relationship has been
shown using real world transportation data. We provide this as
evidence that fusing data sources can enhance model interpretation
and improve predictive power.

However, we acknowledge that there are limitations to the re-
search presented here. In particular, we consider taxis as the only
mode of transport in the city. This is clearly unrealistic. In future we
would like to compare results against other transportation modes.
We would also like to perform the following extensions: (1) data �l-
tering to observe how people journey between shopping centres; (2)
modelling changing house prices and the e�ects that has on urban
and transportation planning; (3) using social media data (shopping
reviews) as a measure of attractiveness.

ACKNOWLEDGMENTS
This research is supported by Shenzhen key laboratory of Spatial
Smart Sensing and Services in Shenzhen University that provided
the taxi trajectory data set.

REFERENCES
[1] Alex Anas. 1995. Capitalization of urban travel improvements into residential

and commercial real estate: simulations with a uni�ed model of housing, travel
mode and shopping choices. Journal of Regional Science 35, 3 (1995), 351–376.

[2] William Applebaum. 1966. Methods for determining store trade areas, market
penetration, and potential sales. Journal of Marketing Research 3, 2 (1966), 127–
141.

[3] David R Bell, Teck-Hua Ho, and Christopher S Tang. 1998. Determining where
to shop: Fixed and variable costs of shopping. Journal of Marketing Research 35,
3 (1998), 352–369.

[4] M Bohnet and J-M Gutsche. 2007. Estimating land use impacts on transportation—
�ndings from the Hanover region. In Proceedings of the European Transport
Conference. Association for European Transport, Leiden, The Netherlands.

[5] João O Borba and Tomaz Ponce Dentinho. 2016. Evaluation of urban scenarios
using bid-rents of spatial interaction models as hedonic price estimators: an
application to the Terceira Island, Azores. The Annals of Regional Science 56, 3
(2016), 671–685.

[6] Wuhan Transportation Planning Bureau. 2009. Wuhan tra�c impact analysis
guideline. Technical Report. Technical report, Wuhan Transportation Planning
Bureau.

[7] Chaushie Chu. 1989. A paired combinatorial logit model for travel demand
analysis. In Transport Policy, Management & Technology Towards 2001: Selected
Proceedings of the Fifth World Conference on Transport Research, Vol. 4. World
Conference on Transport Policy, Yokohama, Japan, 295—309.

[8] A Stewart Fotheringham, Chris Brunsdon, and Martin Charlton. 2003. Geograph-
ically weighted regression: the analysis of spatially varying relationships. John
Wiley & Sons, University of Newcastle, UK.

[9] Azucena Gracia and Tiziana de Magistris. 2008. The demand for organic foods in
the South of Italy: A discrete choice model. Food Policy 33, 5 (2008), 386–396.

[10] David L Hu�. 1963. A probabilistic analysis of shopping center trade areas. Land
economics 39, 1 (1963), 81–90.

[11] David L Hu�. 1964. De�ning and estimating a trading area. The Journal of
Marketing 28, 5 (1964), 34–38.

[12] Solomon Kullback and Richard A Leibler. 1951. On information and su�ciency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[13] J. D. Landis. 2012. Modelling Urban Systems. In The Oxford handbook of urban
planning, Randall Crane and RachelWeber (Eds.). Oxford University Press, Oxford,
UK, 323–351.

[14] Ming-Long Lee and R Kelley Pace. 2005. Spatial distribution of retail sales. The
journal of real estate �nance and economics 31, 1 (2005), 53–69.

[15] Masao Nakanishi and Lee G Cooper. 1982. Technical Note—Simpli�ed Estimation
Procedures for MCI Models. Marketing Science 1, 3 (1982), 314–322.

[16] Morton Edward O’Kelly. 1999. Trade-area models and choice-based samples:
methods. Environment and Planning A 31, 4 (1999), 613–627.

[17] Jean-Paul Rodrigue, Claude Comtois, and Brian Slack. 2013. The geography of
transport systems. Routledge, New York, NY 10017.

[18] Anja Simma, Pietro Cattaneo, Myriam Baumeler, and Kay W Axhausen. 2004.
Factors in�uencing the individual shopping behaviour: The case of Switzerland.
Technical Report. ETH Zürich, Institut für Verkehrsplanung, Transporttechnik,
Strassen- und Eisenbahnbau, Zürich.

[19] Fotheringham A Stewart and Morton E O’Kelly. 1989. Spatial interaction models:
formulations and applications. (1989).

[20] Jinjun Tang, Han Jiang, Zhibin Li, Meng Li, Fang Liu, and Yinhai Wang. 2016. A
Two-Layer Model for Taxi Customer Searching Behaviors Using GPS Trajectory
Data. IEEE Transactions on Intelligent Transportation Systems 17, 11 (2016), 3318–
3324.

[21] Wei Tu, Qingquan Li, Zhixiang Fang, Shih-lung Shaw, Baoding Zhou, and Xi-
aomeng Chang. 2016. Optimizing the locations of electric taxi charging stations:
A spatial–temporal demand coverage approach. Transportation Research Part C:
Emerging Technologies 65 (2016), 172–189.

[22] RCP Wong, WY Szeto, and SC Wong. 2014. A cell-based logit-opportunity taxi
customer-search model. Transportation Research Part C: Emerging Technologies
48 (2014), 84–96.

[23] Yang Yue, Han-dong Wang, Bo Hu, Qing-quan Li, Yu-guang Li, and Anthony GO
Yeh. 2012. Exploratory calibration of a spatial interaction model using taxi GPS
trajectories. Computers, Environment and Urban Systems 36, 2 (2012), 140–153.

[24] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-
standing mobility based on GPS data. In Proceedings of the 10th international
conference on Ubiquitous computing. ACM, ACM, New York, NY, USA, 312–321.


