
                          Sheppard, D., Bear, C. E., & de Jonge, H. R. (2017). Editorial overview:
Respiratory: Transformational therapies for cystic fibrosis. Current Opinion
in Pharmacology, 34, viii-xi. https://doi.org/10.1016/j.coph.2017.11.006

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.coph.2017.11.006

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S1471489217301716 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/132201396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.coph.2017.11.006
https://doi.org/10.1016/j.coph.2017.11.006
https://research-information.bris.ac.uk/en/publications/editorial-overview-respiratory(b46e92dd-c343-4ad6-ab83-d2655b483cde).html
https://research-information.bris.ac.uk/en/publications/editorial-overview-respiratory(b46e92dd-c343-4ad6-ab83-d2655b483cde).html


1 
 

 

 

Editorial overview: respiratory 

Transformational therapies for cystic fibrosis 

 

David N. Shepparda, Christine E. Bearb and Hugo R. de Jongec 

 

aSchool of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical 

Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom, 

 

bPeter Gilgan Centre for Research and Learning, Programme of Molecular Structure and 

Function, Hospital for Sick Children, 686 Bay St., Rm. 209420 U-West, Toronto,  

ON M5G 0A4, Canada, 

 

cDepartment of Gastroenterology and Hepatology, Erasmus University Medical Center,  

‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands 

 

 

Address Correspondence to:  D.N. Sheppard, Ph.D. 
    University of Bristol 
    School of Physiology, Pharmacology and Neuroscience 
    Biomedical Sciences Building 
    University Walk 
    Bristol BS8 1TD 
    United Kingdom 
    Tel:  +44 117 331 2290 
    Fax:  +44 117 331 1889 
    E-mail:  D.N.Sheppard@bristol.ac.uk 
 

  



2 
 

 Treatment of the common life-shortening inherited disease cystic fibrosis (CF) is 

witnessing a revolution.  Up until 2012, therapies were directed exclusively against disease 

symptoms.  These included time-consuming chest physiotherapy and small mountain of drugs 

to clear mucus obstructed air passageways, fight lung infections, dampen inflammatory 

responses and replace missing pancreatic enzymes.  Together with specialised patient care in 

CF centres, improvements in symptomatic therapy increased average life expectancy from 

~10 years in the 1960s to ~40 years in 2010 in North America and Western Europe. 

 

 In 2012, ivacaftor (KalydecoTM; VX-770; Vertex Pharmaceuticals), the first drug 

therapy to target the root cause of CF, mutant cystic fibrosis transmembrane conductance 

regulator (CFTR) was approved by the US Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) for patients carrying the mutation G551D-CFTR.  The 

clinical impact of ivacaftor was simply astonishing: forced expiratory volume in one second 

(FEV1), a blunt measure of lung function, increased by 10% after just 2 weeks in adult 

patients many with irreversibly damaged lungs; the frequency of hospitalisation for treatment 

of lung infections, a measure of disease stability, improved by 55%; individuals treated with 

the drug gained weight (>2.5 kg over 48 weeks) and sweat chloride levels decreased by 

almost 50 mmol/l, improvements unheard of in previous clinical trials of new therapies for 

CF.  Use of ivacaftor was soon extended to nine other CF mutations, representing ~6% of all 

individuals living with CF worldwide.  This year, use of ivacaftor has been extended to a 

further 28 mutations, bringing the total to 38 (https://www.cff.org/News/News-

Archive/2017/FDA-Approves-Ivacaftor-for-Five-Splice-Mutations/).  For two reasons, the 

latest extension of ivacaftor’s use is highly significant.  First, five of the mutations listed 

cause splicing defects, which reduce the amount of CFTR protein delivered to the plasma 

membrane.  Second, laboratory data played a pivotal role in expanding the use of ivacaftor to 
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some rare CF mutations.  The willingness of the FDA to consider laboratory data is to be 

applauded.  It raises the exciting possibility that laboratory data might be further employed to 

expand the clinical utility of ivacaftor and other innovative new therapies for CF. 

 

 The development of ivacaftor is notable for several reasons.  First, it benefitted 

enormously from a wealth of basic science research, which identified the CFTR gene, 

demonstrated its function as an ATP-gated epithelial Cl- channel and elucidated how CF-

causing mutations disrupt CFTR expression and function.  Second, it was assisted by high 

quality patient registry data and clinical trial networks.  Third, the willingness of the CF 

community to provide help and advice to the Vertex Pharmaceutical team. Finally, the unique 

collaboration between the US CF Foundation and Vertex Pharmaceuticals, which led to a 

new model for drug development termed venture philanthropy. 

 

 When compared with G551D-CFTR and other mutations that affect only CFTR 

gating (the pattern of channel opening and closing), transformational therapy for F508del-

CFTR, the most common CF mutation is an altogether more challenging proposition because 

the mutation has multiple impacts upon CFTR.  F508del-CFTR is a temperature-sensitive 

folding mutation.  At normal body temperature, the misfolded mutant protein is 

predominantly retained in the endoplasmic reticulum and degraded by the proteasome.  Little 

if any F508del-CFTR protein traffics to its correct cellular location, the apical membrane of 

epithelia.  The small fraction that does make it forms highly unstable Cl- channels with a 

pronounced defect in channel gating.  Thus, small molecules with two types of activity are 

required to restore function to F508del-CFTR: first, correctors, so called because they 

overcome the processing defect of F508del-CFTR and deliver the mutant protein to the apical 

membrane.  Second, potentiators to enhance channel gating following CFTR phosphorylation 
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by protein kinase A.  Combination therapy with lumacaftor (VX-809; Vertex 

Pharmaceuticals), the first corrector tested in the clinic, and ivacaftor (Orkambi) increased 

FEV1 by ~3%, but disease stability by 30-40%, leading in 2015 to regulatory approval for 

Orkambi use with CF patients homozygous for the F508del-CFTR mutation. 

 

 This year’s respiratory section of the Journal provides a state-of-the-art overview of 

research to develop transformational therapies for all individual’s living with CF.  It discusses 

lessons from clinical trials of ivacaftor and lumacaftor, their mechanism of action and 

therapeutic strategies under investigation, including mutation-specific schemes to target 

specific types of CF mutations and mutation-independent stratagems applicable to all CF 

mutations.  The section concludes with discussion of the potential utility of new therapies for 

CF in the treatment of chronic obstructive pulmonary disease (COPD) and other respiratory 

diseases. 

 

 De Boeck and Davies introduce the busy pipeline of therapies being tested in the 

clinic and highlight the latest clinical trial data to be announced by press release, triple 

combination therapy with two correctors and a potentiator, which has caused great 

excitement within the CF community.  De Boeck and Davies draw attention to the ethical 

dilemma of withdrawing ivacaftor to test new potentiators and the need for better tests than 

FEV1 to evaluate lung function, particularly in very young children.  They emphasize 

important lessons from the clinical trials of new therapies conducted to date, including the 

evaluation of treatment benefit over the long, not short, term, the design of clinical trials to 

detect unexpected health benefits and the issue of equitable access to transformational 

therapies for all eligible individuals. 
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 There then follows three reviews on ivacaftor, lumacaftor and combination therapy 

for F508del-CFTR with correctors and potentiators.  These reviews introduce the molecular 

defects in CFTR targeted by potentiators and correctors, discuss their mechanism of action 

and highlight the wide spectrum of CF mutations that might benefit from these small 

molecules. 

 

 Jih, Lin, Sohma and Hwang review proof-of-concept studies using ATP analogues 

and early studies of potentiators identified by hypothesis-led studies prior to the 

implementation of high-throughput screening to discover efficacious CFTR modulators.  

Using a sophisticated gating model, the authors explain how ivacaftor potentiates both ATP-

dependent and ATP-independent gating of CFTR (Eckford PD et al. J Biol Chem. 2012; 

287:36639-49; Jih KY, Hwang TC. Proc Natl Acad Sci U S A. 2013; 110:4404-9).  Of note, 

Hwang and his colleagues draw attention to the therapeutic potential of combinations of 

potentiators acting at distinct binding-sites to achieve enhanced rescue of mutant channel 

gating through pharmacological synergy. 

 

 Mijnders, Kleizen and Braakman discuss the challenge of correcting CFTR structure 

with small molecules to repair the defective processing of CF mutants, particularly F508del-

CFTR, which not only causes misfolding of the first nucleotide-binding domain (NBD1), but 

perturbs CFTR domain assembly.  They emphasize that CFTR correctors are likely to have 

wider utility than CF processing mutations because CF mutations that alter Cl- channel 

function cause structural defects and hence, CFTR misfolding.  Braakman and colleagues 

advocate that high-throughput screening is the most practical approach to identify new 

correctors for rare CF mutations unresponsive to lumacaftor. 
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 Hanrahan, Matthes, Carlile and Thomas argue persuasively that evidence for multiple 

corrector binding sites provides a strong rationale for rescue of F508del-CFTR with 

combinations of two or more correctors.  The authors draw attention to the problem of drug-

drug interactions encountered with lumacaftor and ivacaftor, cautioning that combination 

therapy increases the potential for drug-drug interactions with potentially far reaching 

consequences.  However, Hanrahan and colleagues are optimistic that the development of 

second generation correctors and corrector combinations will improve significantly the 

quality of life for most individuals living with CF. 

 

 The next two reviews address transformational therapies for individuals with rare CF 

mutations including missense, nonsense and splicing mutations.  As for the preceding 

reviews, mutation-specific therapies are the focus of most attention.  Oliver, Han, Sorscher 

and Cutting discuss the classification of CF mutations, the molecular complexity of 

individual CF mutations and the challenge of developing precision medicines for all forms of 

CF.  They review the development of ivacaftor, emphasizing the importance of molecular 

understanding for regulatory approval, but caution that expansion of ivacaftor to very rare CF 

mutations will require alternatives to conventional clinical trial design.  Cutting and 

colleagues advocate an integrated approach combining in vitro studies using cell-based model 

systems with in silico predictions and pre-clinical testing to predict the response of CF 

mutations to correctors and potentiators. 

 

 Oren, Pranke, Kerem and Sermet-Gaudelus explain the molecular consequences of 

nonsense and splicing mutations.  They review the development of ataluren, which 

suppresses premature termination codons (PTCs) caused by nonsense mutations without 

affecting termination at normal stop codons, discussing potential causes of variable drug 
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responses, which might have contributed to the drug’s failure in clinical trials.  Because PTC 

suppression might introduce the wrong amino acid, leading to a faulty protein, the authors 

highlight the value of combining PTC suppression with correctors and potentiators.  They 

also draw attention to the therapeutic potential of antisense oligonucleotides (ASOs), 

chemically-modified synthetic RNA-like molecules to correct nonsense and splicing 

mutations.  Of note, ASO-based therapies have recently received regulatory approval for two 

genetic diseases, spinal muscular atrophy and Duchenne muscular dystrophy. 

 

 In the final review addressing mutation-specific therapies, Callebaut, Hoffmann and 

Mornon discuss the role of structural data in CF drug development.  The authors highlight 

new insight into CFTR structure-function relationships from the first high-resolution 

structures of CFTR solved by cryo-electron microscopy (Zhang Z, Chen J. Cell. 2016; 

167:1586-1597.e9; Zhang Z et al. Cell. 2017; 170:483-491.e8).  They explain how the 

interface between the NBDs and membrane-spanning domains (MSDs) of CFTR is both a hot 

spot for CF mutations and a potential binding site for CFTR modulators; other potential drug-

binding sites have been identified at the NBD1:NBD2 interface, the location of the two ATP-

binding sites that control channel gating (Kalid O et al. J Comput Aided Mol Des. 2010; 

24:971-91; Hwang TC, Sheppard DN. J Physiol. 2009; 587:2151-61).  Callebaut and 

colleagues advocate an integrated approach to identify high-affinity CFTR modulators, which 

combines knowledge from high-resolution cryo-electron microscopy maps and detailed 3D 

molecular models with information about the conformational stability and flexibility of the 

CFTR protein required for Cl- channel function. 

 

 The next two reviews address two distinct mutation-independent therapeutic strategies 

both with long histories in CF research.  CFTR bypass therapy utilises other pathways for 
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anion transport to restore transepithelial ion transport to CF epithelia, while gene therapy 

aims to replace or repair the faulty CFTR gene in CF epithelial cells.  Both strategies 

predominantly target CF lung disease, unlike orally-bioavailable small molecules, which 

target all affected tissues. 

 

 Li, Salomon, Sheppard, Mall and Galietta compare and contrast the localisation, 

biophysical properties and regulation of the anion channels TMEM16A and SLC26A9 with 

those of CFTR.  Because activation of TMEM16A is transient, the authors explain that long-

acting small molecules that directly target TMEM16A are required for bypass therapy.  By 

contrast, the constitutive activity of SLC26A9 makes it a promising target for CFTR bypass 

therapy.  However, co-expression of SLC26A9 with CFTR argues that SLC26A9 potentiators 

have greatest utility with CF mutants present at the plasma membrane.  The authors also 

introduce an alternative approach to CFTR bypass therapy, self-assembled anion channels 

and artificial anion transporters developed by supramolecular chemists.  They highlight 

proof-of-concept studies which explore the feasibility of bypassing CFTR dysfunction with 

artificial anion channels and transporters and consider the challenges that must be overcome 

to develop these agents as therapeutics for CF. 

 

 Hart and Harrison review gene therapy for CF lung disease, a field that has been 

rejuvenated by rapid advances in gene editing technologies.  The authors describe efforts to 

improve viral vectors, highlighting the important role that new animal models and human 

intestinal organoids have played in vector testing.  They show how DNA nanoparticles have 

improved the delivery of non-viral gene therapy formulations to mouse lungs in vivo, while 

minicircle DNA vectors have achieved higher levels of gene expression and reduced 

inflammatory responses.  Hart and Harrison explain how different gene editing strategies 
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have been used to achieve gene therapy for CF.  They highlight how a “super-exon” has the 

potential to correct many different CF mutations, eliminating the requirement for mutation-

specific gene editing.  The authors are optimistic about the prospects of treating CF with gene 

therapy. 

 

 Solomon, Fu, Rowe and Collawn explain how cigarette smoke, a leading cause of 

COPD results in acquired CFTR dysfunction, characterised by decreased CFTR mRNA, 

reduced protein stability at the plasma membrane and inhibition of channel gating.  They 

review evidence for acquired CFTR dysfunction in other respiratory diseases, including 

asthma and non-CF bronchiectasis, concluding that sub-sets of patients in both diseases 

demonstrate acquired CFTR dysfunction.  Of special note, the authors demonstrate that 

ivacaftor rescues CFTR function after exposure to cigarette smoke and report pilot clinical 

data showing that ivacaftor improves respiratory symptoms in individuals with COPD.  

Given the current lack of effective therapies for COPD, these data suggest that ivacaftor and 

other CFTR modulators have significant therapeutic potential for COPD. 

 

 Although the ten reviews provide an excellent overview of work to develop 

transformational new therapies, some topics have not received the attention they deserve.  

First, studies of correctors have focused only on pharmacological chaperones that interact 

directly with misfolded CFTR.  An alternative approach is proteostasis regulators, which 

target one or more of the many CFTR-interacting proteins that orchestrate and control the 

biosynthesis of CFTR, its delivery to, and expression at the apical membrane (for review, see 

Balch WE et al. Science. 2008; 319:916-9; Amaral MD, Farinha CM. Curr Pharm Des. 2013; 

19:3497-508).  Second, a small number of small molecules have been identified with both 

corrector and potentiator activity, termed corrector-potentiators or dual-acting small 
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molecules (Pedemonte N et al. J Biol Chem. 2011; 286:15215-26; Phuan PW et al. Mol 

Pharmacol. 2011; 80:683-93).  This interesting class of small molecules deserves further 

investigation, but it is currently unclear whether therapeutically-active dual-acting small 

molecules will be developed.  Finally, advances in stem cell research, with the potential to 

generate patient-specific epithelial tissues from induced pluripotent stem cells (iPSCs) 

presents future opportunities for therapy development.  Robust protocols for tissue-specific 

differentiation of patient-derived iPSCs are advancing to the stage where it will soon be 

feasible to profile a panel of existing and emerging CFTR modulators simultaneously for all 

affected tissues in an individual to enable precision medicine (Ahmadi S et al. NPJ Genom 

Med. 2017; 2:12).  The exciting, longer term goal of tissue or organ replacement with patient-

specific cells in which the CFTR mutation is corrected, is being actively pursued by multiple 

laboratories. 

 

 We thank all authors for their excellent contributions, the Journal’s editorial staff for 

their great assistance, CF charities and foundations for supporting our research, our 

wonderful colleagues for their commitment and dedication and individuals living with CF for 

their inspiration. 

 


