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Abstract  

We propose in this paper analytical and numerical models that describes the in-plane uniaxial 
elastic properties (Young's moduli and Poisson's ratios) of a honeycomb structure with curved 
walls. We perform a parametric analysis of the mechanical performance of this honeycomb also 
by taking into account the different types of deformations acting inside the cell walls. The 
curved wall honeycomb possesses higher magnitudes of the Poisson’s ratio n12 in the auxetic 
configuration compared to classical centre symmetric configuration with straight cell wall. The 
presence of the curvature also allows creating configurations with positive Poisson’s ratio even 
for negative internal cell angles, and makes this honeycomb design attractive for mechanical 
tailoring. 
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I. Introduction 
Cellular materials have witnessed a remarkable diffusion during the past fifty years in terms 

of development and applications. These low-density materials are widely used mainly because 
of their high rigidity/weight ratio. During the last twenty years in particular, the production and 
use of cellular materials have increased significantly in various domains (from transport to 
packaging and aerospace) [1]. A number of studies have been published in recent years on 
cellular structures, especially on 2D honeycombs [2][3][4] with the capacity of showing an in-
plane negative Poisson’s ratio (i.e., auxetic behaviour). Poisson’s ratio is defined as the ratio 
between the lateral and axial deformations under uniaxial tensile loading, with the sign minus. 
In most cases, the Poisson's ratio ν is positive, i.e. the material undergoes a contraction in the 
direction perpendicular to the direction of the effort applied. On the contrary, a material with a 
negative Poisson’s ratio laterally expands when elongated, leading to an increase of its volume. 
Gibson and Ashby [2] identified the presence of an in-plane negative Poisson’s ratio in centre 



symmetric configurations. While the basic bending deformation mechanism of the wall is 
conducive to a negative Poisson’s ratio when the internal angle of the cell is negative [2], other 
authors have identified the importance of stretching and hinging deformations in the 
performance of the in-plane mechanical properties of these honeycombs [5]. Several 
researchers have formulated mathematical models based on these mechanisms [2]-[6], all 
assuming that engineering beams constituted the cell walls. Some researchers [5] have also 
showed that models based only on bending deformations overestimated the values of elastic 
moduli, compared to those provided by molecular modelling. The analysis presented in this 
work focuses on a centre symmetric honeycomb configuration represented in Fig. 1, which 
possesses a curved wall. The presence of the curved geometry induces in the structure a series 
of deformations associated to bending, stretching and hoop stresses, and therefore gives the 
opportunity of increasing the availability of tailored mechanical properties. The presence of the 
curvature inside the wall may take into account some real manufacturing constraints related to 
the use of over-expanded [7] and composite Kirigami techniques [8][9] in which the 
intersection between ribs is not represented by a sharp angle. Moreover, special geometries of 
the ribs at the intersection between different cell walls do tend to provide tailored deformation 
mechanisms to the global honeycomb cell [10], and are considered responsible for unusual 
mechano-thermal behaviour like the blocked shape memory effect observed in open cell PU 
foams subjected to multiple shape memory training [11]. 

The mechanical properties of curved (sinusoidal) ligaments of auxetic structures that have been 
subjected to large deformations has been studied by Strek et al [12][Str2016]. For each of the 
four structures considered, the impact of the deformation size and geometrical parameters on 
the effective mechanical properties of the structures shape have been investigated. It has been 
shown that some of them are auxetic when compressed and non-auxetic when stretched. Hence, 
a smart control of the mechanical properties of the sinusoidal ligament structure can be 
performed through its geometry and arrangement of ligaments. The analytical expressions 
derived by Grima et al [13] [GRI2013] suggests that hexagonal truss systems made from ribs 
having different stretching stiffness constants exhibit a negative compressibility in the vertical 
direction for particular re-entrant geometries of this smart hexagonal truss system when the 
vertical ribs are much stiffer than the inclined ones. Poziniak et al. [14][Poz2013] carried out a 
numerical simulation on two cellular two-dimensional auxetic foams with modified joints of 
simple cells referred to as Y- and Δ-models. For the first model, the ribs forming the cells are 
connected at points corresponding to sites of a disordered honeycomb lattice, whereas for the 
second, the connections of the ribs are not point-like but spatial. The simulations show that by 
applying harder joints, lower Poisson’s ratios can be reached. It also shows that the Δ-model 
gives lower Poisson’s ratios than the Y-model. In order to evaluate its dynamic response 
properties, a numerical simulation of a sandwich panel constituted by two face sheets and 
auxetic hexagonal re-entrant structure core has also been carried out by Strek et al [15] [Str 
2015]. The results showed that the effective Young’s modulus of such sandwich panels 
becomes very large if the Poisson’s ratio of the filler material tends to -1. In order to minimize 
the effective Poisson’s ratio of the sandwich panel’s core, another numerical analysis using a 
finite-element approach combined with an optimization algorithm MMA (method of moving 
asymptotes) was performed by Strek et al [16] [Str2016] who found that the composite structure 
exhibits a negative Poisson’s ratio (NPR) while a positive one characterizes all its constituents. 
Lakes [17] [Lakes 1987] has been the first to produce isotropic auxetic foams from conventional 
low-density open-cell polymer foams by causing the ribs of each cell to permanently protrude 
inward. He also stated that the Poisson’s ratio in materials is essentially governed by the 
presence of microstructure properties represented by rotational degrees of freedom, anisotropic 
structure as well as non-affine deformation kinematics that are seen to be essential for the 



production of negative Poisson's ratios for isotropic materials containing central force linkages 
of positive stiffness [18] [LAK 1991].  
 
Sigmund [19] Sig 1994 has formulated the so-called inverse problem by as a two-dimensional 
topology optimization problem where the cost is minimized and the constraints defined by the 
prescribed constitutive parameters through finding the interior topology of a base cell. The 
obtained numerical results show that arbitrary materials, including materials with Poisson’s 
ratio equals - 1.0 and other extreme materials, can be obtained by modelling the base cell as a 
truss structure. Provided that the ligament length to thickness ratio remains sufficiently large 
and the overall length to width ratio of the disordered system does not differ considerably from 
that of its ordered counterpart, Mizi et al [20] noted that the transitional disorder in the 
hexachiral honeycombs has no significant effect on the Poisson’s ratio. However, the Young's 
modulus of the system increases along with the extent of disorder. Moreover and unlike other 
auxetic geometries, the hexachiral honeycomb system is found to be extremely tolerant to 
translational disorder and possesses the outstanding capability of retaining more or less its 
original Poisson's ratio despite degrees of disorder of up to 90%. The numerical simulations 
accomplished by means of finite-element analysis of a segment of a composite sandwich panel 
built of two constituent materials of different thermomechanical properties has been performed 
by Jopek and Strek [21] JOp 2015, and showed that it is possible to obtain a material that 
exhibits auxetic behaviour although all its constituents does not. Furthermore, the smallest 
values of the effective Poisson’s ratio are obtained for the most elongated elliptical shape where 
the semi-minor axis R1 = 0.11. However and as the shape of the fibers becomes more elliptical, 
the geometry of the composite core tends to be more similar to the well-known auxetic 
geometry of rotating squares. The work of Grima et al [22] [GRi2016] explored the mechanical 
behavior of slit-perforated systems where the highly ordered pattern of slits in traditional 
auxetic perforated systems are replaced by an arrangement where each slit is oriented in a quasi-
random manner. The investigation was performed using a Finite Element approach and showed 
that a regular conventional sheet of rubber-like material can be converted into a more value-
added auxetic metamaterial with high negative Poisson’s ratios through the introduction of non-
symmetric quasi-random cuts. Pozniak et al [23] [Poz2016] performed finite element studies 
focusing on effective mechanical properties of systems with elliptic inclusions in order to 
investigate the effective Poisson's ratio and Young's modulus corresponding to stresses acting 
in the x-axis direction. The authors concluded that for very soft inclusions, the dominating 
mechanism is that of rotating rigid units that leads to almost perfect auxeticity (Poisson’s ratios 
close to -1). However, for the opposite limit (for rigid inclusions), the auxeticity has also been 
observed. Wojciechowski [24] [Woj1987] applied a constant thermodynamic tension Monte 
Carlo method in order to study the elastic properties of a two-dimensional system of hard cyclic 
hexamers at different pressure values. He found that the Poisson modulus could be negative in 
the tilted phase. In another study, the same author [25] [Woj1989] showed that a two-
dimensional lattice model of hexagonal molecules on a triangular lattice interacting via a 
nearest-neighbour n-inverse-power site-site potential displays a negative Poisson’s ratio at high 
densities when the anisotropy of the molecules is large. Mechanisms leading to a planar 
negative Poisson’s ratio consisting of a simple structure formed by squares, which can be 
regarded as a crystal structure, where each square can only rotate was proposed by Ishibashi 
and Iwata [26] [Ish2000].  
 
In order to derive the Poisson’s ratio, the elastic compliances of a two-dimensional model 
systems of hard discs with parallel layers of hard cyclic hexamers were determined by Bilski 
and Wojciechowski [27] [Bil2016] using a Monte Carlo simulation in the isobaric–isothermal 
ensemble with variable shape of the periodic box. At the same concentrations, the systems with 



H-layers showed significantly lower values of Poisson’s ratio than those with V-layers thus 
strongly depending on the layer orientation. The obtained results indicate a new way for 
modifying crystal Poisson’s ratios. 
 
The aim of this paper is to propose a new refined analytical model capable of evaluating the 
effect of relative density and curvature of cell walls on the mechanical properties of periodic 
honeycomb cells with round corners. In order to find out the optimal topologies for different 
multifunctional applications, the anisotropic behaviour of honeycomb materials at round 
corners must be described using all three deformations (flexural, shear and stretching 
mechanisms). In addition, a numerical model using Abacus software is developed to validate 
the analytical established approach. It is worth noticing that this investigation is a continuation 
of the previous one performed by Bezazi et al. [10]. 

 
 
Nomenclature  

t : thickness of the cell wall 
l : lengths of the cell walls 
a : length of the base wall 
b : height of the cell 
θ  : internal angle of the cell 
P  : concentrated load along the direction 1 
W : concentrated load along the direction 2 
uM

 : displacement due to bending 
uN : displacement due to axial force 
uT

 : displacement due to shear 

 
A*  : reduced shear section  
ε1, ε2 : in-plane strains  

r
l

a =    : curved cell walls aspect ratio 

=
a
l

b    : base wall aspect ratio 

=
t
l

g    : honeycomb relative density 

 

U : strain Energy 
Es : Young’s modulus of the constituent material 
E1,E2 : Young’s modulus in the direction 1 and 2 
Gs         : Shear modulus 
ν : Poisson's ratio of the constituent material 
ν12, ν21 : theoretical in-plane Poisson's ratios 
 

 

II. Analytical models 
The actual developed analytical model is linked to the prediction of the mechanical properties 
in honeycomb cores illustrated in [2][5][10][28][29]. The novelty relies on taking into account 
the strain energy associated with the shear and the axial (stretching) force acting in the walls. 
Fig. 1 presents a honeycomb design in which the sharp edge corners are replaced by round 
shapes. In the following analytical development, the radius r is considered a variable together 
with the length a. 
 



 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. New design of the re-entrant cell                                   Fig .2 Detail of the geometry at the corner of the new curved honeycomb. 

 
In the design of cellular materials, the density ratio r/rs is an important parameter [2] and it can 
be calculated as: 
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Using non-dimensional parameters to define the geometry of the unit cell similarly to the ones 
used in [2][29], Eq. (1) can be recast as: 
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It is worth noticing that by reducing the radius r to zero, one would obtain the density ratio for 
classical centre symmetric configurations [1]. 

 

II.1 Refined analytical model 
 
The theorem of Castigliano’s is used to develop the present analytical model by considering the 
effect of bending, shear and stretching deformations on the honeycomb struts. This theorem 
states that the potential strain energy stored in the beam is given by: 
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The same methodology used by Bezazi et al. [10] is adapted to calculate the homogenized in-
plane mechanical properties of the actual honeycomb with round corners (Fig. 2). 
 



By using the unit load method [10], the unit cell deformation along the 1-direction due to 
bending can be calculated as (after simplifications and using the non-dimensional parameters): 
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The normal (axial) forces lead to an extension in the oblique wall (straight and curved parts) 
and the overall extension for the unit cell in the direction 1 can be determined as: 
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The transverse shear force contribution to the cross-section deformation of the beam of the unit 
cell is given by: 
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This equation predicts the shear deformation for a rectangular cross-section with a shear 
correction factor of 1. The corresponding correction factor for a rectangular cross-section 
should be 1.2 [29], but it is assumed that the shape variation in the curved portions of the unit 
cell reduces it back to 1. The shear modulus for the wall materials is equal to: 
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, where ν is the Poisson’s ratio of the core material, together with 
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6 12; ; btA bt A bt I= = = . The total unit cell deformation along direction 1 is given by the sum of 

the extension, shear and bending components of the deformation: 
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The elastic modulus in the direction 1 is calculated following the classical Gibson’s and 
Ashby’s approach [2] with the stress s1 representing the external load on the unit cell: 
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In (8), b represents the height of the honeycomb along the out-of-plane direction. For the unit 
cell, the strain e1 is calculated as: 
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The homogenized Young’s modulus E1 will therefore be calculated as the ratio between the 
tensile stress s1 and the strain e1: 
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For a regular cell (a=0),  the expression related to the centre-symmetric honeycomb with straight 
beams and combined bending/stretching/shear deformation is expressed as [2]: 
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For the elastic modulus along the direction 2, the assumptions and methodology adopted in 
paragraph II are used. The deformation used to bending the cell wall under a transverse load W 
is expressed as: 
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The overall stretching deformation for the unit cell along the direction 2 is calculated as: 
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The shear deformation cross-section contribution is: 
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The total unit cell deformation along direction 2 is given by the sum of the extension, shear and 
bending components of the cell wall deformation: 
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The stress along direction 2 is expressed as: 
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The strain 2e has the following formulation: 
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The elastic modulus along direction 2 is expressed as the ratio between the applied stress and 
the effective strain of the unit cell: 
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Also in this case, it may be noticed that when a = 0 one obtains the result related to a unit cell with 
straight beams: 
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II.3 Poisson’s ratio 
The Poisson’s ratio 12u  can be computed by following the classical formulation: 
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Substituting equations (9) and (18) into (22) and simplifying, one obtains: 
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When the load has been applied to the same direction, the total displacement along the direction 
1 is represented by: 
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The analogous displacement along the direction 2 becomes: 
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With a = 0, one can reach the results of a centre symmetric cell with straight ligaments [2]: 
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By making use of the cross-product of Young’s moduli and Poisson’s ratios for special 
orthotropic materials one can calculate the Poisson’s ratio v21 as: 
                                                                           1
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III. Finite element model 
A Finite Element model has been developed to simulate the elastic constants of the 

honeycomb by using an asymptotic homogenization approach [31][32]. The model was 
developed with the Abaqus 6.10 [33] commercial code. An assembly of 133 cells constitutes 
the finite element model representing the elementary volume (RVE) of the honeycomb structure 
after convergence shown in Fig. 3. For the FE models, an elastic shell element with reduced 
integration 90120 elements (S4R) was used. The discretization corresponded to 20 elements 
per unit length a. For the calculation of the various elastic modules, a displacement is imposed 
on one side of the RVE. For the calculation of the various modules, a displacement is imposed 



on one side of the RVE along the loading direction, the opposite side being fixed. Symmetries 
are taken into account in the boundary conditions to compute the different elastic constants. 
     

 

 

 

 

 

 

 

 

                                                                Fig.3   Representative volume element(RVE) 

IV. Results and discussions 

IV.1. Analysis of the analytical results 
The mechanical performance of the new curved honeycomb configurations is discussed by 

introducing the effect of the bending moment (M), shear (T) and the normal force (N) in the 
deformation mechanisms of the honeycomb cell wall. The contribution of the wall cross-section 
defined by the dimensionless ratio γ= t/l is considered. 
Fig. 4 shows the variation of the effective modulus E1 with the different deformation 
mechanisms in the wall MNT for two values of γ corresponding to a thin cell wall (γ= 0.1) and 
a thicker one (γ= 0.2). For the case of the thin wall, one can observe a slight difference between 
the contribution given by the different deformation mechanisms in the vicinity of θ = 0 ° which 
decreases significantly for angles exceeding ± 10 °. A stronger contribution from the bending 
mechanism is observed for the thick wall. This is particularly evident when observing Fig.4 in 
which the bending provides a 7-times higher contribution than other deformation mechanisms 
at low cell θ angles. Any other deformation mechanism contribution tends to lower the response 
provided by the cell walls under pure bending loading (Fig. 4). The consideration of the 
influence of shear and axial strains (N, T) are however usually overlooked [2][32] because of 
their low contributions in the evaluation of the cell elastic constants especially for larger internal 
cell angles. The results show that the effect of N and T becomes significant if the thickness 
parameter γ= t/l exceeds 0.2 with the other dimensionless parameters being kept constant 
(α=0.1, β=1). 
 
 



 
Fig 4. The effect of the different combinations of deformation on the elastic moduli along direction 1; 

 
 

 

 
 

α =0.2, β = 1, q = 30

 

Fig .5: Non-dimensional Young's moduli versus the relative density for different combinations of deformation mechanisms 

(a) E1 /Es depending on  ρ/ρs 

(b)  E2 /Esdepending on  ρ/ρs 

 

Fig. 5 shows the variation of the non-dimensional moduli E1/Es and E2/Es versus the relative 
density for four different combinations of the deformation mechanisms acting in the cell wall. 
The two non-dimensional moduli increase monotonically with a maximum relative density of 
0.3. At lower relative densities, the four combinations of deformation mechanisms do not 
provide a tangible difference between the moduli. On the opposite and at higher relative 
densities, it is possible to observe that the separate deformation mechanism do affect the 
stiffness in a sensible way. For a relative density ρ/ρs of 0.25 and if the bending deformation 
mechanism is considered as the dominant one, the dimensionless modulus E1/ES is 1.3 times 
higher than when all the deformation mechanisms are taken into account. As shown in Figure 
5b, the same observations can be made for the ratio E2/ES. It is clear that the analytical model 
that takes into account the bending deformation mechanism solely overestimates the stiffness 
in both directions for relative densities higher than 0.2. For lower densities, the effect of the 
different mechanisms is almost negligible. 
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For a positive internal cell angle q = 30°, the increase of the relative density of the cell reduces 
the Poisson's ratio to 0.8 for a relative density of 0.3 with a = 0.1, b = 1 (Figure 6). Note that 
when using an analytical model that considers the bending deformation mechanism only (M), 
the variation of the relative density does not affect the Poisson’s ratio n12 that becomes constant 
at 0.83 (Figure 6-a). It is also worth noticing that in the refined model with all deformation 
mechanisms included (MNT) and for a re-entrant cell (q = -30°), the auxetic behaviour is 
remarkable on the Poisson’s ratios values, starting from v12 = -3.4 at low relative densities and 
passing to v12 = -3.2 for a relative density of 0.3 (Figure 6-b). For the other combinations, the 
variation is less important. 
 

 

 

(a)                                                                                                                                   (b) 

Fig.6:  The effect of the contribution of the MNT deformation mechanisms on the Poisson v12  (α =0.1, β = 1) with: 

(a) : q = 30 , (b) : q = -30

 

 

The evolution of the dimensionless elasticity modulus E1/Es as a function of the relative density 
for different values of α (0.1, 0.2, 0.3 and 0.4) is shown in Figure 7a. The non-dimensional 
modulus E1/Es increases with higher curvature radius α. For example, an increase of 40% is 
observed on E1/Es if the curvature ratio α moves from 0.1 to 0.4. Figure7-b also shows that the 
elasticity modulus E2/Es is relatively dependent on the radius of curvature ratio a, although at 
a lesser extent. 
 
 



(a)                                                                                     (b) 

Fig 7: Non-dimensional Young's moduli in terms of the relative density: ( q = 30°  and β = 1) 

(a) E1 /Es depending on  ρ/ρs and  α 

(b) E2 /Es depending on  ρ/ρs and  α 

 

The evolution of the Poisson's ratio in terms of the relative density of the honeycomb cell for 
different curvature ratios is shown in Figure 8. For the positive cell internal angle q = 30°, we 
observe (as expected) a positive Poisson’s ratio. Conversely, an auxetic behaviour is observed 
for a negative angle q = -30°. In this case, Poisson’s ratio ν12 exceeds -4 for low relative 
densities (Figure 8.b). This figure takes into consideration all the deformation mechanisms 
(MNT) acting in the ribs. 
From observing Figure 8.a, it can be noticed that for a positive internal cell angle q = + 30 ° the 
increase of the relative density of the cell reduces the Poisson’s ratio to a value of v12 = 0.8 for 
a relative density of 0.4 and a relative radius of curvature r/l = 0.2. On the opposite and for a 
reentrant cell (q = -30 °), the auxetic behavior decreases for high relative densities. In this case, 
the Poisson’s ratio decreases to n12 = -3.9 for a curvature ratio r/l = 0.2 and a low relative density 
from 0.05. A higher relative density (0.3) tends to increase the Poisson’s ratio to v12 = -3.6 for 
the same curvature ratio (Fig. 8-b). It is worth noticing that the absence of the curvature would 
lead to an even lower Poisson’s ratio (-3). 
 

                                                     (a)                                                                                           (b)

Fig 8:  Variation of the Poisson's ratio ν12 as a function of the relative density and curvature for different curvature ratios a= r/l  

 For, β = 1. and an internal angle of the cell (a) q = 30°  ,   (b) q= -30 

IV.2. Analysis of the numerical results 
The analytical model has been benchmarked against the data of the FE simulations. Fig. 9 

compares the two sets of results related to the Poisson’s ratio n12 versus the relative density. 
The difference between the theoretical results and the numerical predictions is relatively small 
(1.5% maximum). For the convex case (q=30o), the FE simulations confirm the decrease of the 
Poisson’s ratio with the increase of the relative density. More importantly, the FE data also 
confirm the decrease of the Poisson’s ratio for positive values of the curvature ratio.  

The longitudinal modulus of elasticity was calculated for different relative densities ranging 
from 0.01 for a thin wall to 0.3 for a thicker one. The cell aspect ratio b  is fixed to 1. In all the 
cases examined, the FE model shows a significant correlation between the theoretical results 
with the parameter q. An interesting observation can be made by looking at the curve 



representing the anisotropy ratio E1/E2 and the Poisson’s ratio n12 versus the internal cell angle 
(Fig. 10). The presence of a radius of curvature (a=0.1) is sufficient to move the peak of the 
anisotropy ratio and the zero Poisson’s ratio value to a negative internal cell angle (-6o in this 
case). The presence of a curved wall tends therefore to increase the stiffness ratio in the negative 
internal cell angle regime, and also to extend in that angle range the presence of positive or zero 
Poisson’s ratio values. A classical configuration with no curved walls would have the location 
of the peak stiffness ratio and the zero Poisson’s ratio exactly at q=0o [34]. 

 

 
 

Fig. 9 Comparison between the analytical model and                                         Fig.10   E1/E2 ratio and Poisson’s ratio v12.versus the internal  

the FE simulation for the Poisson’s ratio v12.(q =30° ;b=a/l =1)                                          cell angle (a=r/l =0.1 ; b=a/l =1) 

 

 

 

Table 1.  Comparison of Poisson's ratio v12 for the three cell configurations:  
- curved corners (r/l=0.4 , q = 30°)  Hexagonal       (r/l=0 , q = 30°) chamfered corners ¶ for the same cell ¶ 

 

  
 

 
 
 

 
 

 

 
 

 

 curved corners  
v12   (r/l=0.4 , q = 30°)   

Hexagonal  
v12  (r/l=0, q = 30° ) 

chamfered corners  
v12   

r / rs g = t / l v12 v12 (FEM) g = t / l v12 v12 (FEM) g = t / l v12 
0.01 0.0119 0.8023 0.8103 0.0087 0.9997 1.0178 0.0129 1.0310 
0.05 0.0594 0.7989 0.8120 0.0433 0.9926 1.0098 0.0643 1.0265 
0.10 0.1188 0.7887 0.8014 0.0866 0.9713 0.9859 0.1286 1.0127 
0.15 0.1781 0.7724 0.7834 0.1299 0.9388 0.9519 0.1929 0.9911 
0.20 0.2375 0.7512 0.7610 0.1732 0.8986 0.9094 0.2572 0.9631 
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Conclusions 
The present work describes the geometry a centre symmetric honeycomb structure with internal 
curved cell walls. The honeycomb can also provide auxetic (in-plane Poisson’s ratio) 
deformations with internal negative cell angles. The in-plane elastic constant of the honeycomb 
is modelled using an analytical approach based on Castigliano’s theorem, and take into account 
all the three possible deformation mechanisms within the engineering beam theory – bending, 
stretching and shear deformation of the cross section. Compared to the classical centre 
symmetric honeycomb models, the curved wall honeycomb concept is defined by four 
geometries non-dimensional groups that include the curvature ratio. The theoretical uniaxial 
properties have been benchmarked against Finite Element simulations that reproduce the elastic 
constants of the honeycomb in an asymptotic homogenization approach. 
Between the most remarkable features of this honeycomb design, one has to note the effect of 
the radius of curvature of the wall over the Poisson’s ratio. While higher curvatures provide a 
decrease in the magnitude of the Poisson’s ratio for convex cell configurations (i.e., positive 
internal cell angle), in re-entrant or auxetic configurations the effect is opposite: the magnitude 
of the negative Poisson’s ratio is increased. The presence of curvatures also tends to shift 
towards negative cell angles the peak of in-plane uniaxial anisotropy and the switch between 
the negative and positive Poisson’s ratio zones. For classical centre symmetric honeycomb 
configurations, the corresponding internal cell angle for this limit configurations is constant, 
and it is equal to zero. Curved walls in honeycombs design can therefore be efficiently used to 
tailor unusual equivalent mechanical properties in cellular solids. 
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