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Abstract 

The ability to rationally manipulate and augment the cytoplasmic membrane can be used to 

overcome many of the challenges faced by conventional cellular therapies, and provide 

innovative opportunities when combined with new biotechnologies. The focus of this review 

is on emerging strategies used in cell functionalization, highlighting both pioneering 

approaches and recent developments. These will be discussed within the context of future 

directions in this rapidly evolving field. 
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Introduction 

The demand for cell functionalization 

New biotechnologies, such as organ-on-a-chip1 and 3D bioprinting,2 are providing 

researchers with increasingly innovative approaches to studying disease, engineering tissue 

and promoting in vivo regeneration. These biotechnologies often demand unnatural 

functions from cells, for instance, in cell therapy we would ideally like to target cells to a 

particular area of the body, often to promote an unnatural response within a hostile 

environment, while being able to visualise the entire process in vivo.3,4 Cells were never 

intended for use in allogeneic therapy,5 nor were tissues meant to be engineered in an 

incubator,6 or embryos in a test tube.7 Such applications are greatly removed from how a 

cell is programmed to function within an organism, which limits cells to pre-defined functions 

(e.g. cell-specific signaling pathways8 and surface markers9) and imposes tight constraints 

based on physiological conditions (e.g. temperature10 and oxygen tension11). Indeed, we 

are now at a stage where the cell itself could be considered the major restrictive factor, thus, 

effective methods to re-engineer cells are required to keep up with the rapid pace of 

biotechnological development. 

An emerging strategy to overcome these limitations is cytoplasmic membrane modification, 

which can be used to either supplement the existing capabilities of a cell, or provide entirely 

new, non-native functionality. This cell functionalization approach has allowed us, for 

instance, to provide cells with additional binding sites12 and nutrients,13 protection in harsh 

environments,14 increased adhesion to scaffolds15 and magnetic contrast.16 Compared to 

genetic modification, these strategies are simpler, faster and can be used to deliver a greater 

variety of materials to a wider range of cells. The scope of this review will cover both the 

active and passive delivery of soft biomaterials (e.g. proteins, biopolymers and 

carbohydrates) with a specific focus on non-specific membrane binding and instances where 

cells have been augmented with added functionality. We will present a selection of both 
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pioneering and recent approaches to cell functionalization, discuss their relative merits, and 

conclude by considering the challenges and future directions of this exciting new field. 

The cell membrane as an addressable canvas 

The cytoplasmic membrane was first identified by Wilhelm Pfeffer in 1877, who proposed a 

membrane theory that suggested cells were filled with an aqueous solution contained by a 

physical, semi-permeable barrier.17  In 1925, Gorter and Grendel famously used a Langmuir 

trough to demonstrate that the cytoplasmic membrane of erythrocytes was only two 

molecules thick.18 This led to the well-recognised phospholipid bilayer model, in which the 

cytoplasmic membrane was considered a lamellar bilayer stabilized by hydrophobic 

interactions between the fatty acid tails of the constituent phospholipids. It is now known that 

up to 1000 different lipids contribute to the bilayer structure, which has a thickness of 

approximately 75 Å.19 This lipid sandwich supports a wide array of proteins, which can be 

embedded within the bilayer (integral), loosely-bound to the surface (peripheral) or attached 

via a lipid anchor (lipid-bound). This was elegantly portrayed in Singer and Nicolson's fluid 

mosaic model in 1972, which depicted proteins laterally diffusing throughout a dynamic 

phospholipid bilayer, considered to be an isotropic fluid.20 An important advance on this 

model was the incorporation of lipid microdomains, which were proposed as non-equilibrium, 

two-dimensional aggregates of phospholipids and proteins, essential in membrane 

trafficking and turnover.21 Finally, an often overlooked component of the cytoplasmic 

membrane is the glycocalyx, a layer of glycans present on the outer membrane leaflet that 

is used by cells to interact with the extracellular environment.22 These components form the 

basis of the current understanding of the cytoplasmic membrane structure. 

A cell biologist will (correctly) consider the phospholipid bilayer a protective structural barrier, 

with the proteins and carbohydrates as functional components regulating mass transport,23 

adhesion24 and signalling.25 An alternative view of the cytoplasmic membrane is that of a 

canvas of addressable molecules and moieties, which can be exploited as targets for cell 

functionalization. Carolyn Bertozzi memorably described the cell membrane as a “sea of 
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functionality”,26 and when viewed from this perspective, the phospholipid bilayer becomes a 

dynamic hydrophobic continuum into which lipid anchors may be inserted, while proteins, 

glycans and phospholipid head groups are simply a collection of chemically addressable 

functional groups. Having said this, a multitude of factors must be considered when 

designing a cell surface modification strategy. First and foremost is the maintenance of cell 

viability, which necessitates functionalization methodologies that employ aqueous 

conditions, physiological pH and ionic strength, as well as ambient temperature and 

pressure. Even under these cell-amenable conditions, the introduction of membrane-active 

chemical species can still lead to cytotoxicity through processes such membrane thinning 

or hole formation,27 while blocking or modifying specific glycans can also be detrimental to 

cell function. Secondly, the temporal persistence of the exogenous material must be 

considered. Unlike genetic modification, which can be used for long-term transgene 

expression, cell functionalization strategies are intrinsically transient due to membrane 

turnover and mitosis that continuously dilute membrane-bound species. Finally, the spatial 

location and orientation of the membrane guest molecule can be important for certain 

applications, for instance, a targeting antibody may require a linker to project it away from 

the membrane surface into extracellular space, while a receptor protein or glycan will need 

to transduce signals across the membrane bilayer. Fortunately, there exists an array of well-

developed cell functionalization strategies that cater to different, individual requirements. 

The remainder of this review will discuss the relative merits and notable successes of three 

broad approaches; cell surface chemistry, non-covalent membrane labelling and extended 

cellular coating (Figure 1). 

Covalent cell surface chemistry & bio-orthogonal labelling 

Designing chemical syntheses under cytocompatible conditions is challenging, as cell 

viability has to be prioritized over more common objectives, such as reaction yield and rate. 

With this in mind, an attractive strategy is to use bio-inspired enzymatic reactions that have 

evolved to work under physiological conditions. For example, the McEver and Wohlgemuth 
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Groups used α-1,3-fucosyltransferase to enzymatically modify selectin ligands with 

guanosine diphosphate fucose, in order to present the glycoprotein sialyl Lewis X (sLeX) on 

cord blood cells31 and human mesenchymal stem cells (hMSCs).32 Here, promoting the 

surface expression of sLeX was shown to mediate a non-native cell rolling response to 

endothelial selectins. Cell rolling was also targeted by the Karp Group in 2008, who used 

biotinylation of cell-surface amines to streptavidin-link biotinylated sLeX (Figure 2a). This 

report was preceded by a very similar “ProtEx” technology, developed by the Shirwan Group 

in 2005,33 which showed that streptavidin fusion proteins could persistently label cells in vitro 

and in vivo. This approach has been used to enhance graft survival with CD95L34,35, inhibit 

cancer cell growth with CD8036,37, and produce whole-cell vaccines bearing GM-CSF / TNFα 

co-stimulators.38 Despite being less abundant than amines, thiol groups present on cysteine-

bearing proteins are an attractive target for cell surface chemistry, and their capacity for click 

chemistry reactivity has been used, for instance, in the binding of maleimide-functionalized, 

drug-loaded liposomes.39 Overall, these direct cell surface modifications represent an 

excellent approach, albeit one that is restricted by constrained reaction conditions and a 

limited number and range of addressable groups. 

A major breakthrough in this field was the development of “bio-orthogonal” chemistry, which 

was pioneered by the Bertozzi Group in 1997 (Figure 3).40 This built upon an established 

technique known as “metabolic labelling”, whereby culture medium supplemented with 

certain non-canonical amino acids or monosaccharides allowed the incorporation of new 

functional groups into the proteome or glycome.41,42 While metabolic labelling has been used 

in its own right as a functionalization tool to modulate virus-cell interactions,43 the Bertozzi 

Group extended the scope of this technology by introducing ketones as a reactive base for 

click chemistry reactions.40 This two-step, bio-orthogonal approach provided rapid kinetics 

with high specificity (i.e. no side reactivity) under physiological conditions, as well as great 

versatility. Indeed, azides, alkynes, thiols and methacryloyls have been successfully 

incorporated into cell surface glycans,44–47 amino acids15,28,48,49 and lipids,50 with 
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applications that include the selective killing of cells,51 drug conjugation,46 cell-surface click 

gelation52 and artificial adhesion to 2D or 3D substrates.15,45 Metabolic labelling and bio-

orthogonal strategies still suffer from limitations associated with tightly regulated biosynthetic 

pathways (more of an issue for amino acids than glycans), interference from specific 

metabolic pathways (a particular issue with ketone labeling), cytotoxicity arising from certain 

mediators (such as copper ions in certain azide-alkyne reactions) and the necessity to 

include a compatible, “clickable” functional group on the secondary reactive species.53 Most 

of these issues can be overcome with careful experimental design, and metabolic labelling 

coupled with bio-orthogonal bioconjugate chemistry remains an elegant approach to cell 

functionalization. Furthermore, metabolic labelling is the only approach discussed in this 

review, other than ProtEx, that has been effectively performed in vivo.54 

Non-covalent interactions with the cytoplasmic membrane 

An extremely facile approach to cell functionalization is to generate a membrane-active 

biomaterial in isolation, rather than trying to perform in situ chemical reactions at the cell 

surface. Perhaps the simplest approach is to generate a cationic molecule that will interact 

with anionic proteoglycans present within the cell glycocalyx (Figure 2b). One of the first 

examples of this approach was reported in 1972, when Danon et al. showed that chemically-

cationised ferritin could effectively contrast label cell membranes for electron microscopy.55 

This approach used a relatively simple chemical reaction, whereby acidic amino acids on 

the protein shell were converted into non-native cationic residues via carbodiimide-mediated 

nucleophilic addition of reactive diamines. This approach was very recently applied to the 

superparamagnetic protein magnetoferritin, where hMSCs were contrast labelled for 

magnetic resonance imaging, using incubation periods as short as one minute.16 The 

magnetization of hMSCs was reduced when the biosynthesis of sulfated proteoglycans was 

significantly inhibited, which was evidence that these anionic glycocalyx species play a 

major role in mediating the electrostatic binding of chemically-cationized magnetoferritin.  
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A complementary approach, developed by the Liu Group at Harvard University, used 

aggressive site-directed mutagenesis to produce “supercharged proteins” possessing an 

unnaturally large number of charged residues.56 Here, a thermodynamically stable variant 

of the green fluorescent protein (GFP) bearing a theoretical net charge of +36 was shown 

to efficiently interact with membrane proteoglycans, and was used to deliver proteins and 

DNA to a range of different cells.57–59 Both chemical cationisation and supercharging, 

however, involve making widespread modifications to the surface of a protein, which can 

lead to conformational changes in secondary and tertiary structure and subsequent loss of 

biological activity. In general, however, cationisation represents a sound approach for 

delivering robust proteins (e.g. ferritin, GFP) to the cell membrane, however, this approach 

is likely to be challenging for more structurally sensitive proteins, while certain cationic 

species have also been shown to induce cytotoxicity via membrane thinning and hole 

formation.27 

An alternative strategy to induce artificial membrane binding is to use a hydrophobic moiety 

to anchor a species to the phospholipid bilayer (Figure 2c). A pioneering example was 

introduced by Kim and Peacock in 1993, who decorated hybridoma cells with anti-mouse 

antibodies using palmitate protein A.60 This advance was achieved by exploiting the ability 

of the palmitate lipid to intercalate with the cytoplasmic membrane, and the affinity of protein 

A for the Fc region of antibodies. Using palmitated proteins as a scaffold ensures that any 

bound antibodies are oriented away from the cell surface, which effectively presents the 

binding paratope. A decade later, this technology was adopted by the Dennis Group, who 

used palmitate protein G and tissue-specific antibodies to target chondrogenic progenitor 

cells to cartilage,61 as well as hMSCs to endothelial cells,12 the colon62 and infarcted heart 

tissue.63 In 2000, the Tykocinski Group broadened this approach beyond antibodies by 

expressing fusion proteins containing the immunoglobulin Fc region, which could specifically 

bind membrane-anchored palmitate protein A.64 Variations on this “protein transfer” 

technique have been used to induce cell-rolling by functionalizing MSCs with CD162,65 as 
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well as eliciting anti-tumor responses using an array of co-stimulators and cytokines, 

including CD80,66,67 CD254,68,69 CCL21,68,69 CD95L68 and CD137L.68,69 

In 1995, the Selvaraj and Tykocinski Groups introduced a biomimetic method known as “cell 

surface painting” using proteins recombinantly-tagged with glycosylphosphatidylinositol 

(GPI).70,71 The GPI tail, present in many native membrane-bound proteins, inserts into lipid 

raft domains in the cytoplasmic membrane and anchors the fusion protein to the cell, without 

the need for any intermediary species. Importantly, the original function of the anchored 

protein is retained, which allowed cells to be painted with a wide range of proteins, including 

CD80,70–75 CD86,71,72 CD1,76 IL-12,77 TIMP-1,78 TCR,79 CCL580 and the I-domain of 

CD11a.81 A major drawback to both protein transfer and cell surface painting is the reliance 

upon fusion proteins, which limits versatility, and can be time-consuming to prepare at 

sufficient quantities. With this in mind, a number of groups have used liposome-based 

delivery vectors to present antigens82 and synthetic membrane receptor mimics,83 increase 

the cellular association of GPI-anchored proteins,84 and provide binding sites for secondary 

species, such as biotinylated SLeX.85 Liposome-based approaches, however, are often 

limited by poor encapsulation efficiency, particularly with large biomolecular species.86 

The limitations surrounding fusion proteins and liposomes can be circumvented in several 

ways, for instance, by using synthetic glycoprotein analogues87 or metal-chelating lipids 

bearing nickel nitriloacetic acid (NTA) bound to polyhistidine-tagged proteins.88 Another, 

bioconjugation approach involves the direct covalent coupling of lipids to proteins (lipidation) 

to display hydrophobic tails such as myristyl,89,90 palmityl,90,91 stearyl,90,92 or oleyl.93–95 Here, 

the membrane affinity of lipidated proteins can be tuned to some extent by increasing the 

molecular weight of the lipid,96 while membrane persistence can be increased by using 

branched lipid tails.29 A limitation of protein lipidation, however, is the requirement of organic 

co-solvents or detergents to prevent protein aggregation. A new technology that circumvents 

these issues is “cell priming”, which uses chemically-cationized proteins electrostatically 

conjugated to a responsive poly(ethylene glycol) (PEG)-based surfactant corona. 
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Conformational rearrangement of the amphiphilic polymer surfactant promotes protein 

stability and aqueous solubility (due to the hydrophilic PEG segment),97,98 and mediates 

membrane tethering for around one week in culture (via the hydrophobic tail).13 Myoglobin 

conjugates retained their oxygen-binding capacity99 and were delivered to hMSCs to provide 

an in situ oxygen reservoir to enhance the production of matrix fibres at the centre of 

engineered cartilage constructs.13 Importantly, both cell priming and protein lipidation 

necessitate careful modification of the protein surface, as aggressive bioconjugation 

strategies can lead to denaturation and subsequent loss of biological function.100 With this 

in mind, orthogonal or site-specific modifications are an attractive option, however, these 

approaches are not feasible for all proteins. 

Extended cellular coatings  

An entirely different approach to cell functionalization is to wrap or patch cells with thin 

polymeric microsheets. For instance, agarose, carrageenan or low-methoxy pectin 

biopolymers have been used to generate a 50 µm thick gel veneer around newly-fertilized 

toad eggs.102,103 This process is an excellent example of a single-cell coating (rather than 

gel encapsulation), and was shown to be effective at preventing microbial infection and 

improving post-hatching survival rates. This study, however, was demonstrated using 

relatively large cells (diameter = 1-1.5 mm), and has not been applied to smaller cells 

(diameter <100 µm). Palchesko et al. reported a more advanced, microscale technology that 

used extracellular matrix protein sheets to “shrink wrap” endothelial cells, myoblasts and 

cardiomyocytes.30 This global coating of functional biomolecules was shown to be effective 

at modulating the structure, adhesion and behavior of the coated cells, and was used in the 

study of cell-matrix interactions. 

In 2008, the Rubner Group reported that photolithography and layer-by-layer assembly 

could be used to generate cell-binding patches of polymer104 or mucin/lectin.105 These so-

called “cell backpacks” were persistently attached to one side of T-cells and monocytes, 

respectively, and have been used to magnetize cells,104 promote non-native cellular 
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assembly,106 provide resistance to phagocytosis107 and deliver therapeutics by “hitchhiking” 

on the surface of monocytes.108 The major limitation of this approach is the requirement for 

time-consuming, layer-by-layer deposition of polymeric material, however, this was recently 

addressed by the Guan Group, who used microcontact printing as a simpler, cheaper and 

higher throughput method for generating cellular backpacks.109,110 

Discussion and new developments 

The strategies discussed above could be broadly considered as passive labelling 

technologies, whereby cells exposed to bulk media, reagents or biomaterials are 

functionalized in an indiscriminate fashion. Recently, there has been a focus on more 

controlled approaches that allow targeted delivery of discrete biomaterial payloads to 

specific areas of individual cells. In 2011, for example, the Cojoc Group reported on a new 

approach whereby liposomes were maneuvered towards the surface of individual neurons 

using optical tweezers.111,112 The optically-trapped liposomes were then ruptured, using an 

external pulse of ultraviolet radiation, which released proteins and chemical stimuli that 

directionally stimulated adjacent neurons. A similar approach was developed by the 

Perriman Group to optically deliver membrane-free coacervate microdroplets to the 

cytoplasmic membrane of MSCs (Figure 4). Here, the coacervate microdroplets were 

optimized to undergo spontaneous fusion with the cell membrane, without the need for 

external stimulation.113 Moreover, the coacervate microdroplets could be pre-loaded with 

biomolecules (e.g. proteins, nucleic acids or small molecular dyes), allowing cells to be 

“paintballed” with discrete patches of functional payload. While these approaches are 

intrinsically low throughput, with respect to total cell number, they represent extremely 

powerful diagnostic and experimental tools for site-specific or single-cell functionalization. 

In summary, it is clear that rational reconfiguration of the cytoplasmic membrane is a highly 

effective pathway to endow cells with new functionality to enhance cell-based 

biotechnologies. Indeed, the rapid pace of biotechnological advance makes this an 

opportune moment to add an extra dimension to the host of cell-based therapies at our 
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fingertips, whether this is targeting cells to diseased tissues or tumors, engineering whole 

cell vaccines, interfacing cells with materials for bioelectronics and biosensing, regenerative 

medicine, or disease modelling. What is surprising, is that cell functionalization remains an 

under-exploited tool, particularly when contrasted with the success of transfection “toolkits” 

that have made genetic manipulation a routine undertaking. This disparity may be 

rationalized, in part, by the inherently interdisciplinary nature of cell functionalization, which 

draws on expertise from disparate fields of synthetic chemistry, materials science, 

biochemistry and cell biology, and generally necessitates a more considered, bespoke 

approach. To this end, we hope that this review will serve as an aid to a greater 

understanding of the subtle differences between strategies, encourage the adoption of 

current techniques, and inspire the development of new cell functionalization 

methodologies. 
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Figure Legends 

Figure 1. Fluorescence microscopy images of functionalized cells. (a) An example of cell 

surface chemistry, with human foetal osteoblasts (nuclei labelled blue with DAPI) 

metabolically labelled with L-azidohomoalanine were conjugated to a biotinylated alkyne 

that was subsequently visualised using fluorescent streptavidin (labelled red).28 Reprinted 

(adapted) with permission from Borcard F et al. Bioconjugate Chemistry 22, 1422-32 

Copyright 2011 American Chemical Society. (b) An example of non-covalent membrane 
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labelling, in which a polyethylene glycol / oleyl chain was used to anchor proteins such as 

GFP (labelled green) into NIH3T3 cells.29 Reproduced with kind permission from John Wiley 

and Sons: Kato K, Itoh C, Yasukouchi T & Nagamune T, Biotechnology Progress, 20, 2004, 

897-904. (c) An example of an extended cellular coating, whereby matrix proteins including 

fibronectin (labelled red) were used to “shrink wrap” C2C12 cells (nuclei labelled blue with 

DAPI, actin fibres labelled in green and indicated with arrows).30 Reproduced with kind 

permission from Springer Science + Business Media: Palchesko RN, Szymanski, JM, Sahu, 

A & Feinberg, AW, Cellular and Molecular Bioengineering, 7, 2014, 335-368, Fig. 4e. 

 

Figure 2. Three broad approaches to cell membrane functionalization. (a) The first method 

is direct surface chemistry, performed on functional groups present on the cell membrane. 

Here, for instance, amine groups present on membrane proteins have been biotinylated 

(purple) to allow the addition of streptavidin (yellow). This approach is commonly used to 

deliver species labelled with streptavidin or biotin.87 (b) The second method is to increase 

the cationic surface charge of the exogenous species to facilitate attractive electrostatic 

interactions with negatively-charged moieties present predominantly within the glycocalyx. 

(c) The third strategy uses hydrophobic interactions between a conjugated lipid tail and the 

phospholipid bilayer, to anchor the exogenous species to the cell membrane. 

 

Figure 3. Metabolic labelling and biorthogonal chemistry. (a) Unnatural biomolecular 

precursors, included as cell media additives, can be taken up by cells and become 

incorporated into lipids, carbohydrates or proteins (blue), including those at the cell 

membrane. (b) Metabolic labelling can be used to present reactive groups that can bind a 

secondary species (yellow). This is usually mediated by orthogonal click chemistry, in this 

example, an alkynated secondary species is bound to a cell metabolically labelled with azide 

groups. 
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Figure 4. Cell paintballing using coacervate microdroplets. Armstrong et al. recently 

demonstrated that membrane-free coacervate microdroplets can be actively loaded with 

biomaterial payloads of protein or nucleotides, and then delivered to the cell membrane 

using optical tweezers.99 (a-e) Time-lapse bright field microscope images showing an optical 

trap (pink circle) maneuvering a GFP-loaded coacervate microdroplet towards a human 

mesenchymal stem cell to initiate a targeted fusion event. (f) Fluorescence microscopy 

revealed fluorescence emission from the GFP payload present at the site of delivery. 

 

 


