
                          Hares, K., Miners, S., Cook, A., Rice, C., Scolding, N., Love, S., & Wilkins,
A. (2017). Overexpression of kinesin superfamily motor proteins in
Alzheimer’s Disease. Journal of Alzheimer's Disease, 60(4), 1511-1524.
https://doi.org/10.3233/JAD-170094

Peer reviewed version

Link to published version (if available):
10.3233/JAD-170094

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IOS at https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170094. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/132201319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3233/JAD-170094
https://doi.org/10.3233/JAD-170094
https://research-information.bris.ac.uk/en/publications/overexpression-of-kinesin-superfamily-motor-proteins-in-alzheimers-disease(e7e2cf02-fcd8-4645-a43a-ea8b3e031c58).html
https://research-information.bris.ac.uk/en/publications/overexpression-of-kinesin-superfamily-motor-proteins-in-alzheimers-disease(e7e2cf02-fcd8-4645-a43a-ea8b3e031c58).html


1 

 

Overexpression of kinesin superfamily motor proteins in Alzheimer’s disease 

 

Running title: Overexpression of KIFs in AD 

Dr Kelly Haresa (BSc, PhD), Dr James Scott Minersb (BSc, PhD), Miss Amelia Jane Cooka, Dr Claire Ricea (FRCP, 

PhD), Professor Neil Scoldinga (FRCP, PhD), Professor Seth Loveb (FRCPath, PhD) and Dr Alastair Wilkinsa 

(FRCP, PhD). 

 

aSchool of Clinical Sciences, MS and Stem Cell Group, University of Bristol, BS10 5NB, UK. 

bSchool of Clinical Sciences, Dementia Research Group, University of Bristol, BS10 5NB, UK. 

 

Correspondence:  

Dr Kelly Hares, MS and Stem Cell Group, 1st Floor, Clinical Neurosciences Office, Learning and Research 

Building, Southmead Hospital, Bristol, BS10 5NB, UK. 

E-mail: kelly.hares@bristol.ac.uk 

Tel: 0117 414 7804 

Fax: 0117 4147838 

 

 

  



2 

 

Abstract 

Defects in motor protein-mediated neuronal transport mechanisms have been implicated in a number of 

neurodegenerative disorders but remain relatively little studied in Alzheimer’s disease (AD). Our aim in the 

present study was to assess the expression of the anterograde kinesin superfamily motor proteins KIF5A, KIF1B 

and KIF21B, and to examine their relationship to levels of hyperphosphorylated tau, amyloid-β protein precursor 

(AβPP) and amyloid-β (Aβ) in human brain tissue. We used a combination of qPCR, immunoblotting and ELISA 

to perform these analyses in midfrontal cortex from 49 AD and 46 control brains. Expression of KIF5A, KIF1B 

and KIF21B at gene and protein level was significantly increased in AD. KIF5A protein expression correlated 

inversely with the levels of AβPP and soluble Aβ in AD brains. Upregulation of KIFs may be an adaptive response 

to impaired axonal transport in AD. 
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Introduction 

Neuronal health in the central nervous system is dependent on a range of physiological processes which maintain 

cellular structure, ion homeostasis, electrical activity and synaptic function. The transport of cellular organelles 

and proteins throughout the neuron, including along the axon and dendrites, is crucial for maintenance of neuronal 

structure and function. Defects in motor protein-mediated neuronal transport mechanisms have been implicated 

in a number of neurodegenerative disorders [1]. 

Transport within neurons is mediated by multiple motor proteins, many of which are involved in synaptic 

transmission and axonal trafficking.  Kinesin superfamily proteins (KIFs) comprise a large group of motor proteins 

whose primary role is the anterograde axonal transport and intraneuronal transport of protein cargoes through 

association with microtubule ‘rails’ [2].   Currently, there are 45 known members of the KIF family, 38 of which 

are neuronally enriched [3]. The majority of KIFs have an NH2-terminal head, comprising a microtubule binding 

domain and a conserved globular motor domain which hydrolyses ATP to produce the energy required for 

movement of cargoes along the microtubule and through the axon. The head is attached by an α-helical stalk to a 

COOH-terminal (tail) to which cargoes bind [2, 4].  In most cases, the tail domain of each KIF determines its 

cargo specificity. In terms of conventional kinesin, cargoes can bind directly or indirectly, through kinesin light 

chain (KLC) associations and protein adaptor complexes, to the tail domain [5]. Essential neuronal cargoes 

transported by KIFs include cellular organelles such as mitochondria, pre- and post- synaptic membrane proteins, 

and a range of structural proteins such as neurofilaments (NFs) [1].   

Given the essential role of KIFs in protein trafficking, it is not surprising that mutations in KIFs are associated 

with neurodegenerative diseases. Point mutations in the KIF5A gene have been linked to several axonopathies 

including hereditary spastic paraplegia type 10 (SPG-10) [6] and Charcot-Marie Tooth disease type 2A (CMT-

2A) [7]. SPG10 is implicated in disturbed intracellular axonal transport and is characterized by axonal loss in the 

corticospinal tract [6, 8]. Animal gene knock-out studies have also highlighted the importance of KIF5A in axonal 

transport and neuronal development [9]. In addition, single nucleotide polymorphisms (SNPs) within the KIF5A 

gene locus (rs12368653 and rs703842) have also been linked to multiple sclerosis (MS) susceptibility [10, 11], 

and we previously found levels of KIF5A protein in MS tissue to be related to SNP copy number [12, 13]. KIF5A 

is believed to transport amyloid β precursor protein (AβPP), mitochondria and a range of pre-synaptic membrane 

proteins that form the SNARE complex [9, 14-18]. The majority of these cargoes bind indirectly to KIF5A through 

KLCs.  
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SNPs in the region of the KLC1 gene have been associated with Alzheimer’s disease (AD) susceptibility [19].  

Andersson et al [20] reported that SNPs in KLC1 were associated with APOE ε4 carrier status and with the 

cerebrospinal fluid level of hyperphosphorylated tau in mild cognitive impairment patients who converted to AD 

during follow-up; suggesting that variability in axonal transport could influence early AD pathogenesis. In support 

of this theory, studies using familial AD (FAD) AβPP over-expressing transgenic mice have shown abnormal 

axonal morphology and large axonal swellings co-positive for KLC and phosphorylated NF-H within 4 months 

of birth [21]. In addition, transgenic mice with modified presenilin-1 expression have demonstrated reduced 

affinity between KLC and membrane bound organelles (such as synaptophysin and syntaxin-I containing 

vesicles), mediated via KLC phosphorylation by elevated glycogen synthase kinase 3β (GSK-3β) activity. 

Elevated GSK-3β activity has also been directly associated with levels of hyperphosphorylated tau in FAD models 

[22, 23]. The formation of intraneuronal neurofibrillary tangles (NFTs), composed of aggregated 

hyperphosphorylated tau protein, is a cardinal feature of AD. Under physiological conditions tau interacts with 

tubulin as a microtubule stabiliser [24], forming an important contributor to the structure and integrity of the axon 

for signal conductance. We have previously found reduced KIF5A, KIF1B and KIF21B expression in multiple 

sclerosis tissue [12] and demonstrated significant inverse correlations between KIF5A and cargo expression, 

suggesting that lower levels of KIF5A contribute to the axonal aggregation of proteins that lead to the formation 

of axonal spheroids, commonly seen in the disease [13]. KIF1B and KIF21B were studied as they have been 

linked to MS susceptibility [25, 26]. KIF1B is believed to share functional redundancy with KIF5A for neuronal 

protein cargoes and a mutation in its motor domain is also linked to CMT-2A [27]. KIF21B is dendritically 

enriched and involved in post-synaptic protein transport [28]. 

As intraneuronal aggregation of proteins is also a feature of AD, a disease in which neuronal protein transport is 

likely impaired [29], we thought it would be of interest to assess KIF5A, KIF1B and KIF21B expression in AD 

and to analyse the relationship between these KIF motors and the levels of AβPP, Aβ and hyperphosphorylated 

tau. 
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Materials and methods 

Study Cohort 

Samples of midfrontal cortex (BA 9) cDNA and protein homogenate were obtained from the South West Dementia 

Brain Bank (Bristol, UK), under the terms of South West - Central Bristol Research Ethics Committee approval 

no 08/H0106/28+5. We studied 49 cases of AD (in which, according to the National Institute on Aging – 

Alzheimer's Association criteria [30], AD neuropathological change was an adequate explanation of dementia) 

and 46 age-matched controls without a history of cognitive impairment (Table 1). 

 

Quantitative real-time PCR (qPCR) 

Quantitative real-time qPCR was performed on a StepOnePlus™ Real-Time PCR system with StepOne software 

v2.1 (Applied Biosystems; Fisher Scientific UK Ltd, Loughborough, UK). Control and AD cDNA samples were 

used at a concentration of 2 ng/µL, diluted to a final volume of 20 µL with TaqMan® 2x Fast Advanced Master 

Mix and TaqMan® gene expression assays for KIF5A (Hs01007893_m1), KIF1B (Hs01114538_m1) and KIF21B 

(Hs01118428_m1; FAM-MGB dye-labelled) (Applied Biosystems). qPCR was performed on a FAST ramp speed 

holding at 50°C for 2 min, 95°C for 20 s, followed by 40 cycles at 95°C for 1 s and 60°C for 20 s. Gene expression 

(2-ΔΔct) was calculated relative to the gene encoding the neuron-specific protein NeuN (RBFOX3; 

Hs01370653_m1; FAM-MGB dye-labelled) and neuron-specific enolase 2 (ENO-2; Hs00157360_m1; FAM-

MGB dye-labelled) (Applied Biosystems). 

 

Western blotting 

All primary antibodies that we used in dot blots were initially tested for antibody specificity by western blot. 

Protein homogenates were diluted 1:1 with Laemmli 2x sample buffer (Sigma-Aldrich Ltd; Dorset, UK) and 

heated to 95°C for 5 min to denature the protein before applying to gels.  A Mini-PROTEAN Tetra Cell was 

constructed with mini-Protean TGX gels (4-20%) (Biorad Hertfordshire, UK).  The Tetra Cell chambers were 

filled with Tris/Glycine/SDS running buffer (Biorad), before we loaded 7 μL BLUeye Prestained Protein Ladder 

(Geneflow; Staffordshire, UK) and 15 μL of denatured AD protein homogenate in the remaining lanes. The gel 

was run for approximately 1 h (until the dye front reached the gel bottom) at 150 V.  Proteins on the gel were then 
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transferred onto nitrocellulose membrane for 90 min at 350 mA.  Nitrocellulose membrane from the gel transfer 

was blocked in 5% BSA/Tris-buffered saline-Tween 20 (TBS-T) or 5% milk/TBS-T (depending on antibody), for 

1 h at room temperature before its incubation with primary antibody (reconstituted in membrane blocking 

solution), overnight at 4°C.  Primary antibodies used for blotting were as follows: rabbit anti-KIF5A (Sigma-

Aldrich Ltd; HPA004469), mouse anti-GAPDH (Abcam; Ab9484); mouse anti-AβPP (Zymed; Life Technologies 

Ltd; Paisley, UK; 13-0200), rabbit anti-KIF21B (Sigma-Aldrich Ltd; HPA027274), rabbit anti-NEUN (Abcam; 

Ab177487), mouse anti-PHF-TAU (Invitrogen; Fisher Scientifc UK Ltd; MN1020) and rabbit anti-KIF1B (Bethyl 

Laboratories; Montgomery, USA; A301-055A). Optimal antibody concentration and the specific blocking 

solution used are detailed in Table 2. Bound primary antibody was detected by incubation with HRP-conjugated 

goat anti-rabbit IgG pre-adsorbed (1:10,000; Ab6721) or goat anti-mouse IgG (1:5000; Ab6789) secondary 

antibodies (both Abcam), for 1 h at room temperature.  Protein expression was visualised using a 

chemiluminescence EZ-ECL kit (1:1; Geneflow), in conjunction with a Biorad Universal III Bioplex imager.  

Densitometric band analysis was performed using Image Lab™ 5.0 software (Biorad).  All antibodies displayed 

specific bands as described on manufacturer data sheets and consistent with their reported molecular weights 

(Supplementary Figure 1). 

 

Dot blotting 

Dot blotting was performed with antibodies we had validated for specificity by western blot, as listed in Table 2. 

Nitrocellulose membrane was pre-soaked in 1x TBS, before placement in the 96-well Bio-Dot Microfiltration 

manifold (Biorad). The manifold was assembled according to the manufacturer’s protocol. Frontal lobe protein 

homogenates were diluted (1:75) with 1x TBS, and 100 µL of each sample (49 AD and 46 control) was transferred 

by microfiltration for 90 min, including a blank TBS control well. In order to maximise the sample size available 

on the 96-well manifold, technical replicates were not used. The nitrocellulose membrane was subsequently 

removed from the manifold for blocking, antibody incubation and chemiluminescence visualisation, as per the 

western blotting protocol. Densitometric analysis of protein dots was performed using Image Lab™ 5.0 software 

(Biorad).  Integrated density values were expressed relative to the neuronal control protein NeuN.  
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Tissue preparation for soluble and insoluble (guanidine-extractable) Aβ measurements 

Approximately 200 mg of frontal tissue was homogenised in TBS extraction buffer as previously described [31]. 

In brief, homogenates were centrifuged at 20, 817g for 15 min at 4°C and the supernatant (soluble fraction) stored 

at −80°C until use. The remaining pellet was homogenised in 6.25 M guanidine HCl (50 mM Tris/HCl (pH 8.0)) 

and incubated for 4 h at 25°C, followed by centrifugation at 20, 817g for 20 min, at 4°C. The supernatant 

(guanidine-extractable fraction) was stored at −80°C until use. 

 

Enzyme-linked immunosorbent assay (ELISA) 

Sandwich ELISA was used to measure total Aβ in the soluble and insoluble (guanidine-HCl-extractable) fractions 

of the homogenates, as previously described [32]. Monoclonal anti-Aβ (4G8 clone, raised against amino acids 18-

22; Millipore; Watford, UK), was used for the capture step and biotinylated anti-human Aβ monoclonal antibody 

(10H3 clone) (Thermo Fisher Scientific; Northumberland, UK), for the detection step. 

 

Statistical analysis 

Univariate mRNA and protein analysis was carried out using GraphPad Prism5™ (GraphPad Software Inc.; San 

Diego, USA).  Data normality was tested using the Shapiro-Wilk test. Unpaired t-tests or non-parametric Mann-

Whitney tests, as appropriate, were used to compare mRNA and protein data between the AD and control cohorts. 

Parametric Pearson’s or non-parametric Spearman’s correlation was used to interpret any relationship between 

proteins. One-way ANOVA with post-hoc Bonferroni was used to analyse KIF data categorised by Braak score. 

A multiple regression model (STATA v12; StataCorp LLC; Texas, USA) was used to analyse mRNA and protein 

expression in relation to disease, patient age of death, tissue post-mortem delay and gender. Where necessary, 

data was transformed to normality before performing regression analysis. For all tests, values of p < 0.05 were 

considered statistically significant. 
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Results 

Cohort variances 

The 49 AD cases used ranged from 54-98 y (mean = 81 y, SD = 9 y) and the 46 control cases used from 43-95y 

(mean = 79 y, SD = 11 y). In keeping with AD incidence, there was a higher proportion of female cases in the AD 

group (61.2%) compared with male (38.8%) and roughly an even gender split in control cases (female: 45.7%; 

male 54.3%). There was no significant difference in tissue post-mortem delay between AD (mean = 40 h, SD = 

21 h) and control samples (mean = 43 h, SD = 38 h) (two-tailed Mann-Whitney; p=0.63; Table 1). Multiple 

regression analysis revealed a significant effect of post-mortem delay (PMD) on mRNA expression (Table 3). 

Specifically, NeuN mRNA expression correlated inversely with tissue post-mortem delay (n=47, Spearman r = -

0.48, p=0.00). Subsequent analysis excluded cases with PMD >72 h. After exclusion, PMD still influenced NeuN 

mRNA expression (n=43, Spearman r = -0.45, p=0.00) but there was no effect of PMD on NeuN protein 

expression (n=76, Spearman r = -0.11, p=0.23). Therefore, KIF mRNA expression was normalised to an 

alternative neuronal house-keeping gene, neuron-specific enolase (ENO-2). There was no effect of PMD on ENO-

2 mRNA expression (n=42, Spearman r = 0.26, p=0.09). 

 

Upregulation of KIF genes in AD 

There was a 4-fold increase in KIF5A mRNA relative to ENO-2 mRNA in AD compared to controls (p < 0.001; 

Figure 1A). There was also a 3-fold increase in KIF1B mRNA in AD cases (p < 0.01; Figure 1B). There was no 

significant difference in KIF21B mRNA expression between control and AD cases (p = 0.32; Figure 1C). Multi-

regression analysis showed no effect of patient age of death, tissue post-mortem delay or gender on KIF mRNA 

expression, when normalised to ENO-2 (Table 3). 

 

Elevated KIF5A, KIF1B and KIF21B protein in AD 

Immuno dot-blot revealed significantly increased KIF5A protein in AD compared to control tissue, after 

adjustment for NeuN content (p < 0.05; Figure 2A). There were also significant increases in KIF1B (p < 0.001; 

Figure 2B) and KIF21B protein (p < 0.001; Figure 2C), after adjustment for NeuN. Multi-variate analysis showed 

no significant effect of tissue post-mortem delay or gender on KIF protein expression but there was a significant 
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effect of aging on KIF1B protein expression (Table 4). In order to establish whether increased KIF expression is 

an early event in AD pathogenesis, KIF expression was also sub-categorised according to Braak score, ranging 

from 0-6. One-way ANOVA with post-hoc Bonferroni did not reveal significant differences between the groups 

(Supplementary Table 1). 

 

KIF5A protein correlates inversely with hyperphosphorylated tau in AD brains 

As expected, we found a significant increase in hyperphosphorylated tau in AD compared to controls, adjusted 

for NeuN (p < 0.001; Figure 3). This was replicated in multi-variate analysis, however, there was a significant 

influence of patient age on tau expression (p<0.05, Table 4). Univariate analysis showed no correlation between 

KIF5A expression (adjusted for GAPDH [33]) and hyperphosphorylated tau (adjusted for NeuN) in control 

(Pearson r = -0.30, p=0.09) or AD cases (Spearman r -0.27, p=0.10; Table 5). Due to the influence of age, 

additional multi-variate analysis was performed which revealed a significant effect of KIF5A protein on 

hyperphosphorylated tau expression in AD cases (p=0.04, Table 6). Both univariate and multi-variate analysis 

showed no significant correlations between tau and KIF1B or KIF21B (Table 5 and Table 6). 

 

KIF5A protein correlates inversely with AβPP and soluble Aβ in AD 

AβPP protein level (adjusted for NeuN) was significantly elevated in AD tissue compared with control in 

univariate analysis (p<0.05; Figure 4A). However, this increase was not significant in subsequent multi-variate 

analysis, considering patient age of death, tissue PMD and gender (p=0.15, Table 4). There was a significant 

inverse correlation between KIF5A (adjusted for GAPDH) and AβPP protein level (adjusted for NeuN) in AD 

cases (Spearman r = -0.53, p < 0.001; Figure 4B) and control cases (Spearman r = -0.42, p<0.05; Table 5). As 

expected, there was a significant increase in insoluble Aβ levels in AD cases compared with control (two-tailed 

Mann-Whitney, p < 0.001), which was consolidated in multi-variate analysis (Table 4). There was no correlation 

between KIF5A expression and insoluble Aβ in AD cases (Pearson r = 0.05, p = -0.08; Table 5). Soluble Aβ was 

elevated in AD cases but not to significance (p = 0.06; Figure 4C), as verified in multi-variate analysis (p=0.05; 

Table 4). Like AβPP, soluble Aβ levels correlated inversely with KIF5A in AD cases (Pearson r = -0.49, p < 0.05; 

Figure 4D). Previous studies have suggested that the level of soluble Aβ tends to fall with increased deposition of 

insoluble Aβ [34, 35]. However, KIF5A level did not correlate with the ratio of soluble: insoluble Aβ in AD cases 
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(Spearman r = -0.35, p =0.09; Table 5). Univariate analysis showed no association between KIF21B or KIF1B 

with AβPP, soluble Aβ, insoluble Aβ and soluble:insoluble Aβ in control or AD cases (Table 5). Considering the 

effect of age on KIF1B expression, multi-variate analysis was also performed which showed no significant 

correlation between KIF1B and AβPP, soluble Aβ and insoluble Aβ, which was not affected by age 

(Supplementary Table 2). 

 

Discussion 

Dysregulated KIF expression has been investigated in relation to several neurodegenerative diseases but remains 

relatively little studied in AD [29, 36]. We have found increased KIF gene and protein expression in AD, and 

significant inverse correlations between KIF5A expression and AβPP and soluble Aβ in AD.  

KIF5A exists predominantly as a tetramer comprising two dimerised kinesin heavy chains, and two kinesin light 

chains (KLC1 and KLC2) attached at the tail domain of the KHCs. Studies in mice have shown KIF5A knock-

out is neonatal lethal and post-natal targeting of the gene results in reduced axon calibre, eventual axon loss and 

hind-limb paralysis [9]. KIF5A is believed to transport several cargoes through association with KLCs, including 

AβPP, phosphorylated NFs and SNARE complex components; SNAP-25 and syntaxin-1b [17]. It has been 

suggested that genetic variability in the KLC1 gene may influence the development of AD [20]. In mice, deletion 

of the KLC1 subunit leads to early selective defects of axonal transport of several cargoes including AβPP, NF 

and tau aggregates, causing cytoskeletal disorganisation [37].  

We found increased KIF5A protein in AD to be associated with elevated levels of the corresponding transcript. It 

is possible that KIF5A is upregulated as an adaptive response in an attempt to clear or circumvent large protein 

aggregates within the neuron or to compensate for potential reduced activity of other motors. Elevated KIF5A 

mRNA has also been found in brain tissue from demented compared to non-demented patients with Parkinson’s 

disease [38]. Univariate analysis showed a significant increase in AβPP levels in AD compared with control. 

However, this effect was lost in multi-variate analysis of the cohort, in keeping with previous studies [39, 40]. 

KIF5A protein levels correlated inversely with that of AβPP, as previously reported in MS white matter [13]. 

AβPP is a type I transmembrane protein with suspected roles in cell adhesion, regulation of gene expression, and 

iron export [41]. AβPP transport by KIF5A is thought to be mediated by KLC association with AβPP-containing 

vesicles [18]. The subcellular distribution of AβPP plays a critical role in its metabolism, including the cleavage 
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by β- and γ- secretases that generates pathogenic Aβ peptides [35, 42-52]. Maintenance of neuronal transport of 

AβPP by upregulation of KIF5A may help to maintain normal metabolism of AβPP (and thereby neuronal 

viability) for longer than would otherwise be the case. In support of this, although soluble Aβ levels were higher 

in AD than control tissue, the levels correlated inversely with that of KIF5A. KIF5A level was not related to the 

ratio of soluble: insoluble Aβ, suggesting that KIF5A does not significantly influence the deposition of Aβ. 

However, we hypothesise that upregulation of KIF5A may temporarily ameliorate the damaging effects of 

abnormal intracellular protein aggregates through maintained intraneuronal transport.  

NFTs form through aggregation of hyperphosphorylated tau [53]. Multi-variate analysis of our cohort revealed 

levels of hyperphosphorylated tau declined with age. This is likely to be influenced by many confounding 

variables such as diet, genetics and lifestyle [54]. However, taking aging into account, we found KIF5A levels 

correlated inversely with hyperphosphorylated tau levels in AD cases. This again supports the hypothesis that 

KIF5A upregulation is crucial in maintaining intraneuronal transport. However, the effectiveness of KIF5A-

mediated transport in AD still needs to be determined. Studies have reported that pathogenic forms of tau inhibit 

axonal transport through activation of the protein phosphatase 1/glycogen synthase kinase 3 (PP1/GSK3) pathway 

[55], which is believed to cause dissociation of KIF5A from its cargo through phosphorylation of KLC [29].  

KIF1B mRNA and protein levels were higher in AD than control tissue. KIF1B has two splice variants, KIF1Bα 

and KIF1Bβ, which exist as KHC monomers. KIF1Bα transports mitochondria, synaptic scaffolding molecules 

(SCAM) and post-synaptic density (PSD) proteins PSD-95 and PSD-97. KIF1Bβ transports synaptic vesicle 

precursors including synaptotagmin, synaptophysin and SV2.  In humans, a missense mutation in the KIF1Bβ 

gene is linked to CMT-2A [27], characterised clinically by weakness and atrophy of distal muscles, depressed or 

absent tendon reflexes and mild sensory loss.  The kif1bβ mutation results in a glutamine to leucine substitution 

in the ATP-binding site of the kif1bβ motor domain, which causes a reduction in microtubule-ATPase activity 

and consequent reduction in the transport of cargoes.  Impaired delivery of synaptic vesicle precursors to axons 

and nerve terminals contributes to progressive dysfunction of peripheral neurons [56].  Because of their 

overlapping cargoes, a level of functional redundancy is thought to exist between KIF1B and KIF5A. Campbell 

et al  [15] studied functional redundancy of KIFs in zebrafish and found that kif1b overexpression cannot 

compensate for loss of kif5a-mediated mitochondrial transport but suggested a dual function in maintaining 

peripheral sensory neuronal function through the transport of non-mitochondrial cargoes. These non-

mitochondrial cargoes are most likely to be synaptic proteins.  Indeed, rodent studies have suggested alternative 
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roles for KIF5A and KIF1B in modulating mitochondrial motility, suggesting KIF1B overexpression reduces 

mitochondrial transport, whereas KIF5A overexpression increases motility [57]. We had considered the possibility 

that elevated KIF5A might partly be a physiological compensatory response to reduced KIF1B. We found both 

KIF5A and KIF1B to be elevated in AD, however, further investigation of family isoforms, in particular KIF1Bα 

and KIF1Bβ, could help elucidate potential subunit redundancy. The precise affinity of KIF5A for cargoes such 

as AβPP and the degree of functional redundancy between axonal motors from different sub-groups remains an 

open question [58].  

The anterograde motor protein KIF21B was increased in AD compared with control tissue. KIF21B is enriched 

in the dendrites and transports γ2-subunit-containing GABAA receptor vesicles. Altered expression of KIF21B 

may be involved in the regulation of receptor density that mediates GABAergic synaptic plasticity [28]. Kreft et 

al [59] found that KIF21B mRNA was increased in early-onset AD ( < 62 y at the time of death) and that the level 

correlated with shorter disease duration, and increased disease severity as assessed by neuropathology. In our 

study, the elevation in KIF21B mRNA in AD was not statistically significant. However, the mean age at death in 

our AD cohort was 81 y, and Kreft et al did not find any increase in KIF21B mRNA in an older AD cohort ( > 72 

y at death).  

In summary, we have found upregulation of three KIFs in AD. It remains to be determined whether upregulation 

is an adaptive response that helps to maintain intraneuronal transport and stabilise axonal structure in AD or 

whether it contributes to neurodegeneration. 
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Tables 

Table 1. Clinical characteristics of Alzheimer’s disease and control patient cohort. 

Patient 

ID 

Age (yrs) 

Sex 

(M/F) 

Post-mortem 

delay (hrs) 

Braak 

stage 

Patient 

ID 

Age (yrs) 

Sex 

(M/F) 

Post-mortem 

delay (hrs) 

Braak 

stage 

AD 1 89 F 71 5 C 1 62 M 4 0 

AD 2 78 F 77 6 C 2 95 F 46 0 

AD 3 78 F 9 5 C 3 78 F 24 2 

AD 4 81 F 42 6 C 4 83 M 80 3 

AD 5 91 F 37 4 C5 64 M 12 2 

AD 6 77 F 43 4 C 6 64 M 16 0 

AD 7 96 F 53 4 C 7 80 M 106 2 

AD 8 87 F 72 5 C 8 90 M 45 2 

AD 9 87 F 67 5 C 9 81 F 103 2 

AD 10 79 F 70 3 C 10 64 M 23 2 

AD 11 81 M 29 4 C 11 77 M 55 1 

AD 12 91 F 70 5 C 12 80 M 12 2 

AD 13 78 F 35 6 C 13 73 M 36 2 

AD 14 83 F 43 5 C 14 88 F 62 2 

AD 15 70 F 25 6 C 15 88 F 72 0 

AD 16 78 F 4 5 C 16 93 F 18 2 

AD 17 69 M 48 5 C 17 80 F 92 0 

AD 18 74 M 50 5 C 18 88 F 28 2 

AD 19 80 F 21 5 C 19 82 M 30 2 

AD 20 95 M 48 3 C 20 84 M 48 3 

AD 21 89 F 4 6 C 21 90 M 48 2 

AD 22 79 M 28 6 C 22 75 M 48 2 

AD 23 85 M 66 6 C 23 89 F 15 2 

AD 24 95 F 74 3 C 24 73 M 33 1 

AD 25 81 F 66 4 C 25 69 M 66 2 

AD 26 80 M 31 6 C 26 73 F 59 1 

AD 27 90 F 21 4 C 27 83 F 24 2 

AD 28 57 F 24 5 C 28 82 M 3 2 

AD 29 54 F 24 6 C 29 79 M 24 - 

AD 30 84 F 20 5 C 30 43 F 12 - 

AD 31 78 M 21 3 C 31 76 F 12 - 

AD 32 93 M 20 6 C 32 84 F 17 1 
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AD 33 80 M 5 6 C 33 82 F 37 2 

AD 34 87 F 55 5 C 34 72 F 24 0 

AD 35 74 M 24 5 C 35 78 M 48 1 

AD 36 89 F 39 5 C 36 81 M 3 2 

AD 37 84 M 64 5 C 37 82 M 56 2 

AD 38 73 F 38 5 C 38 76 M 23 2 

AD 39 68 M 61 6 C 39 91 F 60 2 

AD 40 83 M 48 5 C 40 82 F 96 3 

AD 41 74 M 48 5 C 41 77 M 10 3 

AD 42 78 M 49 6 C 42 75 M 6 3 

AD 43 78 M 50 6 C 43 48 F 79 4 

AD 44 85 M 50 6 C 44 93 F 53 3 

AD 45 98 F 21 5 C 45 84 F 216 2 

AD 46 83 F 32 6 C 46 90 M 6 2 

AD 47 69 M 12 5      

AD 48 87 F 28 6      

AD 49 84 F 21 6      

Mean 81 (+/- 9) - 40 (+/- 21) - Mean 79 (+/- 11) - 43 (+/- 38) - 

Cases highlighted in red (post-mortem delay >72hrs) were removed from statistical analysis. Abbreviations: AD: Alzheimer’s disease; C: control; F: female; Hrs: hours; M: 

male; Yrs: years. 
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Table 2. Antibodies used for immunoblotting. 

Antigen Species Blocking Antibody WB/DB Concentration Product Code Company 

AβPP Mouse 5% milk/TBS-Tween 1:2000 13-0200 Zymed 

GAPDH Mouse 5% BSA/TBS-Tween 1:10,000 Ab9484 Abcam 

PHF-TAU Mouse 5% BSA/TBS-Tween 1:500 MN1020 Thermoscientific 

KIF5A Rabbit 5% milk/TBS-Tween 1:1000 HPA004469 Sigma-Aldrich 

KIF21B Rabbit 5% milk/TBS-Tween 1:1000 HPA027274 Sigma-Aldrich 

KIF1B Rabbit 5% milk/TBS-Tween 1:500 A301-055A Bethyl Labs 

NeuN Rabbit 5% milk/TBS-Tween 1:5000 Ab177487 Abcam 

Abbreviations: AβPP: amyloid β protein precursor; BSA: Bovine serum albumin; DB: dot-blotting; KIF: kinesin superfamily protein; NeuN: neuronal nuclei; PHF: paired-

helical filament; TBS: Tris-buffered saline; WB: western blotting. 
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Table 3. Multiple regression analysis of cohort variables on KIF mRNA expression 

Significant correlations highlighted in red. Abbreviations: ENO-2: enolase-2; KIF: kinesin superfamily protein; NeuN: neuronal nuclei. 

 

 

 

 

 

 

 

 

 

Sample 

type 
n Variables Coefficient 

Standard 

error 
t p value 

95% 

Confidence 

intervals 

KIF5A to 

NeuN  
44 

Treatment group 1.12 0.39 2.85 0.01 0.32 1.92 

Age at death 0.03 0.03 0.96 0.35 -0.04 0.10 

Post-mortem delay 0.02 0.01 2.29 0.03 0.00 0.04 

Gender -0.11 0.48 -0.22 0.83 -1.08 0.87 

KIF1B to 

NeuN  
46 

Treatment group 1.22 0.45 2.71 0.01 0.31 2.13 

Age at death -0.01 0.02 -0.43 0.67 -0.06 0.04 

Post-mortem delay 0.03 0.01 3.09 0.00 0.01 0.05 

Gender 0.64 0.46 1.39 0.17 -0.29 1.58 

KIF21B to 

NeuN  

45 

 

Treatment group 0.13 0.09 1.38 0.18 -0.06 0.32 

Age at death 0.01 0.01 1.40 0.17 -0.00 0.00 

Post-mortem delay -0.00 0.00 -0.36 0.72 -0.15 0.28 

Gender 0.07 0.11 0.63 0.53 -0.90 1.42 

KIF5A to 

ENO-2 
45 

Treatment group 1.43 0.31 4.54 0.00 0.79 2.06 

Age at death -0.04 0.02 -2.00 0.05 -0.07 0.00 

Post-mortem delay -0.00 0.01 -0.21 0.84 -0.02 0.02 

Gender 0.05 0.35 0.13 0.89 -0.65 0.74 

KIF1B to 

ENO-2 
44 

Treatment group 0.95 0.33 2.86 0.01 0.28 1.63 

Age at death -0.04 0.02 -2.04 0.05 -0.08 -0.00 

Post-mortem delay -0.00 0.01 -0.25 0.80 -0.02 0.01 

Gender -0.16 0.34 -0.46 0.64 -0.85 0.53 

KIF21B to 

ENO-2 
45 

Treatment group 0.59 0.61 0.97 0.34 -0.64 1.81 

Age at death -0.03 0.04 -0.76 0.46 -0.12 0.05 

Post-mortem delay -0.03 0.02 -1.75 0.09 -0.06 0.00 

Gender -0.27 0.68 -0.40 0.69 -1.64 1.10 
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Table 4. Multiple regression analysis of cohort variables on protein expression 

Significant correlations highlighted in red. Abbreviations: : Aβ: amyloid β; AD: Alzheimer’s disease, AβPP: amyloid β protein precursor; PHF: paired-helical filament; KIF: 

kinesin superfamily protein. 

 

 

 

Sample 

type 
n Variables Coefficient 

Standard 

error 
t p value 

95% 

Confidence 

intervals 

KIF5A  64 

Treatment group -0.53 0.14 -3.87 0.00 -0.80 -0.26 

Age at death -0.01 0.01 -1.64 0.11 -0.03 0.00 

Post-mortem delay 0.00 0.00 1.15 0.25 -0.00 0.01 

Gender 0.03 0.14 0.19 0.85 -0.25 0.31 

KIF1B 80 

Treatment group 1.01 0.21 4.91 0.00 0.60 1.42 

Age at death -0.03 0.01 -2.80 0.01 -0.05 -0.01 

Post-mortem delay 0.01 0.00 1.91 0.06 -0.00 0.02 

Gender 0.11 0.21 0.53 0.60 -0.31 0.54 

KIF21B 
75 

 

Treatment group 0.53 0.15 3.62 0.00 0.24 0.81 

Age at death -0.01 0.01 -0.98 0.33 -0.03 0.01 

Post-mortem delay 0.00 0.00 0.90 0.37 -0.00 0.01 

Gender 0.02 0.16 0.12 0.91 -0.29 0.33 

AβPP 81 

Treatment group 1.40 0.95 1.46 0.15 -0.50 3.30 

Age at death -0.08 0.05 -1.42 0.16 -0.18 0.03 

Post-mortem delay 0.04 0.02 1.73 0.09 -0.01 0.09 

Gender 0.73 0.98 0.75 0.46 -1.22 2.69 

PHF-Tau 77 

Treatment group -0.16 0.02 -8.32 0.00 -0.19 -0.12 

Age at death 0.00 0.00 2.07 0.04 0.00 0.00 

Post-mortem delay -0.00 0.00 -1.42 0.16 -0.00 0.00 

Gender -0.03 0.02 -1.28 0.21 -0.07 0.01 

Insoluble 

Aβ 
68 

Treatment group 128.70 15.87 8.11 0.00 96.99 160.42 

Age at death 0.61 0.69 0.89 0.38 -0.76 1.99 

Post-mortem delay -0.04 0.50 -0.09 0.93 -1.04 0.95 

Gender -1.91 17.03 -0.11 0.91 -35.93 32.12 

  Treatment group 0.35 0.17 2.04 0.05 0.01 0.69 

Soluble Aβ 63 Age at death 0.01 0.01 0.89 0.38 -0.01 0.02 

  Post-mortem delay -0.01 0.00 -1.92 0.06 -0.02 0.00 

  Gender 0.15 0.16 0.89 0.38 -0.18 0.47 
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Table 5. Correlation analysis of kinesin superfamily protein with proteins linked to Alzheimer’s disease. 

Significant correlations highlighted in red. Aβ: amyloid-β; AD: Alzheimer’s disease, AβPP: amyloid β protein precursor; KIF: kinesin superfamily motor protein; PHF: 

paired-helical filament. 

 

 

 

 

Motor protein Cargo protein Sample n 
Correlation  

coefficient (r) 
Significance (p) 

KIF5A 

 

AβPP 
Control 33 -0.42 0.02 

AD 41 -0.53 0.00 

PHF-Tau 
Control 32 -0.34 0.09 

AD 42 -0.27 0.10 

Insoluble Aβ 
Control 24 -0.08 0.70 

AD 26 0.05 0.81 

Soluble Aβ 
Control 20 -0.15 0.52 

AD 24 -0.49 0.02 

Soluble: Insoluble Aβ 
Control 18 0.10 0.69 

AD 24 -0.35 0.09 

KIF1B 

 

AβPP 
Control 32 -0.17 0.36 

AD 40 -0.18 0.26 

PHF-Tau 
Control 31 0.09 0.63 

AD 38 0.23 0.16 

Insoluble Aβ 
Control 22 -0.28 0.21 

AD 38 0.10 0.57 

Soluble Aβ 
Control 17 0.15 0.58 

AD 34 -0.16 0.37 

Soluble: Insoluble Aβ 
Control 17 0.21 0.43 

AD 37 -0.19 0.27 

KIF21B 

 

AβPP 
Control 33 -0.30 0.09 

AD 43 -0.15 0.34 

PHF-Tau 
Control 32 -0.30 0.10 

AD 40 -0.07 0.66 

Insoluble Aβ 
Control 25 -0.15 0.49 

AD 40 -0.10 0.54 

Soluble Aβ 
Control 19 -0.09 0.73 

AD 36 -0.09 0.61 

Soluble: Insoluble Aβ 
Control 19 0.05 0.85 

AD 38 0.11 0.53 
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Table 6. Multiple regression analysis of KIF, age and tau protein expression 

Significant correlations highlighted in red. AD: Alzheimer’s disease, KIF: kinesin superfamily motor protein; PHF: paired-helical filament. 

 

  

KIF 

protein 

Sample 

type 
n Variables Coefficient 

Standard 

error 
t 

p 

value 

95% 

Confidence 

intervals 

KIF5A 

Control 32 
Age at death -0.73 0.95 -0.77 0.45 -2.67 1.22 

PHF-Tau -34.13 23.36 -1.46 0.16 -81.91 13.64 

AD 39 
Age at death -0.01 0.02 -0.78 0.44 -0.05 0.02 

PHF-Tau -0.00 0.00 -2.14 0.04 -0.00 -0.00 

KIF1B 

Control 31 
Age at death -0.81 0.56 -1.45 0.16 -1.95 0.33 

PHF-Tau 11.70 9.51 1.23 0.23 -7.78 31.18 

AD 38 
Age at death -1.61 1.73 -0.93 0.36 -5.12 1.91 

PHF-Tau 0.02 0.04 0.56 0.58 -0.06 0.11 

KIF21B 

Control 32 
Age at death 0.22 0.43 0.51 0.61 -0.66 1.10 

PHF-Tau -13.19 8.49 -1.55 0.13 -30.55 4.17 

AD 40 
Age at death -0.02 0.02 -1.27 0.21 -0.05 0.01 

PHF-Tau -0.00 0.00 -1.00 0.32 -0.00 0.00 

 



24 

 

Figures legends/Figures 

 

Figure 1. Upregulated gene expression of anterograde kinesin motors in Alzheimer’s disease:  quantitative 

real-time PCR performed with cDNA samples obtained from homogenised brain frontal lobe sections show a 

significant increase in KIF5A mRNA expression in AD cases (n=23) compared to control (n=22), when 

normalised to ENO-2 (A). KIF1B mRNA expression is significantly increased in AD cases (n=23) compared with 

control (n=22), when normalised to ENO-2 (B). KIF21B mRNA expression is not significantly different between 

control (n=21) and AD cases (n=23), when normalised to ENO-2 (C). Results expressed as median, IQR and 

min/max quartile. Statistical test used: two-tailed Mann-Whitney; **p<0.01, ***p<0.001. AD: Alzheimer’s 

disease, IQR: inter-quartile range, KIF: kinesin superfamily protein, ENO-2: enolase-2. 
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Figure 2. Increased anterograde kinesin motor protein expression in Alzheimer’s disease:  Protein levels 

derived from immuno dot-blot show a significant increase in anterograde kinesin motor protein KIF5A expression 

in AD cases (n=43), compared with control (n=35), when normalised to NeuN (A). KIF1B protein expression is 

significantly increased in AD cases (n=42), compared with control (n=33), when normalised to NeuN (B). KIF21B 

protein expression is significantly increased in AD cases (n=44), compared with control (n=36), when normalised 

to NeuN (C). Results expressed as median, IQR and min/max quartile. Statistical test used: two-tailed Mann-

Whitney; *p<0.05, ***p<0.001. AD: Alzheimer’s disease, IQR: inter-quartile range, KIF: kinesin superfamily 

protein, NeuN: neuronal nuclei. 
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Figure 3. Elevated hyperphosphorylated tau protein expression in AD cases. Protein levels derived from 

immuno dot-blot show a significant increase in PHF-tau expression in AD cases (n=42) compared with control 

(n=35), when normalised to NeuN (A). Univariate analysis shows no significant correlation between KIF5A and 

PHF-Tau levels in AD cases (n=42; B). Results expressed as median, IQR and min/max quartile. Statistical test 

used: two-tailed Mann-Whitney (A). Correlation represented as line of best fit +/- 95% CI (B). ***p<0.001. AD: 

Alzheimer’s disease, CI: confidence interval, IQR: inter-quartile range, KIF: kinesin superfamily motor protein, 

NeuN: neuronal nuclei, PHF: paired helical filament. 
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Figure 4. Higher kinesin motor KIF5A protein levels correlate with lower levels of amyloid precursor 

protein and soluble Aβ in AD. Protein levels derived from immuno dot-blot show a significant increase in AβPP 

expression in AD cases (n=45) compared with control (n=36), when normalised to NeuN (A). Significant inverse 

correlation between KIF5A protein levels normalised to GAPDH and AβPP protein levels, normalised to NeuN 

in AD (n=41; B).  Protein levels obtained via ELISA show no significant difference in soluble Aβ protein 

expression in AD cases (n=42) compared with control (n=22; C). Significant inverse correlation between KIF5A 

protein levels normalised to NeuN and soluble Aβ protein levels in AD (n=24; D). Results expressed as median, 

IQR and min/max quartile. Statistical test used: two-tailed Mann-Whitney (A and C). Correlations represented as 

line of best fit +/- 95% CI (B and D). *p<0.05, ** p<0.01, ***p<0.001. Aβ: amyloid-β, AD: Alzheimer’s disease, 

AβPP: amyloid β protein precursor, CI: confidence intervals, IQR: inter-quartile range, KIF: kinesin superfamily 

protein, NeuN: neuronal nuclei. 

 

 

A.

C.

B.

D.

Control AD
1

10

100

1000

*

A
P

P
 I
n
te

g
ra

te
d
 D

e
n
s
it
y

 (
%

 o
f 

N
e
u

N
)

100 200 300 400 500
-2

0

2

4

6

8

10 Pearson r = -0.49

p<0.05

KIF5A Integrated Density
(% of NeuN)

S
o
lu

b
le

 A


 l
o
a
d

100 200 300 400 500

-200

0

200

400

600
Pearson r = -0.53

p<0.001

KIF5A Integrated Density
(% of GAPDH)

A
P

P
 I
n
te

g
ra

te
d
 D

e
n
s
it
y

 (
%

 o
f 

N
e
u

N
)

Control AD
1

10

100

1000

S
o
lu

b
le

 A


 l
o
a
d



28 

 

Supplementary Table 1. Analysis of Braak score on KIF expression using one-way ANOVA. 

Bonferroni’s 

Multiple 

Comparison 

Test 

Mean 

difference 
t 

Significant? 

p<0.05? 
Summary 

95% CI of 

difference 

KIF5A 

0 vs 1 27.01 0.14 No ns -576.0 630.1 

0 vs 2 -62.43 0.42 No ns -531.2 406.3 

0 vs 3 -43.38 0.26 No ns -565.6 478.9 

0 vs 4 52.38 0.29 No ns -524.6 630.2 

0 vs 5 -141.50 0.93 No ns -618.2 335.3 

0 vs 6 -133.60 0.87 No ns -615.6 348.4 

1 vs 2 -89.45 0.60 No ns -558.2 -379.3 

1 vs 3 -70.39 0.42 No ns -592.7 451.9 

1 vs 4 25.81 0.14 No ns -551.6 603.2 

1 vs 5 -168.50 1.11 No ns -645.2  308.3 

1 vs 6 -160.60 1.05 No ns -642.7 321.4 

2 vs 3 19.05 0.17 No ns -339.8 377.9 

2 vs 4 115.30 0.83 No ns -320.0 550.5 

2 vs 5 -79.04 0.86 No ns -367.7 209.7 

2 vs 6 -71.19 0.75 No ns -368.5 226.1 

3 vs 4 96.21 0.61 No ns -396.2 588.6 

3 vs 5 -98.09 0.83 No ns -467.4 271.2 

3 vs 6 -90.24 0.75 No ns -466.3 285.8 

4 vs 5 -194.30 1.37 No ns -638.1 249.5 

4 vs 6 -186.50 1.30 No ns -635.9 263.0 

5 vs 6 7.84 0.08 No ns -301.9 317.6 

KIF1B 

0 vs 1 

0 vs 2 

0 vs 3 

0 vs 4 

-15.06 0.09 No ns -552.7 522.6 

-8.04 0.06 No ns -433.1 417.0 

-74.14 0.50 No ns -539.8 391.5 

-46.46 0.29 No ns -544.2 451.3 

0 vs 5 -265.40 1.96 No ns -690.4 159.7 

0 vs 6 

1 vs 2 

1 vs 3 

1 vs 4 

-211.90 1.52 No ns -650.9 227.1 

7.02 0.05 No ns -418.0 432.1 

-59.08 0.40 No ns -524.7 406.6 

-31.40 0.20 No ns -529.2 466.4 

1 vs 5 

1 vs 6 

2 vs 3 

2 vs 4 

-250.30 1.85 No ns -675.4 174.7 

-196.80 1.41 No ns -635.8 242.2 

-66.10 0.63 No ns -395.3 263.2 

-38.42 0.32 No ns -411.8 334.9 

2 vs 5 

2 vs 6 

3 vs 4 

3 vs 5 

-257.30 3.01 No ns -526.2 11.5 

-203.80 2.21 No ns -494.2 86.5 

27.67 0.21 No ns -391.3 446.6 

-191.20 1.83 No ns -520.5 138.0 

3 vs 6 

4 vs 5 

4 vs 6 

5 vs 6 

-137.70 1.25 No ns -484.8 209.3 

-218.90 1.84 No ns -592.2 154.4 

-165.40 1.34 No ns -554.5 223.7 

53.50 0.58 No ns -236.9 343.9 

KIF21B 

0 vs 1 

0 vs 2 

0 vs 3 

0 vs 4 

14.89 0.17 No ns -264.8 294.5 

-18.04 0.26 No ns -236.2 200.1 

-87.39 1.13 No ns -329.6 154.8 

-1.50 0.02 No ns -260.4 257.4 

0 vs 5 -93.94 1.33 No ns -316.2 128.3 

0 vs 6 -140.0 1.95 No ns -364.9 85.0 

1 vs 2 -32.93 0.47 No ns -251.1 185.2 
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1 vs 3 -102.30 1.33 No ns -344.5 139.9 

1 vs 4 -16.39 0.20 No ns -275.3 242.5 

1 vs 5 -108.80 1.54 No ns -331.1 113.4 

1 vs 6 -154.9 2.16 No ns -379.8 70.1 

2 vs 3 -69.35 1.30 No ns -236.8 98.1 

2 vs 4 16.54 0.27 No ns -174.3 207.4 

2 vs 5 -75.90 1.74 No ns -213.0 61.2 

2 vs 6 -121.90 2.71 No ns -263.4 19.5 

3 vs 4 85.89 1.24 No ns -132.0 303.8 

3 vs 5 -6.55 0.12 No ns -179.3 166.2 

3 vs 6 -52.58 0.94 No ns -228.8 123.6 

4 vs 5 -92.44 1.48 No ns -287.9 103.1 

4 vs 6 -138.50 2.19 No ns -337.0 60.1 

5 vs 6 -46.04 0.98 No ns -193.7 101.6 
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Supplementary Table 2. Multiple regression analysis of KIF1B, age and Aβ protein expression 

Significant correlations highlighted in red. Aβ: amyloid-β; AD: Alzheimer’s disease, AβPP: amyloid β protein precursor; KIF: kinesin superfamily motor protein. 

  

KIF 

protein 

Sample 

type 
n Variables Coefficient 

Standard 

error 
t 

p 

value 

95% 

Confidence 

intervals 

KIF1B 

Control 32 
Age at death -0.60 0.49 -1.23 0.23 -1.59 0.40 

AβPP -1.54 1.66 -0.93 0.36 -4.93 1.84 

AD 40 
Age at death -3.04 1.16 -2.61 0.01 -5.40 -0.68 

AβPP -4.10 1.37 -3.00 0.01 -6.87 -1.33 

KIF1B 

Control 22 
Age at death -0.32 0.82 -0.39 0.70 -2.04 1.41 

Insoluble Aβ 91.04 65.26 1.40 0.18 -45.54 227.63 

AD 38 
Age at death -0.05 0.02 -2.89 0.01 -0.08 -0.01 

Insoluble Aβ 0.00 0.00 1.09 0.28 -0.00 0.00 

KIF1B 

Control 19 
Age at death -0.21 0.89 -0.24 0.81 -2.11 1.68 

Soluble Aβ -0.35 13.84 -0.03 0.98 -29.69 28.99 

AD 37 
Age at death -0.04 0.16 -2.53 0.02 -0.07 -0.01 

Soluble Aβ -0.31 0.16 -1.90 0.07 -0.64 0.02 
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Supplementary Figure 1. Antibody specificity. Western blots were performed using Alzheimer’s disease protein 

homogenates, derived from frontal lobe, to determine antibody specificity. Predicted molecular weight of KIF5A 

107kDa and 117kDa. Antibody used for band detection was rabbit anti-KIF5A 1:1000; Sigma-Aldrich; 

HPA004469 (A). Predicted molecular weight of KIF21B 180kDa. Antibody used for detection was rabbit anti-

KIF21B 1:1000; Sigma-Aldrich; HPA027274 (B). Predicted molecular weight of KIF1B 200kDa. Antibody used 

for detection was rabbit anti-KIF1B 1:1500; Bethyl Laboratories; A301-055A (C). Predicted molecular weight of 

APP 110kDa. Antibody used for detection was mouse anti-APP 1:2000; Zymed; 13-0200 (D). Predicted molecular 

weight of Tau 45-65kDa. Antibody used for detection was mouse anti-PHF-Tau 1:500; Thermoscientific; 

MN1020 (E). Predicted molecular weight of GAPDH 37kDa. Antibody used for detection was mouse anti-

GAPDH 1:10,000; Abcam; Ab9484 (F). Predicted molecular weight of NeuN 48kDa. Antibody used for detection 

was rabbit anti-NeuN 1:5000; Abcam; Ab177487 (G). APP: amyloid precursor protein; GAPDH: Glyceraldehyde 

3-phosphate dehydrogenase; kDa: kilodaltons; KIFs: kinesin superfamily proteins; MW; molecular weight; NeuN: 

neuronal nuclei. 
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