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Abstract—In this paper we present a novel close-to-sensor
computational camera design. The hardware can be configured
for a wide range of autonomous applications such as industrial in-
spection, binocular/stereo robotic vision, UAV navigation/control
and biological vision analogues. Close coupling of the image
sensor with computation, motor control and motion sensors
enables low latency responses to changes in the visual field.
An image processing pipeline that detects and processes regions
containing space-time structural coherence, in order to reduce
the transmission of redundant pixel data and stabilise selective
imaging, is introduced. The pipeline is designed to exploit
close-to-sensor processing of regions-of-interest (ROI) adaptively
captured at high temporal rates (up to 1000 ROI/s) and at
multiple spatial and temporal resolutions. Space-time structurally
coherent macro blocks are detected using a novel temporal block
matching approach; the high temporal sampling rate allows
a monotonicity constraint to be enforced to efficiently assess
confidence of matches. The robustness of the sparse motion
estimation approach is demonstrated in comparison to a state-
of-the-art optical flow algorithm and optimal Baysian grid-
based filtering. A description of how the system can generate
unsupervised training data for higher level multiple instance or
deep learning systems is discussed.

Index Terms—Close-to-sensor processing, low latency process-
ing, feature analysis, sub-pixel tracking.

I. INTRODUCTION

Object detection and tracking are critical mechanisms for
understanding the changes that occur in a dynamic scene.
However, the act of image capture and the consequent mapping
of the continuous visual world into a spatially and temporally
quantised digital representation introduces artifacts that affect
motion estimation and scene interpretation. A standard camera
captures images at fixed frame rates between 25 and 60Hz; as
an object moves across the scene significant spatial displace-
ments can occur causing large frame-to-frame differences. For
complex motions, large spatial displacements can introduce
non-linear space-time transformations increasing the chance
of errors in motion estimations.

Several further confounding observations can be made re-
garding the standard image capture and processing pipeline.
Firstly, all pixels are captured regardless of the information
content or the task being undertaken; large amounts of redun-
dant pixel data are captured, encoded and transmitted, only to
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Fig. 1. The close-to-sensor design presented in this paper (top). The config-
uration includes a highly programmable image sensor, multi-core concurrent
processors, 9 degrees of freedom motion sensing and weighs under 25 grams.
An illustration of the multi-scale adaptive region selection and person tracking
pipeline (bottom). Tracking can be performed at lower resolutions; only high
resolution head pixels need to be transmitted for identification.

be discarded at the early stages of image processing. Secondly,
large amounts of data are generated which require expensive
memory and transmission pipelines along with considerable
computer processing power. Thirdly, as data amounts increase,
image transmission and pixel processing times introduces
latency. This is a particular problem for realtime systems such
as robotics and UAV navigation where rapid reaction rates are
critical. One obvious way around this problem is to increase
the frame rate. However, within a standard capture architec-
ture this just acts to increases all of the above difficulties;
ultimately, standard imaging does not scale well in the spatio-
temporal domains.

In the natural world, extremely efficient biological vision
systems have evolved, stabilising visual perception for avoid-
ing collisions, communicating, navigating, etc. However, these
well adapted systems can become confused and disorientated
under certain conditions suggesting that expectations about
the visual world and the speed at which events occur are to
some extent learnt [1]. Additionally, specific adaptations such
as the peripheral and fovea in humans enables a visual system
capable of monitoring and attending to the visual world at



multiple spatio-temporal resolutions while preparing to attend
to the next most important event.

In this paper we present a novel architecture that has the
potential to overcome many of the issues highlighted above.
The architecture is biologically inspired but uses off-the-shelf-
components in a highly parallel, compact design. The system
is adaptable and low cost by virtue of modern image sensor
and processor technologies and the fact that redundant pixel
data is not captured, transmitted, stored or processed. As such,
a visual scene is observed at multiple spatial and temporal
scales in order to filter only objects or object parts that are of
interest, Figure 1.

II. BACKGROUND

Original investigations into autonomous low latency vision
and motor control were carried out in [2] where it was found
that latency between vision processing, motor control and
inertial lag limited the effectiveness of a binocular robotic
system. In [3] low latency sensory attention, vision processing
was investigated using a bespoke VLSI architecture. A major
difficulty of such systems is that off-the-shelf components do
not have the required levels of performance or that build-your-
own silicon hardware becomes prohibitively expensive.

One area of contemporary research is the use of neuromor-
phic engineering techniques to implement circuits that respond
to optical flow or other changes in a scene. In [4] a very
low latency, event driven device is presented. While changes
are rapidly detected and processed via binary spikes, no pixel
intensity information is captured. In [5] pixels are processed
on the focal plane to remove redundant data and output
only salient areas of pixels; by doing so energy consumption
is quantifiably reduced. Recently the Chronocam has been
introduced. There are few technical details available; it seems
to combine properties of the two aforementioned devices and
ideas presented in this paper. Each of this technologies offers
interesting application potential but none offer the low cost,
richness of functionality and programmability of the proposed
device.

In [6] and [7] it was shown that adaptive ROI sampling using
a novel combination of off-the-shelf components is possible. A
natural extension to this adaptive temporal processing pipeline
is to sample pixels at variable spatial resolutions. Disregarding
the physical repositioning of the lens, such a capability is
made available by the programmable digital zoom, or sub-
sampling, mechanism of modern image sensors. A major
advantage of having advanced sensor surface sub-sampling
is that wide fields of view can be attended to, albeit at a
low spatial resolution. Salient objects at low resolution can
be re-sampled at higher spatial resolutions and high temporal
resolutions for further, more complex, processing while keep-
ing the data transfer rates low. Adding a form of foveation to
an adaptive camera system enables the investigation of more
complex computational responses to moving visual stimuli.
In particular, the question of how many, where and how often
pixels should be sampled to successfully complete a particular
task is not well understood.

Optical flow and motion estimation are fundamental com-
ponents for dynamic scene interpretation and have been exten-
sively investigated. In this work we are particularly interested
in frame-to-frame techniques that do not require the storage of
multiple frames or significant temporal processing. Traditional
differential filter based approaches have been proposed for
smooth optical flow and tracking of interesting points [8]–
[10], while the motion estimation for compression relies on
the efficiencies of block matching. The accuracy of these
approaches can be dramatically affected by a number of
factors, including noise, discontinuous variation in appearance
or the absence of smooth pixel gradients. Pixel changes in
dynamics scenes can be extremely complex and increasingly
sophisticated algorithms have been developed to attempt to
improve accuracy [11], [12]. However, such approaches re-
quire significant amounts of computation and are not generally
well suited to realtime processing. In [13] an extension to
block matching is introduced whereby only areas that exhibit
differences are analysed for local matches within a light-
weight probabilistic sub-pixel resolution framework.

In this paper we present an adapted temporal block matching
approach that can guarantee, with a measure of certainty,
that a point of interest on an object is a reliable measure of
motion and appearance. By capturing a wide field scene at low
spatial resolution, redundant areas of pixels can be filtered out.
Areas that exhibit change can be captured at higher spatio-
temporal resolutions and subjected to the proposed temporal
block matching, i.e. does the local area’s appearance and
motion appear to change in a coherent manner. As the temporal
sampling rate is expected to be higher than an object’s rate
of motion local intensity variations become smaller and more
linear and in turn improve the robustness of motion estimation.

The rest of this paper consists of a description of the
hardware architecture followed by a detailed description of the
proposed motion estimation technique. A discussion of results
and the potential applications is followed by the conclusions.

III. HARDWARE

The modular design achieves its low complexity and cost
due to the fundamental idea that most pixels are redundant
and contain little or no useful information. The close-to-
sensor design combined with state-of-the-art image sensors
enables a wide field of view to be analysed for changes using
on-sensor image sub-sampling. Areas with changes are re-
sampled at higher spatial resolutions; pixels are processed at
read-out and discarded if not of interest. In this manner, whole,
high resolution images never exist; low resolution images and
higher resolution regions of interest are sampled and processed
immediately. The result of image processing at various scales
are used to update the image sensor configuration according
to the nature of the visual stimuli and the task being carried
out. As there are no image buffers, high frequency and costly
memory storage and transmission is avoided.

The processors used are dual core XMOS XS1 architecture,
each running at 100MHz with four concurrent threads. Each
core has 64KB of RAM, and as such the design is very much



a real-time system as there is no memory to store, or time
(in clock cycles) to process large amounts of pixel data. The
processor boards can be stacked to create a pipeline consisting
of as many processors as needed, up to eight have been tested.
An additional feature is that there is no operating system and
timing is deterministic and event driven. The processors are
programmed using a C-like language and enable concurrent
image capture and processing, for example, multiple threads
might handle each of the following concurrently; pixel read-
in, pixel processing, sensor reprogramming, data transmission,
motor driving, etc. Figure 2 show a schematic for a typical
configuration. A typical camera stack configuration consists of
an image sensor board, two processor boards, a debug board
and an ethernet socket add-on, as in Figure 1

Fig. 2. Processing is distributed across threads/cores; processing closer to
the sensor delivers lower latency. Multiple sptio-temporal resolutions are
supported, for instance low resolution event detection and region-of-interest
(ROI) processing. In the binocular configuration a bank of PID controllers
drive pan/tilt motors based on visual feedback.

The image sensors are the E2V monochrome Ruby and
colour Sapphire, the latter with a resolution of 1600x1200 pix-
els. The Ruby consists of; 1.3M pixels, 1280x1024, 5.3 square
pixels with micro-lensing, an optical format of 1/1.8, global
and rolling shutters and 200mW power usage. A lightweight
driver provides full access and control of the sensor regis-
ters, such as, windowing (region-of-interest positioning), sub-
sampling, binning (averaging), frame rate (exposure time), etc.
Region-of-interest read out rates of up to 1500fps are possible
for a 64x40 ROI while maintaining a high level of light
sensitively and low noise levels. The image sensor headboard
includes GPIO for an external trigger and strobe plus a 9
DOF imaging sensing capability; a gyro, accelerometer and
e-compass.

IV. TEMPORAL BLOCK MATCHING

For the presented hardware to process dynamic scenes or
ego motion, stable robust motion estimation is required. As
whole images do not exist and compute resources are limited,
motion estimation has to be applied to sub-sampled ROI in an
efficient online manner. Block matching is used extensively in
video coding for estimating the motion of macro blocks from
one frame to the next. Given a block of pixels in the first frame,
the most similar block is searched for within a local area in
the next frame. Here we demonstrate the benefits of image
sampling at rates that are faster than the object motion; rather

than searching over many locations in the spatial domain, we
sample a single location though time. A popular metric for
computing matches is the mean absolute difference, as in:

MAD =
1

N2

n−1∑
i=0

n−1∑
j=0

|Cij −Rij | (1)

where R is the reference macro block centred at xr, yr in
image one at time t = 1 and C is the current macro block
centred at xc, yc in image two at time t = 2. The search
area for a good match is decided by the search parameter,
p, where p is usually the number of pixels on all four sides
of the corresponding macro block in the previous frame. We
introduce an extension to Equation 1 that exploits the high
temporal sampling rates achievable with the close-to-sensor
host architecture. For general, natural scenes, high temporal
sampling increases the probability that any frame-to-frame
motion is less than one pixel. This allows an assumption of
linearity of motion, constraining the search parameter to p = 1
and for block matching to proceed through time:

min(MADT
t=1) s.t. (xct , y

c
t ) ∈ [0, 1], x = y 6= 0 (2)

Where T is some limit on the number of temporal samples
to search over. Equation 2 searches through time over a
spatial extent of p = 1 until a minimum is found, this
search is effectively a sub-pixel matching over the point spread
function (psf ) of the photon capture process and optics.
As such a further fundamental constraint can be introduced;
that of a monotonic decrease in the MAD block match in
the true direction of motion. Within a degree of error there
are three conditions that defy this constraint; no-motion-no-
texture, edge motion faster than the sampling rate or signifi-
cant illumination fluctuations occurring close to the sampling
rate. If the pixel based block match does not monotonically
decrease in any of the single pixel offsets of the Ct, t > 1 the
block cannot be reliably tracked.

A. Temporal Block Match Tracking

As matching pixels can be prone to noise and given the
observation that many significant frame-to-frame differences
occur at object boundaries such as edges, it would make sense
to investigate other, perhaps more appropriate, feature spaces.
Other than noise, frame-to-frame differences are caused by the
movement of high contrast edges; features that encode these
properties, as well as, scale and orientation include; Haar-
like features and log-Gabors. One reason to match in higher
dimensional feature spaces is that an implicit encoding of local
appearance could provide robustness as well as forming the
basis for higher level learning.

Macro block matching though time can proceed until a
minimum is found at a one pixel offset in one particular
direction; this is straight forward with highly correlated one
dimensional pixel or derivative edge values. However, when
higher dimensional de-correlated feature spaces are matched,
block differences becomes more complicated and a simple



difference metric may not represent a good measure of sim-
ilarity. In order to accommodate higher dimensional features
spaces, block matching is tracked using optimal grid-based
filters in the difference space. As the sampling rate is higher
than the pixel based rate of motion of an object, discrete states,
xit, i = 1, ..., N can be defined as the eight, N , directions of
one pixel grid offsets. Equations 3-5 represent the posterior,
prediction and update of the optimal grid-based tracker, as
described in [14].

p(xt−1|z1:t−1) =
Ns∑
i=1

wi
t−1|t−1δ(xt−1 − x

i
t−1) (3)

p(xt|z1:t−1) =
Ns∑
i=1

wi
t|t−1δ(xt − x

i
t) (4)

p(xt|z1:t) =
Ns∑
i=1

wi
t|tδ(xt − x

i
t) (5)

Where zt is the sum of all the feature dimensions that reduce
the difference in each direction or state. The feature dimen-
sions are the filter responses and correspond to a weighted
approximation of appearance; feature dimensions that have a
strong response to a local pattern and move so as to reduce
block differences lead to higher weights in the tracker. The
delta functions serve as a measure of confidence in any given
state, i.e. how many dimensions support a particular hypothesis
or direction of motion.

Tracking of the states proceeds until p(xt|z1:t) falls below
a threshold or less than half of the dimensions support a
particular hypothesis or direction of motion; the last state to be
tracked with the largest probability becomes the final motion
estimate. Initialisation of the grid based filter states is set to
xit=0 = d, where d is the dimensionality of the feature space,
i.e. all states are equally likely and all dimensions are reducing
block difference.

V. EXPERIMENTS

To develop and test the temporal block matching ap-
proaches, a series of 1000fps monochrome sequences of
people walking were captured using a Mikrotron EoSens CL
1362 high speed camera at VGA resolutions. The high resolu-
tion images allow an off-line simulation of the sub-sampling
capability of the close-to-sensor computational camera system.
Even with one to two second sequences lighting conditions can
be seen to change rapidly and there are vehicles moving in the
background of some clips.

In the first instance, frame-to-frame differencing is carried
out at the highest level of sub-sampling (largest pixel size)
with a threshold fixed at 8, a value empirically chosen to be
just above pixel noise levels. A sliding window is applied to
the integral image of the differences; the sub-window with
the largest magnitude of differences is used to calculate the
coordinates of an ROI at a lower level of sub-sampling (smaller
pixel size). A series of up to T ROI are grabbed; as each
ROI is grabbed consecutive threads along the pipeline apply

Fig. 3. A person being tracked and sampled at multiple resolutions. The green
rectangle represents a prior model of shape and scale, differences under which
should be created by something with human proportions. The red rectangle
is the expected position of the head within the shape model.

filters, extract edges/features and step through the temporal
block matching/tracking. When a motion has been estimated
the camera front end is put back into the highest level of sub-
sampling and the above process repeated.

In Figure 3 the test system is illustrated; the green rectangle
is the person shape and scale prior; differences under this
prior are tracked at the coarsest resolution, motion estimates
are computed at the finer resolution samples under the prior
and the finest pixels within the head prior (red rectangle) are
transmitted.

The multi-scale capture approach can be combined with
multi-dimensional feature spaces to improve robustness of
tracking and act as a weak model for approximating local
appearance. Two feature spaces were investigated; a ten di-
mensional Haar-like feature set at scales of 4x4 and 8x8 pixels
and a log-Gabor filter set using the default settings of [15] to
give a 24 dimensional feature set (4 scales, 6 orientations).
Both types of features were applied at the whole image scale
and separately to the ROI in order to assess the influence of
edge effects introduced by ROI sampling.

In this paper, the bounding box person prior is tracked
using a sub-pixel-motion optimal grid based tracker; the finer
detailed motion estimates of parts is used to illustrate the
potential of the proposed hardware configuration with respect
to improving robustness.

VI. RESULTS

In Figure 4 the temporal block process is illustrated with
plots of similarity in each direction of the single pixel offset
search window. The search is plotted for a pixel error and
seven of the Haar-like filter responses. For the one dimensional
pixel search Equations (1) and (2) are used; for the n-
dimensional features spaces the equations of section IV-A are
used. In Figure 4, bottom right, the difference is cause by a
strong edge moving from left to right; it can be clearly seen for
the pixel space and most of the feature dimensions that a one
pixel motion creates a minimum in appearance difference at
around four temporal frames. Searching in the wrong direction



causes an increase in error and some of the features, four
and five in particular do not respond well to the underlying
appearance.

Fig. 4. Temporal block matching for an ROI in pixel and Haar-like feature
dimensions. The 3x3 plots show the directions of the single pixel offset search
window. No motion is included to illustrate the detection of frame-to-frame
differences.

As the person moves differences are detected and ROI
from various parts of the person are selected for motion
estimation, occasionally the slowly moving right-to-left van
in the background is detected. Two estimation approaches
were tested; a monotonically decreasing error constraint and
an unconstrained grid based filter. For comparison feature
extraction was carried out using whole images or the current
ROI. In Figure 5 a plot of error for the different motion
estimation approaches is shown. The errors are given as the
average differences from a reference optical flow estimation
of [11]. The spatial x direction of motion estimation has
a low error and most of the error comes from incorrect
temporal estimation for single pixel motion. To some extent
this is reflected in Figure 4 where ambiguity in minima of the
temporal domain for single pixel motion can be seen.

It can be seen in Figure 5 the most accurate approach when
compared to the reference base-line of [11] is the grid based
filter approach in a whole image 24 dimension log-Gabor
space. However, it can also be seen that the grid based filter
approaches in 10 dimensional Haar-like space are comparable.
Using ROI based filter responses, as opposed to full size
image responses, indicates that boundary effects increase the
error in motion estimation. Next best are the monotonically
constrained descents in Haar-like and edge space. Interestingly,
the edge space search is almost as good as the 10 dimension
Haar-like space while being much more efficient to compute.
Notably the pixel based match is the poorest of all indicating
noise sensitivity and incoherent pixel based appearance.

In Figure 6 it can be seen that errors in motion estimation
increase the slower the motion is. Intuitively, it could be
considered that under natural variable lighting conditions the
larger the temporal gap between two views of an object the
more chance there has been for its appearance to have changed.
Additionally the motions in Figure 6 cluster into two groups;
those of the fast moving foreground person and the slower

Fig. 5. Temporal block matching results compared to a reference state-of-
the-art optical flow algorithm [11]. The x axis indicates the comparative
approaches; feature spaces include edge, pixel, Haar-like or log-Gabor.
Algorithms are the monotonic decent constraint or grid-based filter. Feature
extraction is carried out on either whole images or ROI. The error is the
average of 200 motion estimations using the different feature spaces and
algorithms. The 0.5 in the figure title refers to an acceptance rate that at least
50% of the features must contribute to a minima.

Fig. 6. Motion estimation error over time using the grid based filter approach
with 10 Haar-like features applied to ROIs. The error is measured with respect
to the output of [11]. As time passes, reliability of the online estimation
reduces. From Figure 5 it can be seen that most of the error is introduced by
ambiguity in the temporal element of matching.

moving vehicle in the background. Figure 7 shows a snapshots
of ROI tracking over longer periods of time for one of at set
of image sequences.

VII. DISCUSSION

The monotonically constrained version of the proposed
temporal block matching approach is designed to be efficient
to compute and require minimal amounts of memory. When
matching the current block to a reference block, eight, 1 pixel
offsets are considered; if the error of matching decreases in
any particular direction, that direction can be considered as a
possible direction of motion. An obvious optimisation that can



Fig. 7. The red rectangle on in the left is the ROI that currently contains
the largest magnitude of differences. A random difference from the top five
nearest differences to the center of the ROI is selected to track (center). The
position of the head cut-outs (right) drifts as the persons horizontal motion
oscillates slightly.

be implemented is; any direction that has caused the error to
increase is no longer considered in the block matching search.
The search will become faster as directions are eliminated
until the minima in the final direction of space-time coherence
is reached. Additionally in Figure 5 it can be seen that the
edge based monotonic decent is almost as accurate as that
computed in the 10 dimensional Haar-like space. The edge
based search could be used to determine the minima in the
directional matching with the Haar-like approach being applied
only to the final iteration to generate an appearance model.

In section IV-A temporal block match tracking is introduced
in the context of optimal grid based filtering in higher dimen-
sional spaces. As the filter tracks through the spatio-temporal
difference space, directions of motion with non-decreasing
or too noisy feature responses get filtered out. When this
process converges it is likely that the current temporal block
has spatially moved one pixel from the reference block. At this
point we have a more than 50% confidence that the motion and
appearance of the local area-of-interest is coherent. This can
be considered a form of weak learning that is not dissimilar
to the approach of [16]; however the proposed approach is
locally unsupervised. Rather than track the appearance of a
whole object using a simple motion model, as in [16], the
proposed approach can be extended to track multiple low level
appearance instances with multiple simple motions without
requiring significant increases in computation.

Finally, the output of the higher dimensional feature based
motion estimation could be used as input to fully convo-
lutional neural network learners. Most pixels in an image
are redundant; the proposed approach extracts sparse, locally
coherent, appearance models that have translated 1 pixel.
The appearance models are robust to noise and changes in
illumination and could be considered a source of low level
ground truth. Rather than have a network attempt to learn

encodings of the sparse set of coherent moving visual patterns,
the output of the local models could be used as input to a
network’s early layers. The low resolution images used to train
networks could be replaced with the filtered results of higher
resolution selective imaging.

VIII. CONCLUSIONS

In this paper we describe a novel close-to-sensor compu-
tational imaging system. The architecture enables low latency
ROI processing and sensor control along with concurrent inter-
faces for motion sensing and motor control. Low latency feed-
back from sub-sampled ROI processing is used to efficiently
discard redundant pixels reducing the cost of processing and
data transmission. High ROI sample rates minimise observed
frame-to-frame difference and non-linear space-time appear-
ance variation. This in turn enables a temporal block matching
approach that provides a robust sparse motion estimation
with a measure of confidence. A monotonicity constraint is
shown to compare well with optimal filters and offers a high
degree of efficiency. Finally the output of the sparse motion
estimation can be used to build component models of complex
object motion with the potential of acting as weakly supervise
autonomous ground truth for higher level learning algorithms.
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