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Abstract  

The challenge of eliminating Pseudomonas aeruginosa infections, such as in cystic fibrosis lungs, 

remains unchanged due to the rapid development of antibiotic resistance. Poor drug penetration 

into dense P. aeruginosa biofilms plays a vital role in ineffective clearance of the infection. Thus, the 

current antibiotic therapy against P. aeruginosa biofilms need to be revisited and alternative anti-

biofilm strategies need to be invented. Fungal quorum sensing molecule (QSM), farnesol, appear to 

have detrimental effects on P. aeruginosa. Thus, this study aimed to co-deliver naturally occurring 

QSM farnesol, with the antibiotic ciprofloxacin as a liposomal formulation to eradicate P. aeruginosa 

biofilms. Four different liposomes (with ciprofloxacin and farnesol: Lcip+far, with ciprofloxacin: Lcip, 

with farnesol: Lfar, control: Lcon) were prepared using dehydration-rehydration method and 

characterized. Drug entrapment and release were evaluated by spectrometry and high performance 

liquid chromatography (HPLC). The efficacy of liposomes was assessed using standard biofilm 

assay.  Liposome-treated 24h P. aeruginosa biofilms were quantitatively assessed by XTT reduction 

assay and crystal violet assay, qualitatively by confocal laser scanning microscopy (CLSM) and 

transmission electron microscopy (TEM). Ciprofloxacin release from liposomes was higher when 

encapsulated with farnesol (Lcip+far ) compared to Lcip (3.06% vs 1.48%) whereas  farnesol release 

was lower when encapsulated with ciprofloxacin (Lcip+far ) compared to Lfar (1.81% vs 4.75%). The 

biofilm metabolism was significantly lower when treated with Lcip+far or Lcip compared to free 

ciprofloxacin (XTT, P<0.05). When administered as Lcip+far, the ciprofloxacin concentration required 

to achieve similar biofilm inhibition was 125-fold or 10-fold lower compared to free ciprofloxacin 

or Lcip respectively (P<0.05). CLSM and TEM confirmed predominant biofilm disruption, greater 

dead cell ratio and increased depth of biofilm killing when treated with Lcip+far compared to other 

liposomal preparations. Thus, co-delivery of farnesol and ciprofloxacin is likely to be a promising 

approach to battle antibiotic resistant P. aeruginosa biofilms by enhancing biofilm killing at 

significantly lower antibiotic doses. 
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Introduction 

The opportunistic bacterial pathogen, Pseudomonas aeruginosa is one of the leading causes of 

nosocomial infections worldwide and ranked the second most prevalent among the Gram-negative 

pathogens reported to the National Nosocomial Infection Surveillance System 1. In the USA, 

approximately 51,000 healthcare-associated P. aeruginosa infections occur annually and 

alarmingly, over 6,000 (13%) of these infections are caused by multidrug-resistant variant of the 

pathogen 2. P. aeruginosa is the most commonly isolated pathogen in lung infections in cystic 

fibrosis patients and is considered as the leading cause for morbidity and mortality in such 

patients3. Despite aggressive therapeutic approach, current antibiotic treatments could only 

accomplish an adjournment of the spread of the pathogen as well as the destruction of the lung 

tissues; mucus-embedded biofilms persist for decades and cannot be completely eradicated.  Thus, 

the applications of current armory of antimicrobial compounds against P. aeruginosa biofilm 

infections are needed to be revisited and alternative anti-biofilm drugs and strategies are ought to 

be sought 4. 

P. aeruginosa biofilms are multicellular surface-attached and spatially oriented, bacterial 

communities encased in an extracellular matrix that display characteristic and significant 

resistance to antimicrobial agents and environmental stresses.  Limited drug penetration through 

the biofilm matrix 5, nutrients and oxygen-based heterogeneity of the bacterial cell populations 6, 

biofilm specific bacterial phenotypes6, subpopulations of multidrug resistant persister cells 7, and 

bacterial communications via quorum sensing and signal transduction systems 8 are suggested to 

contribute the drug resistance associated with P. aeruginosa biofilms. As a result of significant 

antibiotic tolerance, individual antibiotic therapy often fails to eliminate P. aeruginosa infections in 

CF patients and combined antibiotic therapies at high concentrations are required in managing 

acute CF related infections 9.  

A variety of antibiotic treatment strategies such as systemic and nebulized antibiotics have been 

employed to treat P. aeruginosa biofilms in CF lungs 10-12. However, to date, no therapeutic approach 

has achieved complete eradication of P. aeruginosa from the chronic lung infections most likely due 

to biofilm-specific intrinsic antibiotic resistance. In particular, the efficacy of aminoglycosides, 

widely used first-line therapy in the management of CF infections, is limited due to their chemical 

interactions with the biofilm matrix resulting slow and incomplete drug penetration into the 

bacterial biofilm core 13. Conversely, Low pH in the biofilm matrix facilitates antibacterial agents 

such as ciprofloxacin to strongly bind to the alginates within the biofilm causing significant 
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reduction in the effective drug concentrations at the target site. Alarmingly, antibiotic doses below 

Minimum Inhibitory Concentrations (MIC) i.e. sub-MICs of tobramycin have recently been found to 

promote P. aeruginosa biofilm formation, and to generate drug resistant bacterial strains 14, 15.  

Encapsulation of the drugs in to liposomes was recently introduced in overcoming nonspecific 

drug-binding to extracellular matrix and the metabolic protection in the biofilm and appears greatly 

to aid in delivering the drug of interest to the target site.  For instance, liposomal amikacin 

demonstrated a high drug loading, long term stability, slow and sustained drug release, and a 

greater potential for in vitro penetration through mucus to reach the biofilm cells of P. aeruginosa 

16. Furthermore, drug delivery via liposomes potentially aids persister cell eradication due to slow 

and sustained release of the drug providing long term localized high concentrations of the antibiotic 

compared to free form of the drug in order to kill persister cells 17, 18. .  

In recent studies, a 12-carbon sesquiterpene; farnesol,  a known virulence factor and repressor of 

yeast to hyphae morphological transition in Candida albicans 19-25 , was shown to inhibit the 

synthesis of P. aeruginosa  quorum sensing molecule (QSM), 2-heptyl-3-hydroxy-4-quinolone 

(Pseudomonas quinolone signal: PQS), PQS-regulated virulence factor pyocyanin 26,  and bacterial 

swarming motility 27. Importantly, PQS is shown to play an important role in the biofilm formation 

of P. aeruginosa 28. Hence, we speculate that farnesol possesses inhibitory effects on P. aeruginosa 

biofilm development.  

Quorum sensing has not been targeted before in the management of CF lung infections, and co-

delivery of antibiotics and QSMs has never been attempted. Thus, the aim of this study was to co-

deliver a naturally occurring fungal QSM (farnesol), and a well-established antipseudomonal 

antibiotic (ciprofloxacin), in the form of liposomes to P. aeruginosa biofilms. We hypothesized that a 

liposomal delivery system of farnesol with ciprofloxacin will efficiently disrupt and eliminate P. 

aeruginosa biofilms by targeting multiple mechanisms of biofilm development and maintenance 

compared to antibiotic treatment alone. 

 

Material and methods 

Preparation of liposomes 

For each experiment, 4 different formulations of liposomes were freshly prepared. These included: 

liposome only (Lcon), Liposome with ciprofloxacin (Lcip), liposomes with farnesol (Lfar) and liposome 
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with ciprofloxacin and farnesol (Lcip+far). Liposomes were prepared as described by Lagace et al with 

modifications 29. DPPC (1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, Genzyme Pharmaceuticals, 

Switzerland) and cholesterol were added 4:1 molar ratio and dissolved in chloroform (HPLC grade, 

Fisher Scientific, USA) in a 1:1 w/v ratio. Farnesol 2μl (0.879g/ml density) was added to the 

dissolved lipid solution and mixed thoroughly for Lfar and Lcip+far preparations. The lipid solutions 

were evaporated to form a thin layer of lipid using a rotary evaporator (Buchi R-210 rotovapor, 

Buchi Labortechnik, Switzerland). The flasks were stored under a vacuum for an hour to remove 

any residual chloroform. 

Ten milliliters of unbuffered saline (for Lcon and Lfar) or 10ml of 3mg/ml ciprofloxacin dissolved in 

unbuffered saline (for Lcip and Lcip+far , Ciprofloxacin hydrochloride USP grade, Letco Medical, 

Decatur, USA, Catalog No. 690953) were added to the flasks and sonicated in a water bath for 5 min. 

The formed multi lamellar liposomes were collected, centrifuged at 15000rpm for 10min at 40C. 

The supernatant was collected and the pellet was resuspended in unbuffered saline, washed and 

washes were collected. The resulting liposome pellet was resuspended in unbuffered saline as 

necessary and used for liposome characterization and microbiological studies.  

Determination of drug entrapment efficiency 

Ciprofloxacin entrapment  

To determine the entrapped ciprofloxacin, the optical density of the supernatant and washes 

collected during the preparation of liposomes was read in a spectrophotometer (Infinite M200, 

Tecan Systems Inc., CA, USA) at 272nm. The entrapment efficiency (EE) was calculated using 

following formula; 

�Total	quantity	of	ciprofloxacin	added − the	quantity	of	unbound	ciprofloxacin�×100 

�Total	quantity	of	ciprofloxacin	added� 

 

Farnesol entrapment  

The entrapment of farnesol was quantified using High Performance Liquid Chromatography (HPLC) 

as described by Chen et al 2009 30. Supernatant and wash were filtered through 0.22μm sterile 

filters before performing HPLC.  The assay was performed on a Waters 2495 HPLC system with a 

C18 reverse phase column (μBondapak®, 3.9×300mrn column, Waters Corporation, MA, USA).  The 
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following conditions were used in the HPLC assay: mobile phase Acetonitrile: water (80:20 V/V); 

the flow rate 1ml/min; UV detection at 210nm; retention time 6min. All samples were analyzed in 

duplicates.  

Farnesol entrapment was calculated as follows; 

�Total	quantity	of	farnesol	added − the	quantity	of	unbound	farnesol	�×100 

�Total	quantity	of	farnesol	added� 

 

Characterization of liposomes 

Particle size and zeta potential 

The size, polydispersity index and the zeta potential of liposomes were determined by Dynamic 

Light Scattering Zetasizer Nano ZS (Malvern instruments Ltd, UK).  

Morphology of liposomes 

The morphology of liposomes was visualized by transmission light microscope (TLM, Leica TCS 

SP5, Leica Microsystems, IL) fluorescent microscopy (FM, Stained with propidium iodide, Leica TCS 

SP5, Leica Microsystems, IL) and Scanning electron microscopy (SEM). In order to prepare 

liposomes for the latter, liposomes were placed on a coverslip and coated with Platinum/Palladium 

(Cressington sputter coater 208 HR, Cressington Scientific Instruments Ltd, UK). The surface 

topography of liposomes was visualized with scanning electron microscope (Zeiss Supra 40VP, CA, 

USA) in high-vacuum mode. 

Drug release  

Ciprofloxacin release from the liposomes were studied as described by Halwani M. et al 2008 with 

modifications 31. The modified assay used in this study is similar to agar diffusion assay. However, 

UV absorbance at 272 nm was used to estimate ciprofloxacin concentration instead of the zone of 

inhibition of microbial growth due to the potential variations of antibiotic penetration efficiencies 

through agar, asymmetry of zone of inhibition and variations among the microorganism used in 

agar diffusion. 
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Known volumes of liposomes were added to 10ml of saline and incubated at 370C for 24h in a 

shaker (250rpm). The liposomal suspensions were withdrawn in defined time intervals, 

centrifuged (15000rpm, 10 min) and the absorbance of the supernatant was measured at 272nm 

(Infinite M200, Tecan Systems Inc., CA, USA) to estimate ciprofloxacin release . The liposome pellet 

was re-suspended in fresh saline (10ml) after each time interval to prevent possible antibiotic 

saturation. 

After 24h of incubation, a sample was prepared as mentioned above and filtered (0.22μm). The 

quantification of farnesol released was assessed by HPLC assay as described above.  

Microorganisms and growth conditions 

Pseudomonas aeruginosa PAO1 was used throughout the study. The identity of the bacteria was 

confirmed with the commercially available API 20 E kit (Biomérieux, Mercy I’Etoile, France). All 

isolates were stored in multiple aliquots at -200C, after confirming their purity. Blood Agar (Sigma 

Aldrich, USA) and Brain Heart Infusion (BHI, Sigma Aldrich, USA) solutions were used for culturing 

P. aeruginosa. 

Prior to each experiment, P. aeruginosa was subcultured on blood agar for 18 h at 370C. A loopful of 

the overnight bacterial growth was inoculated into BHI medium, and, incubated for 18h in an 

orbital shaker (80 rpm) at 370C. The resultant growth was harvested, washed twice in Phosphate 

Buffered Saline (PBS, pH 7.2) and resuspended. The concentration of P. aeruginosa was adjusted 

1×107 cells/ml by spectrophotometry and confirmed by hemocytometric counting.  

Biofilm Formation 

P. aeruginosa biofilms were developed as described by Bandara et al 32 with some modifications. 

Commercially available pre-sterilized, polystyrene, flat bottom 96-well microtiter plates (BD 

Biosciences, California, USA) were used. Hundred µl of a standard cell suspension of bacteria 

(107organisms/ml) was prepared and transferred into the wells of a microtiter plate, and the plate 

was incubated for 1.5h (370C, 80 rpm) to promote microbial adherence to surface of the wells. After 

the initial adhesion phase, the cell suspensions were aspirated and each well was washed twice 

with PBS to remove loosely adherent cells. A total of 200µl of BHI was transferred to each well and 

the plate was incubated for 24 h (370C, 80 rpm), and wells washed twice with PBS to eliminate 

traces of the medium. The resultant biofilms were considered ready for experimental use. 

Determination of minimum inhibitory concentration (MIC) 
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Planktonic phase 

MIC was determined by a broth microdilution assay in accordance with the CLSI guidelines 33. 

Briefly, bacterial cell suspensions (5×105 Cells/ml) were treated with ciprofloxacin or farnesol in a 

concentration gradient (two-fold) and incubated in a 96 well microtiter plate for 24h at 350C. At the 

end of the incubation, the optical density was measured by a spectrophotometer at 595 nm. The 

lowest concentration of the antibiotic or farnesol at which the bacteria demonstrated visible 

growth inhibition compared to the solvent control was considered the MIC of the antibiotic or 

farnesol against P. aeruginosa. The assay was performed in quadruplicates at three times. 

Biofilm phase 

P. aeruginosa biofilms were grown in sterile 96 well plates (BD Biosciences, USA) as described 

above. Biofilms were washed twice with PBS and ciprofloxacin or farnesol was administered in a 

concentration gradient (two fold). The plates were incubated for 24h at 370C and 80 rpm.  

At the end of the incubation period, a XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-

[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) reduction assay was performed to quantify 

the viability of biofilms as described in following sections. The lowest concentration of the 

antibiotic or farnesol at which the bacteria demonstrate 80% of reduction of the viability compared 

to the solvent control is considered as the Minimum Biofilm Inhibitory Concentration (MBIC) of the 

antibiotic or farnesol against P. aeruginosa. The assay was performed quadruplicates three separate 

times. 

In addition, as described in following sections, a crystal violet assay was performed at the end of the 

incubation to estimate the effect of farnesol on the biomass of the mature P. aeruginosa biofilms. 

The assay was performed in quadruplicates at three separate times. 

Treatment of biofilms with liposomes  

P. aeruginosa biofilms were developed in 96 well plates as described above. Freshly prepared 

liposomes (Lcon, Lcip, Lfar and Lcip+far) were added in a concentration gradient to the biofilms with BHI 

and incubated for another 24h (370C, 80rpm). At the end of this incubation, biofilms were washed 

twice with PBS and a XTT reduction assay was performed. Each experiment was conducted in 

quadruplicates on three different occasions. 

XTT reduction assay 
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At the end of incubation of both test and control biofilms, a standard XTT (sodium 2,3,-bis(2-

methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) reduction 

assay was performed as described by Bandara et al 34 to measure the viability of biofilms by means 

of bacterial cell metabolic activity. In brief, commercially available XTT powder (Sigma, MO, USA) 

was dissolved in PBS to a final concentration of 1 mg/ml. Then the solution was filter-sterilized 

(0.22 μm pore size filter) and stored at -700C. Freshly prepared 0.4 mM menadione solution was 

used for XTT reduction assay. Thawed XTT solution was mixed with menadione solution in a 20:1 

(v/v) ratio immediately before the assay. Thereafter, PBS: XTT: Menadione in a 79:20:1 ratio were 

added into each well containing biofilms and incubated in the dark for 5 h at 370C. The color 

changes were measured with a microtiter plate reader (Infinite M200 microplate reader, TECAN US 

Inc, NC, USA) at 492nm.  

Crystal violet assay 

At the end of incubation of both test and control biofilms, a crystal violet assay was performed to 

quantify biofilm biomass. Biofilms were carefully washed twice with PBS and stained with a 1% 

crystal violet solution for 15 min at 250C without shaking. Wells were carefully washed three times 

with PBS to remove excess stain and air dried at room temperature. Thirty percent acetic acid was 

added to the wells containing stained biofilms and incubated for 20 min at 250C. The solution was 

transferred to a new well plate and the optical density was measured at 570nm.  

Confocal Laser Scanning Microscopy (CLSM) 

Biofilms were prepared on cover slips placed in flat bottom six well plates (Nunclon, Nunc, thermo 

Fisher scientific, USA) as described above. Pre-formed 24h biofilms were exposed to all 4 different 

liposomal preparations and incubated for another 24h at 370C in a shaker (80rpm). At the end of 

incubation, the prewashed films were stained with Live and Dead stain (Live/Dead BacLight 

Bacterial Viability kit, Invitrogen, Eugene, USA) 32. The biofilm was then analyzed using confocal 

laser scanning microscopy 

Transmission electron microscopy (TEM) 

P. aeruginosa biofilms were prepared on ACLAR® film (Electron Microscopy Sciences, PA, USA) and 

treated with various liposomal preparations as described above. At the end of the incubation, 

biofilms were washed twice with PBS and fixed with an aldehyde mixture for 2-4h on ice (4% 

gluteraldehyde, 2% paraformaldehyde, 0.1M cacodylate, 2mM Ca and 4mM Mg). The samples were 
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then washed three times with 0.1M sodium cacodylate buffer (pH7.4, Electron Microscopy Sciences, 

PA, USA) for 15 min. Subsequently, the biofilms were fixed with reduced osmium (1:1 4% 

potassium ferrocyanide in 0.2M cacodylate buffer: 4% osmium tetroxide) in a microwave (100w, 3 

sessions of 2 min on, 2 min off, two times). After fixation, the samples were washed 5 times with 

water for 10 min and dehydrated with ethanol (15 min each, 50%, 70%, and 95%, and 2×100% 

ethanol) and 100% acetone (15 min, two times). The samples were placed in a polymerization tray 

and infiltrated with resin (30%, 66% and 2×100% resin in 100% acetone) and polymerized for 2 

days at 600C. The samples were then sectioned using a Leica UltraCut Ultramicrotome® (Leica 

Microsystems Inc. IL, USA), placed on grids and observed under an FEI Tecnai Transmission 

Electron Microscope® (FEI, Oregon, USA) at 80kV. 

Statistical analysis 

Statistical analysis was performed using SPSS software (version 16.0). Mann—Whitney U-test was 

performed to compare the significant differences between corresponding controls and test samples 

of the P. aeruginosa biofilms. A P-value of less than 0.05 was considered statistically significant. 

Results 

Characteristics of liposomes 

The entrapment efficiencies of ciprofloxacin were 60% in Lcip+far and 61% in Lcip. Farnesol 

entrapment efficiencies were 91% in Lcip+far and 93% in Lfar. The diameters of Lcon, Lcip, Lfar and Lcip+far 

were 2808.0±529.6nm, 677.8±46.6nm, 684.0±43.8nm and 536.8±21nm respectively. Lcon were 

significantly larger than all three test liposomes and the difference in the diameters of test 

liposomes were insignificant (P<0.05). The zeta potentials of respective liposomes were -1.66mV, -

3.27mV, +0.09mV and -0.11mV (Table 1) and polydispersity indices of respective liposomes were 

0.086, 0.281, 0.391 and 0.213. 

Morphology of liposomes 

FM, TLM and SEM confirmed that the liposomes were spherical in shape and varied somewhat in 

size but were consistent with DLS measurements (control liposomes; Lcon, Figure 1). FM images 

exhibited a fluorescently stained liposomal membrane and an unstained dark core (Figure 1).  

Drug release 
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After 24h of drug release, 3.06% (18.04μg) of total encapsulated ciprofloxacin (589.14μg) was 

released from Lcip+far, however, only 1.48% (13.27μg) of the total encapsulated ciprofloxacin 

(897.09μg) was released from Lcip.  During a period of 24h, there was a continuous and a greater 

release of ciprofloxacin from Lcip+far compared to Lcip (Figure 2). 

After 24h, 1.81% (13.08μg) of total farnesol encapsulated (723.14μg) was released from Lcip+far. In 

contrast, 4.75% (35.13μg) of total farnesol encapsulated (738.91μg) was released from Lfar. 

Minimum inhibitory concentrations (MIC) 

The MIC of ciprofloxacin was 0.125μg/ml for planktonic P. aeruginosa and MBIC was 16μg/ml for 

24h developed P. aeruginosa biofilms.   

Farnesol did not have any significant effects on the P. aeruginosa planktonic phase, even up to 

175μg/ml. In contrast, the maximum reduction of metabolic activity as indicated by XTT readings 

(40% reduction compared to solvent controls, P<0.05) were observed at farnesol concentrations of 

90μg/ml in established P. aeruginosa biofilms. 

A crystal violet assay showed that concentrations of farnesol equal to or greater than 2.8μg/ml 

resulted in the greatest reduction in the biofilm biomass (45%, P<0.05) compared to its controls. 

Effect of liposomes on the metabolism of established P. aeruginosa biofilms- XTT reduction 

assay  

At the end of the 24h treatment of P. aeruginosa biofilms with various liposomal formulations, 

significant treatment effects were observed.  The biofilms treated with Lcip+far showed a significantly 

lower metabolic activity compared to Lcip and free ciprofloxacin.  Only ≥0.128μg/ml (P<0.05) of 

ciprofloxacin concentrations delivered from Lcip+far resulted in bacterial metabolic activity (80% 

reduction compared to control) equal to those observed in Lcip treated biofilms at ≥1.310μg 

(P<0.05) and, in contrast, 16μg/ml of free ciprofloxacin treated biofilms (P<0.05, Figure 3). 

Treatment with Lfar and Lcon did not exhibit any reduction of the P. aeruginosa biofilm metabolism 

compared to controls, as manifested by the XTT readings. 

Effect of liposomes on P. aeruginosa biofilms - Confocal laser scanning microscopy 

CLSM imaging also demonstrated the significant effect of the drug loaded liposomal preparations on 

P. aeruginosa pre-formed biofilms. Biofilms treated with liposomes containing either ciprofloxacin 
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(Lcip), farnesol (Lfar), or both (Lcip+far, Figure 4D, E, and F) exhibited a greater degree of structural 

disruption and a lower live: dead cell ratio compared to the dense, well-organized, undisturbed 

biofilm (Figure 4A) and biofilms treated with control liposomes (Lcon, Figure 4C). It was clearly 

visible that the biofilms treated with Lcip+far revealed the most significant disruption, exhibiting 

lessened biofilm mass/architecture and a significant proportion of dead cells compared to all other 

treatment combinations tested (Figure 4F). Interestingly, the biofilms treated with free 

ciprofloxacin demonstrated only isolated areas of cell death and were relatively undisrupted and 

appeared to be viable (Figure 4B) compared to Lcip and Lcip+far treated biofilms (Figure 4E and F).  

Figure 5 shows the longitudinal and horizontal sections of P. aeruginosa biofilms treated with 

various liposomal formulations. The biofilms treated with liposomal control, Lcon, showed preserved 

dense biofilm architecture and the viability deeper bacterial cell layers.  The dead and dying cells 

appeared only in the superficial cell layers of the biofilm (Figure 5A). Similarly, the Lfar treated 

biofilm also exhibited a spatially oriented biofilm structure; however, regions of bacterial death 

were also noted (Figure 5B). The thickness of the dead cell layers in the Lfar treated biofilm was 

greater than that of Lcon treated biofilm and in some areas,the full thickness of the biofilm consisted 

of dead cells (Figure 5B). Compared to the Lcon and Lfar treated biofilms, the Lcip treated biofilms 

exhibited a greater disruption of the biofilm architecture and higher proportions of dead cells 

(Figure 5C). However, live cells were still existed in the deeper layers of the biofilm (Figure 5C). In 

contrast, the Lcip+far treated biofilm showed the most significant quantities of dead bacteria 

compared to any of the other liposome treated biofilms. More importantly, the full thickness of the 

majority of the areas of the biofilm was filled with dead cells and the entire biofilm appeared dead 

(figure 5D). 

Effect of liposomes on P. aeruginosa biofilms – Transmission electron microscopy 

TEM imaging corroborated with the CSLM findings of the biofilms treated with various liposomal 

preparations. P. aeruginosa cells in the control, untreated biofilms appeared to be healthy with a 

rod shaped cell structure and dark intracellular materials. Cells were loosely packed and some 

clearly showed intact cell membranes and slimy secretions in their immediate environment. There 

were few dead cells (observed as clear cells), while some cells showed disintegration of cell 

membrane and cellular detritus (Figure 6A). Similarly, Lcon treated biofilms also showed healthy 

heterogeneous bacteria with some dividing cells. Cell membranes were intact and no dead cells 

were visible (Figure 6B). Similar to the Lcon treated biofilm, Lfar treated biofilm also consisted of 

healthy bacteria with some pale colored/less condensed intracellular materials (Figure 6C). In 
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contrast, Lcip treated biofilms had higher numbers of dead cells/clear cells. The cell membranes of 

the majority of the cells were disintegrated and the cellular contents appear to be leaked out. Small 

vesicles were also present surrounding dead cells (Figure 6D). Most importantly, the Lcip+far treated 

biofilms also exhibited the highest proportion of clear and partially ruptured cells. Some 

disintegrated cells contained cytoplasm filled vesicles. Cell debris of dead cells was distributed 

throughout the microscopic field (Figure 6E).  

Discussion 

The biofilm antibiotic resistance and the synthesis of various virulence determinants During P. 

aeruginosa biofilm formation are mediated by two major and chemically distinct quorum sensing 

systems; N-acetyl homoserine lactones and the 4-quinolones. Among all quinolones, only PQS (2-

heptyl-3-hydroxy-4-quinolone, Pseudomonas Quinolone Signal, PQS) is isolated in broncho-alveolar 

lavage fluid in CF lungs suggesting the potential association of PQS with P. aeruginosa infections and 

subsequent inflammatory damage to host respiratory tissues in CF patients 26, 35, 36.  

The role of PQS in P. aeruginosa biofilm development is well-known. PQS enhances P. aeruginosa 

biofilm formation by stimulating two known regulators of biofilm development; RhlR/C4-HSL and 

RpoS 37. Also, PQS regulates the synthesis of extracellular DNA (eDNA) in P. aeruginosa biofilms. 

eDNA acts  as a cell-cell interconnecting compound that predominantly maintain the 3D structure 

and architecture of P. aeruginosa biofilms 38. eDNA is also isolated at very high concentrations in 

sputum samples of CF lungs (up to 20mg/ml), suggesting the existence of eDNA rich micro colonies 

of P. aeruginosa in CF lungs 39. Alarmingly, eDNA enriched P. aeruginosa biofilms showed up to 640-

fold more antibiotic resistance than planktonic cultures 40. Importantly, PQS regulates the synthesis 

of various other extracellular proteases such as hydrogen cyanide and redox active phenazines like 

pyocyanin in P. aeruginosa26, 41. Pyocyanin, in turn, generates the reactive oxygen species (ROS) 

superoxide and hydrogen peroxide 42. These ROS favor bacterial colonization by damaging various 

host cells by neutrophil apoptosis, induction of IL-8 and inhibition of the dual-oxidase based 

antimicrobial system in airway epithelia 43, 44. Thus, pyocyanin producing P. aeruginosa strains are 

more difficult to clear from the lung by host immune reactions than non-pyocyanin producing P. 

aeruginosa strains 45. In addition, PQS induces P. aeruginosa to enter into a metabolically less active 

state to cope external stresses such as antibiotics 46. Due to its prominent role in P. aeruginosa 

biofilm development and maintenance, PQS appears as an attractive target for novel therapeutic 

strategies in pathogenic biofilm elimination by improving drug delivery.  
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A major QSM secreted by Candida albicans, E,E-farnesol, has been identified to significantly reduce 

PQS synthesis in P. aeruginosa 26. In addition, farnesol is known to inhibit swarming of P. 

aeruginosa, most likely through inhibiting PQS synthesis 27. Interestingly, using The Lubbock 

Chronic Wound Biofilm model, recent research revealed that farnesol at a concentration of 

1,000μg/ml could completely suppress the development of P. aeruginosa biofilms  47. Moreover, a 

role of farnesol in potentiating bacterial susceptibility to antibiotics has been recently unveiled 48. 

Hence, we designed a novel drug delivery system, exploiting aforementioned anti-pseudomonas 

properties of farnesol, using well-established liposomes to co-deliver ciprofloxacin and farnesol 

simultaneously. The latter delivery system was expected to achieve superior elimination of mature 

P. aeruginosa biofilms through farnesol-mediated inhibition of PQS synthesis and ciprofloxacin-

mediated killing of the bacteria. Furthermore, farnesol has very low aqueous solubility and is 

lipophilic, attributes making formulation in liposomes an attractive option.  

Liposomes were originally developed for use in intravenous drug delivery systems. For localized 

target release of the antibiotic such as in managing lung infections, liposomes must be intact until 

reaching the desired site of infection and have slow and sustained drug release. The therapeutic use 

of liposomes for inhaled drug delivery has been recently studied 49-51. Liposomes are expected to 

deliver antibiotics sufficiently and sustainably to the site of infection in the lung. In effect, when 

tobramycin is administered intratracheally in the form of liposomes, drug retention and 

antimicrobial activity in the lung are significantly enhanced 52-54. To synthesize liposomes with 

substantial encapsulation of both ciprofloxacin and farnesol that exhibit a slow and sustained 

release, we experimented with various combinations of DPPC and cholesterol. The optimal ratio of 

these lipids for drug encapsulation and release was 4:1 DPPC: Cholesterol (data not shown). The 

resultant, drug-loaded multi lamellar liposome populations were heterogeneous as indicated by the 

polydispersity indices and ranged between 500-700nm in diameter.  Zeta potential is a valuable 

physicochemical parameter that determines the stability of any nanosuspensions such as 

liposomes.  The repulsion between liposomes with similar electric charges ensures easy 

redispersion of the particles and prevents their aggregation. Hence, extremely positive or negative 

zeta potential values are preferred55, 56, i.e. a minimum zeta potential of ± 20 mV is desirable for 

combined  electrostatic  and steric stabilization of a nanosuspension 57 . However, all the multi 

lamellar liposomes prepared in our study demonstrated weak zeta potentials (between 0±5mV) 

and the tendency toward liposomal aggregation was confirmed through TLM imaging, where some 

liposomal aggregates were visible among individually dispersed liposomes. Thus, weak charge of 

liposomes may have influenced its stability, drug encapsulation and their adsorption to pathogens 
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58.  Addition of surfactant may have added an advantage of dissolution of farnesol and increase the 

stability of liposomes. However, due to potential cytotoxic effects of various surfactants on P. 

aeruginosa biofilms  and to simplify the liposomal composition, surfactants were not used 59. 

Nevertheless, the liposomes reported here will be further optimized for a desirable zeta potential 

and stability in the future.   

The relevance of the liposomal charge and its capability of penetration to the biofilms have been 

recently studied 60. John et al showed that the penetration of oral and topical bacterial biofilms by 

charged (+ or -) liposomes was significantly higher than that of free drug 61-63. In contrast, 

uncharged liposomes demonstrated more favorable interactions with planktonic P. aeruginosa 64. In 

concurrence with these findings, our liposomes were weakly charged (+ or -) and thus expected to 

penetrate P. aeruginosa biofilms more effectively than free drug. The CLSM images presented in this 

study further supported the enhanced penetration of liposome into P. aeruginosa biofilms. 

Compared to free ciprofloxacin treated biofilms, Lcip and Lcip+far exhibited significantly higher ratio of 

biofilm death, likely due to enhanced penetration. In particular, Lcip+far treated biofilms showed 

bacterial cell death throughout the full thickness of the biofilms compared to other tested liposomal 

formulation exhibiting its properties of superior biofilm killing. TEM images were also consistent 

with these observations and Lcip and Lcip+far killed more bacteria in P. aeruginosa biofilms compared 

to other liposomal preparations. 

In the design of liposomes, farnesol was expected to be entrapped in the lipid bilayer due to its lipid 

solubility, whereas the water soluble ciprofloxacin was expected to be encapsulated in the core of 

the liposome. Farnesol demonstrated a very high efficiency of entrapment in both Lfar and Lcip+far, 

(over a 90% entrapment). However, the release of farnesol from Lcip+far was 40% lower than that 

from Lfar during a 24h period, suggesting that the presence of ciprofloxacin affects the release of 

farnesol. Drug release from liposomes is known to be influenced by the membrane composition and 

the biochemical properties of the encapsulated drug (charge, pKas, drug stability, pH, etc.). Though 

the exact reason is yet to be unraveled, the presence of ciprofloxacin may have altered the 

liposomal stability resulting reduced farnesol release65-67.  Similar to farnesol entrapment, 

ciprofloxacin was also entrapped in liposomes efficiently regardless of the presence of farnesol. 

However, ciprofloxacin showed constantly higher rates of release from Lcip+far compared to Lcip 

throughout a 24h period, indicating that the presence of farnesol in the liposome increased the 

release of the antibiotic by two fold. Hence, from a drug release point of view, Lcip+far was a preferred 
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antibiotic release system despite possessing similar entrapment efficiencies of farnesol and 

ciprofloxacin compared to Lcip and Lfar. 

The most important and unique features of these dually loaded liposomes were noted when 

delivered to mature P. aeruginosa biofilms. A significant reduction of the biofilm viability was noted 

at 0.128μg/ml ciprofloxacin released by Lcip+far. However, to achieve a similar efficiency in biofilm 

viability reduction, ten-fold more ciprofloxacin was needed in the form of Lcip. These results 

strongly indicate that Lcip+far possesses an enhanced functional capability of killing established P. 

aeruginosa biofilms compared to liposomal ciprofloxacin (Lcip). It further confirms that the addition 

of farnesol to the liposomes significantly reduced the antibiotic dose needed to effectively eliminate 

biofilms. Furthermore, over 16μg/ml of free ciprofloxacin was needed to achieve a similar biofilm 

inhibition to the liposomal formulations indicating liposomal formulations offer superior anti-

biofilm properties in comparison to free ciprofloxacin. Similarly, previous studies also showed 

superior biofilm inhibitory properties when active agents were co-delivered. For instance, 

adsorption of antibiotic loaded liposomes to zinc citrate particles produced solid supported vesicles 

and provided an additional inhibitory effect against S. oralis biofilms compared to liposomal 

encapsulated antibiotics without zinc citrate particles 68.   

Co-delivery of more than one antimicrobial agent to target the site of infection via liposomes was 

hypothesized to provide a wide range of antibacterial effects with low drug toxicity as well as 

efficient drug release, even at sub-minimal concentrations For example, it was recently shown that 

co-encapsulation of bismuth with tobramycin increases the potential of P. aeruginosa killing, 

secretion of homoserine lactones, and reduces the bacterial adhesion 69. In addition, bismuth EDT-

tobramycin combination has been shown to disturb bacterial membrane integrity and biofilm 

formation 70, 71. Interestingly, co-encapsulation decreased the toxic effect of bismuth to lung 

epithelium 31, 72. In contrast, farnesol, the molecule used in our study, is known to be non-toxic for 

humans and possesses anticancer properties 73. In fact, farnesol is a common ingredient used in 

colognes and fragrances 74, thus direct contact with skin is well-tolerable. Farnesol is well-

metabolized by liver cells. Thus, the safety margin of liposomes loaded with farnesol and 

ciprofloxacin is expected to be greater compared to previously reported liposomal formulations. 

The proposed mechanisms of action of farnesol and ciprofloxacin loaded liposomes are presented 

in Figure 7. Further studies on the toxicity of these liposomal formulations need to be conducted. 

Nevertheless, a combination therapy of ciprofloxacin with farnesol in the form of liposomes, appear 
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to be a promising approach in eliminating devastating infections of P. aeruginosa such as in CF 

patients.  

Summary 

This study gives an important insight into a novel antipseudomonal biofilm strategy that 

synergistically combines microbial quorum sensing and bactericidal agents in a rationally designed 

delivery system for biofilms. The findings of this study confirmed that co-delivering farnesol and 

ciprofloxacin in liposomes allows for superior biofilm killing at significantly lower antimicrobial 

doses.  The findings of this study support further investigation into this novel drug delivery system 

in managing P. aeruginosa infections in CF models.  
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Legends 

Table 1 

The sizes, zeta potentials and polydispersity indices of various liposomal preparations 

The size of the liposomes are measured by their diameter. 

 

Figure 1 

Qualitative analyses of liposomes with fluorescent microscopy, transmission light 

microscopy and scan electron microscopy 

A. Liposomes under transmission light microscopy; note the circular and multi lamellar nature of 

liposomes. B. and C. Liposomes stained with propidium iodide under fluorescent microscopy; the 

liposomes were circular and the lipid walls of liposomes were clearly stained with fluorescent dye 

while the core appeared unstained. D. and E. Liposomes under scan electron microscopy; note the 

globular topography of liposomes. 

Figure 2 

Release of ciprofloxacin from Lcip and Lcip+far for 24h 

Total ciprofloxacin released from Lcip+far was higher than from Lcip. Both liposomes released more 

ciprofloxacin than their respective biofilm inhibitory concentrations. 

Figure 3 

Minimum biofilm inhibitory concentrations of ciprofloxacin when administered in different 

forms 

The ciprofloxacin concentration needed for an inhibition of P. aeruginosa biofilms was significantly 

lower when administered as Lcip (1.31µg/ml) and Lcip+far ((0.128µg/ml) compared to free 

ciprofloxacin (16µg/ml). Most significant effect was observed with Lcip+far (P<0.05) and the 

concentration of ciprofloxacin required in the form of Lcip+far was significantly lower than Lcip 

(P<0.05). * indicates significant differences. 

Figure 4 

Effect of liposomes on P. aeruginosa biofilms - Confocal laser scanning microscopy 

(magnification × 40) (stained using a LIVE/DEAD BacLight bacterial viability kit; Invitrogen); 

Live cells are stained in green and dead cells in red. 
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(A) P. aeruginosa 24h control biofilm; (B) P. aeruginosa biofilm treated with free ciprofloxacin 

0.128μg/ml. (C)  P. aeruginosa biofilm treated with Lcon. (D) P. aeruginosa biofilm treated with Lfar. 

(E) P. aeruginosa biofilm treated with Lcip (Final ciprofloxacin concentration was 0.128μg/ml (F) P. 

aeruginosa biofilm treated with Lcip+far (Final ciprofloxacin concentration was 0.128μg/ml.). Lcip, Lfar 

and Lcip+far, (Figure 4D, E, and F) exhibited greater degree of structural disruption, lower live: dead 

cell ratio compared to dense, spatially oriented control biofilms or biofilms treated with Lcon (Figure 

4A, and C). Lcip+far treated biofilms demonstrated the most significant disruption. Note the scanty 

biofilm architecture, and a significant proportion of dead cells compared to all other samples 

(Figure 4F). Free ciprofloxacin treated biofilm was undisrupted and appeared to be alive despite 

few isolated areas of cell death (Figure 2B) compared to Lcip and Lcip+far treated biofilms (Figure 4E 

and F) .  

Figure 5 

The depth of liposomal activity in P. aeruginosa 24h biofilms - Confocal laser scanning 

microscopy (magnification × 40) (stained using a LIVE/DEAD BacLight bacterial viability kit; 

Invitrogen); Live cells are stained in green and dead cells in red. 

(A). Lcon treated P. aeruginosa biofilm. Note the 3D biofilm architecture and the distribution of live 

and dead cells along the thickness of the biofilm (B). Lfar treated P. aeruginosa biofilm. Note the 

islands of dead bacteria and thinning of the biofilm (C). Lcip treated P. aeruginosa biofilm. Note the 

grater proportions of dead cells compared to (A) and (B) and thinning the biofilm (D). Lcip+far treated 

P. aeruginosa biofilm.  Biofilm is completely dead both superficially and throughout the thickness 

and only few live cells are visible.  

Figure 6 

Cellular level effects of liposomes on 24h P. aeruginosa biofilms – Transmission electron 

microscopy (scale 500nm) 

(A). Control P. aeruginosa 24h biofilm. Note the healthy, rod shaped, loosely packed cells with dark 

intracellular materials, intact cell membrane and slimy secretions in its immediate environment. 

Few dead cells appeared as clear cells. (B) Lcon treated 24h P. aeruginosa biofilms. Note the healthy 

heterogeneous bacteria with some dividing cells with intact cell membranes. (C) Lfar treated P. 

aeruginosa 24h biofilm. Note the similarity with (A), however, cells appear slightly larger than those 

in control biofilm. (D) Lcip treated P. aeruginosa 24h biofilms. Higher numbers of dead cells/clear 
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cells and disintegrated cell membranes were noted. Cellular contents appear leaked. Dead cells 

were surrounded by small vesicles. (E) Lcip+far treated P. aeruginosa 24h biofilms. Note the clear and 

partially ruptured cells and cellular debris throughout the microscopic field. Some disintegrated 

cells contained cytoplasm filled vesicles.  

Figure 7 

Proposed probable mechanisms and summary of P. aeruginosa biofilm disruption by 

Farnesol and ciprofloxacin loaded liposomes 
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Liposome 

type 

Diameter ±SD 

(nm) 

Zeta potential 

(mV) 

Polydispersity 

Index  

Lcip 677.8±46.6 -3.27 0.281 

Lcip+far 536.8±21.0 -0.108 0.213 

Lfar 684.0±43.8 0.086 0.391 

Lcon 2808.0±529.6 -1.66 0.086 

 

Table 1 
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