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ABSTRACT: 1H NMR spectroscopy of biofluids generates reprodu-
cible data allowing detection and quantification of small molecules
in large population cohorts. Statistical models to analyze such data are
now well-established, and the use of univariate metabolome wide asso-
ciation studies (MWAS) investigating the spectral features separately
has emerged as a computationally efficient and interpretable alternative
to multivariate models. The MWAS rely on the accurate estimation of
a metabolome wide significance level (MWSL) to be applied to control
the family wise error rate. Subsequent interpretation requires efficient
visualization and formal feature annotation, which, in-turn, call for
efficient prioritization of spectral variables of interest. Using human
serum 1H NMR spectroscopic profiles from 3948 participants from the
Multi-Ethnic Study of Atherosclerosis (MESA), we have performed a
series of MWAS for serum levels of glucose. We first propose an extension of the conventional MWSL that yields stable estimates
of the MWSL across the different model parameterizations and distributional features of the outcome. We propose both efficient
visualization methods and a strategy based on subsampling and internal validation to prioritize the associations. Our work
proposes and illustrates practical and scalable solutions to facilitate the implementation of the MWAS approach and improve
interpretation in large cohort studies.

KEYWORDS: full resolution 1H NMR, metabolome wide association study, multiple testing correction, significance level, cohort studies,
molecular epidemiology, MESA, results visualization and prioritization, high-throughput analysis, metabolic profiling

■ INTRODUCTION
Over the past 15 years, improvements in high-throughput tech-
nologies have accelerated the simultaneous measurement of large
numbers of metabolites in a single sample using NMR and mass

Received: May 30, 2017
Published: August 20, 2017

Article

pubs.acs.org/jpr

© 2017 American Chemical Society 3623 DOI: 10.1021/acs.jproteome.7b00344
J. Proteome Res. 2017, 16, 3623−3633

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/jpr
http://dx.doi.org/10.1021/acs.jproteome.7b00344
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


spectrometry (MS), which are both widely used to character-
ize a biofluid using either untargeted or targeted profiling
approaches.1,2 Both technologies have emerged as efficient tools
for identifying biomarkers of exposures as well as early disease
manifestations, hence informing on molecular mechanisms
involved in pathogenesis (e.g., in cancer, diabetes, cardiovascular,
and neurological diseases).3−6 Metabolic phenotyping uses
robust and reliable analytical methods7,8 that are ideally suited
for untargeted profiling since prior knowledge about compounds
present in a sample is not required. Such an agnostic discovery
approach can inform complementary targeted methods by
identifying novel chemical compounds that may contribute to
the molecular pathways involved in complex phenotypes.8−10

These screening exercises call upon the efficient analyses of high-
dimensional data whose exploration poses complex methodo-
logical and interpretation problems.11 Typically, untargeted
NMR experiments in a large population study generate tens
of thousands of data points for thousands of individuals. By
adopting univariate approaches, the concept of the metabolome
wide association study (MWAS)12 has been proposed to ana-
lyze these data, and various statistical approaches to perform
such analyses were established and have been explored and
reviewed.13−17 The complex correlation structures existing in
metabolic profiles result in partially redundant signals across
the metabolic spectra. These need to be accounted for while
correcting for multiple testing, for instance by using a
permutation-based procedure to derive the metabolome-wide
significance level (MWSL) controlling the family wise error rate
(FWER).13 However, the comparative applicability of these
approaches, as well as the visualization of the results they
produce, has not been comprehensively explored. Here we
provide, using a real-life example from the COMBI-BIO project,
an extension of the MWAS methodology we initially developed
using simulated data sets in a class discrimination context13 and
further extended to accommodate continuous outcomes. The
current extension includes the computation of a stable and
reproducible statistical significance threshold and proposes ways
to estimate consistently across different types of NMR spectra as
well as an internal validation procedure to assess the robustness
of candidate associations. Our data set comprises two versions of
1H NMR nontargeted metabolic profiles in 3948 participants
from theMultiethnic Study of Atherosclerosis (MESA) cohort.18

As a proof-of-principle example, we focus on identifying the
NMR spectral features associated with fasting blood serum
glucose, which was measured by an independent technique
(glucose oxidase method). By examining the full NMR spec-
trum, our analysis was designed to identify spectral regions
corresponding to other metabolites beyond glucose itself that
also vary with fasting serum glucose (1HNMR glucose associated
peaks).

■ MATERIALS AND METHODS

Study Population and Sample Selection

The MESA cohort has been described elsewhere18 and includes
6814 participants (53% females, 47% males) aged 44−84 years
(mean = 62 years) from four different ethnic groups: Chinese-
American (n = 803), African-American (n = 1893), Hispanic
(n = 1496), andCaucasian (n = 2622), all recruited between 2000
and 2002 at clinical centers in the United States. Participants
were free of symptomatic cardiovascular disease at baseline, and
demographic, medical history, anthropometric, lifestyle data,
and serum samples were collected during the first examination

(July 2000−August 2002), together with information on lipid or
blood pressure treatment, and diabetes, and measures of systolic
blood pressure. Serum samples were stored at −80 °C after
collection. At enrolment, high density lipoprotein (HDL-C) was
measured in EDTA plasma on the Roche/Hitachi 911 Automatic
Analyzer (Roche Diagnostics Corporation, Indianapolis, IN),
and low density lipoprotein (LDL-C) was calculated using the
Friedewald equation,19 together with fasting serum glucose using
the glucose oxidase method on the Vitros analyzer (Johnson and
Johnson Clinical Diagnostics). Ethical approval was obtained
by local ethical review boards, and subsequent analysis was
conducted in full accordance with the ethical approval obtained.

Samples Preparation and 1H NMR Spectroscopic
Acquisition

The full sample preparation and quality control procedure have
been extensively described elsewhere.20 Briefly, serum samples
were thawed on the day prior to analysis, and 300 μL of each
sample was mixed with 300 μL of phosphate buffer (NaHPO4,
0.075M, pH = 7.4). Samples were processed in two phases
(each corresponding to a separate analytical batch). Eppendorfs
were used for phase 1, while 96-well plates were used for phase 2.
After centrifugation (12 000g at 4 °C for 5 min), 550 μL of each
sample-buffer mixture was manually transferred into SampleJet
5 mm diameter NMR tubes and kept at 4 °C until analysis.
Different types of quality control (QC) samples were used for
each phase as described elsewhere.20 All QC pools were
aliquoted in 350 μL and stored at −80 °C prior to analysis.
1H NMR spectra were acquired using a Bruker DRX600
spectrometer (Bruker Biospin, Rheinstetten, Germany) operat-
ing at 600 MHz. A standard water suppressed one-dimensional
spectrum (usually termed NOESY) and a Carr−Purcell−
Meiboom−Gill (CPMG) spectrum were obtained for each
sample.20

1H NMR Metabolite Profiling

Themetabolite profiling workflow has been detailed elsewhere.20

For each biosample, two NMR profiles were generated: (i) a 1-D
spectrum (NOESY) showing resonances from all proton-
containing molecules in the sample, including broad, largely
undefined bands from serum proteins, sharper and well-defined
bands from serum lipoproteins (with some classification into
their main groups), and sharp peaks from a range of small
molecule metabolites such as amino acids, simple carbohydrates,
organic acids, organic bases, and a number of osmolytes, and
(ii) a Carr−Purcell−Meiboom−Gill (CPMG) spectrum that
attenuates the peaks from the macromolecules and allows better
definition of the small molecules.
For both CPMG and NOESY NMR data, in-house written

MATLAB (Mathworks Inc., USA) routines were utilized for
phasing and baseline correction. Prior to spectral peak alignment,
the region δ 4.400−5.100 corresponding to the H2O resonance
was removed. Spectral peak alignment was performed by the
Recursive Segment-wise Peak Alignment (RSPA) algorithm.21

Regions where the peaks of different suspected contaminations
(i.e., methanol) occurred were removed from the whole spec-
tra (δ 1.180−1.240, δ 2.244−2.261 and δ 3.660−3.710). The
remaining spectral regions were normalized by probabilistic
quotient normalization using the median spectrum as the refer-
ence.22 The normalized high resolution spectra contained
30 590 data points (variables) for both CPMG and NOESY
data sets. To ensure comparability across batches (i.e., across
studies and phases), each variable was mean-centered23 (we will
hereafter refer to this as mean corrected intensities). Score plots
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of the first few principal components for the resulting data
set were finally used to identify and remove potential outlier
samples (N = 3 for the CPMG and N = 4 for the NOESY data)
from further analyses. The MESA study population was further
examined for potential outliers using score plots from the first
two principal components (Figure S-1), which showed strong
homogeneity in the study participants.

Metabolite Assignments

Selected samples were analyzed using a range of 2-D NMR
experiments such as total correlation spectroscopy (TOCSY)
or heteronuclear single quantum coherence (HSQC) to aid
molecular identification. We used approaches such as statistical
total correlation spectroscopy (STOCSY) and STORM to help
constrain possible molecular structures.24,25 Peak identifica-
tion in the 1H NMR data was supported by a semiautomatic
clustering of the full resolution 1H NMR spectra (30 590 data
points) using statistical recoupling of variables,26 where the
algorithm defines a cluster as containing 10 or more vari-
ables. Each cluster is subsequently checked by NMR experts to
improve the data point grouping and identify peak overlaps.

From our data, 136 and 159 clusters were identified in 1H NMR
NOESY and CPMG data, respectively, each of them corre-
sponding to a single or a group of peaks. Resulting spectral infor-
mation was also compared to the literature27,28 and to existing
databases such as the Human Metabolome Database29 (HMDB,
http://www.hmdb.ca/) and the Biological Magnetic Resonance
Data Bank30 (BMRB, http://www.bmrb.wisc.edu). Resulting
sets of NMR features were ultimately confirmed through spiking
experiments using commercial standards. The level of assign-
ment (LoA) we used was adapted from Sumner et al.31 NMR
features were also characterized by their peak multiplicity: singlet
(s), doublet (d), triplet (t), quartet (q), doublet of doublet (dd),
multiplet (m), broad peak (b), and noise (n). Ninety-two clus-
ters were assigned to 44 unique metabolites for the NOESY data
set, and 91 clusters were assigned to 48 unique metabolites for
the CPMG data set.

Metabolome-Wide Association Study (MWAS)

Figure 1 presents our analytical workflow. We adopted a MWAS
approach using univariate linear regressionmodels to systematically

Figure 1. Analytical workflow.
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screen the 30 590 data points assayed in both NOESY and
CPMG profiles.
For a given data point, the linear model can be formulated as

α β ε≈ + + +Y X B FEi i i i
1 2

where Xi represents the normalized NMR intensity, Yi is the
outcome variable; here the log10 transformed blood glucose
concentration and εi is the error term for an observation i. α is the
intercept of the model, and ß1 measures how strongly each data
point influences the outcome variable. FEi is a vector of fixed
effect observations for individual i and the vector B2 compiles
the regression coefficients for each adjustment covariate; for
model 1, age, gender, phase, and ethnicity, and for model 2, we
additionally correct for LDL and HDL cholesterol, lipids and
blood pressure treatment, systolic blood pressure, smoking
status, and diabetes.
Most of the recently published MWAs adopted a Bonferroni

correction for multiple testing,32−34 which ignores correlation
across variables and therefore does not account for the (partial)
redundancy across the statistical test performed. This may lead
to an overly conservative multiple testing correction. To take
into account the high degree of correlation in spectral data and
prevent overcorrection for multiple testing, one computationally
efficient method relies on the estimation of the effective number
of tests (ENT), as defined by the virtual number of independent
tests that are performed across the actual p tests performed. ENT
measures the level of correlation within the spectral data and can
be estimated through spectral decomposition of the correla-
tion matrix of predictors.35 From this estimate, the per-test
significance level ensuring a FWER control can be defined as the
Bonferroni-corrected threshold corresponding to that number of
independent tests. However, this approach remains of limited use
in real-life metabolomic data sets, notably because, for num-
erical reasons, the ENT is upper-bounded by the number of
observations.36

As a scalable alternative, we used a permutation-based method
to estimate the metabolome wide significance level (MWSL or
α′)13 in which the outcome (glucose levels) is randomly shuffled
across observations. Each permutation mimics the null hypo-
thesis of no association, and we performed for each permuted
data set a MWAS using the linear regression model described
above. In that setting, and for a given permuted data set, the
minimum p-value across all variables (denoted q) represents the
largest significance level to be considered to ensure no false
positive findings, and the MWSL α′ controlling the FWER at
a level α can be derived from the distribution of q across the
N (set here to 10 000) permutations.
The effective number of tests (ENT) is then defined as

the number of independent tests that would be required to
obtain the same significance level using a Bonferroni correction:
ENT= α/α′ and measures the level of correlation across the
p tests performed.
To assess the robustness of the ENT estimates and to

circumvent the strong assumptions from the generalized linear
model on data structure (independence of each data points,
distribution of the residuals, variance structure, and linear
relationship between response and predictors), we ran our
permutation-based procedure for both data sets (NOESY and
CPMG) for both models (1 and 2) and used different trans-
formations of the glucose distribution: raw concentrations,
truncated concentrations (129 outlying observations with more
than 2 standard deviations away from the mean glucose level were
discarded), and log10-transformed glucose levels (Figure S-2).

To formally assess the sensitivity of our MWSL estimates to
distributional features of the outcome, we also simulated con-
tinuous responses from gamma and several Gaussian distribu-
tions and compared resultingMWSL estimates to those obtained
using measured glucose levels.
Sensitivity, Stability Analyses, and Results Prioritization

We performed further sensitivity analyses to assess the stability of
the candidate associations we identified. These included a cross-
validation procedure based on the independent subsampling
(N = 100 times) of discovery (containing 80% of the observa-
tions) and replication (comprising the remaining 20% observa-
tion) data sets.
For each 80:20 discovery and replication split, we performed

a MWAS and used the MWSL to identify the candidate asso-
ciations in the discovery set. For each discovery set (80% of the
observations), the number of independent signals among the
candidate associations was approximated by the number of
principal components needed to explain more than 99% of their
variance. That number of PCs was then used to compute the
Bonferroni corrected MWSL used in the replication set.37

Our strategy could be summarized as follows for a given split:

(1) MWAS: identify (N0) candidate associations in the dis-
covery set with discovery p-value < MWSL.

(2) Estimate the number of independent signals these N0
correspond to run a PCA on theXN0, the matrix combining
the N0 data points declared significant in the discovery set
(a random 80% subsample or the full study population),
and identify NPC, the number of PC’s needed to explain
more than 99% of the variance in XN0.

(3) Replication: identify from the candidate signals (step 1)
those replicating in the 20% replication set at a Bonferroni-
corrected significance level accounting for NPC tests,
α/ NPC, setting α = 5%.

Steps 1−3 are repeated across the 100 independent splits and
the proportion a given signal is identified in the discovery set, and
replicated in the validation set is reported.
Statistical analyses were all performed using R v3.1.2.38

■ RESULTS AND DISCUSSION
A total of 3948 individuals from the MESA cohort were included
in the analysis, and for each individual, 30 590 serum NMR
features were measured for both NOESY and CPMG spectra.
The characteristics of the study population are summarized in
Table 1.
We first explored the sensitivity of the MWSL estimates to

(i) the parametrization of the statistical model, (ii) the type of
NMR data under investigation, and (iii) distributional features of
the outcome of interest. As summarized in Table 2, we then ran
the permutation procedure for two different models (Models 1
and 2), for both types of NMR data sets (NOESY and CPMG)
and 3 versions of glucose blood concentrations: raw, log10
transformed and truncated (removing 129 outlying observations
which were outside the 2 standard deviation range from themean
glucose level). Across all models investigated, MWSL estimates
for CPMG are more stringent than for NOESY spectra and,
correspondingly, ENT estimates for CPMG are much greater
than those for NOESY data (ranging from 17 610 to 122 460
and from 3680 to 17 010 for CPMG and NOESY, respectively).
This suggests stronger correlations within NOESY data, which
is plausible given that NOESY NMR spectra contain stronger
broad peaks from proteins and lipoproteins than CPMG
spectra, such that data point intensities are highly correlated.
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As summarized in Table 2, irrespective of the type of spectrum,
MWSL estimates (and corresponding ENT) seem to be only
marginally affected by the number of confounders included in the
model (i.e., comparing models 1 and 2). However, a systematic
but moderate increase in the ENT is observed for the fully
adjusted model (Model 2). This can be explained by the fact that
the fully adjusted model removes spectral signals relating to the
components of the Framingham risk scores (such as the con-
ventionally measured lipoprotein levels), and these confounders
were highly likely to be driving correlations across some data points.

For CPMG data, estimates of the MWSL using raw glucose
concentrations led to an estimated ENT greater than the actual
number of tests (ratio around 4.00). This might be attributed to
the parametric assumption in generalized linear regression model
(e.g., normality of the outcome and equal variance) underlying
our permutation procedure being violated. This is supported by
the distribution of the blood levels of glucose, which is right
skewed, with several outlying observations (Figure S-2A).
To account for this asymmetrical distribution, we first applied

a log10 transformation to glucose levels (Figure S-2B). Although
the transformed distribution remains right skewed, correspond-
ing estimates of the MWSL were less stringent, and the effective
to actual number of tests ratio dropped to around 0.75 for CPMG
(and to 0.15 for NOESY). To remove the influence of outlying
observations, we truncated the glucose distribution and removed
observations more than 2 standard deviations away from the
mean glucose level (Figure S-2C). While only a small number of
observations were discarded (N = 129), this removal strongly
impacted the MWSL estimates for CPMG data, and the effective
to actual number of test ratio dropped to less than 60% for both
models.
These results suggest that MWSL estimates are sensitive to the

shape of the distribution of the continuous outcome under
investigation, and are specifically affected by both the relative
weight of its tail, and by the presence of outlying observations.
To formally assess the sensitivity of our MWSL estimates to the
parametric form of the response variable, we ran a series of
sensitivity analyses where we randomly sampled for each
participant (and for each permutation) the glucose levels from
(i) a Gamma distribution fitted on the measured glucose levels
(shape = 15.90, scale = 6.18), and (ii) several Gaussian dis-
tributions (mean = 0, sd = 1; mean = 0, sd = 10; mean = 0, sd =
100, mean = mean(glucose), sd = sd(glucose). By construction,
the Gamma-distributed response did not include outlying
observations, but featured an inflated right tail, which provided
less stringent MWSL for both NOESY. Results from the nor-
mally distributed outcomes showed consistent MWSL estimates
and did not seem to be strongly affected by the parameters choices
defining the Gaussian distribution (Table S-1, Figure S-3). Since
the numbers of associated variables were only marginally affected
by the way the ENT was computed in our example, we took
forward the MWSL estimated from the Gaussian simulated
outcome (mean = 0, sd = 1), which also seemed to provide the

Table 1. Summary Characteristics of the Study Population:
Multiethnic Study of Atherosclerosis Cohort

N
% or mean

(sd)

gender men 1951 49.4
women 1997 50.6

age (y) all 3948 62.9 (10.3)
phase 1 1976 50

2 1972 50
ethnicity Caucasian 1521 38.5

Hispanic 926 23.4
African-American 968 24.5
Chinese-American 533 13.5

body mass index (kg/m2) all 3948 28.2 (5.4)
glucose (mg/dL) all 3945 98.3 (31.1)

missing 3
LDL cholesterol (mg/dL) all 3884 117.3 (31.4)

missing 64
HDL cholesterol (mg/dL) all 3942 50.7 (14.7)

missing 6
systolic blood pressure (mmHg) all 3948 127.1 (21.3)
height (cm) all 3948 166.4 (10.2)
diabetes no 3387 85.8

yes 561 14.2
lipids treatment no 3286 83.2

yes 662 16.8
blood pressure treatment no 2449 62.1

yes 1497 37.9
smoking never 1988 50.4

former 483 12.2
current 1461 37
missing 16 0.4

Table 2. Significance Threshold α′ and Effective Number of Test (ENT) Based on a Bonferroni Correctionab

NOESY (30 590 variables) CPMG (30 590 variables)

phenotype N model MWSL (FWER = 5%) MWSL (FWER = 5%)

glucose 3945 1 α′ (×10−5) 0.31 (0.26; 0.35) 0.04 (0.03; 0.05)
ENT (×103) 16.33 (14.42; 19.51) 53.39 122.46 (108.67; 143.67) 400.32

3866 2 α′ (×10−5) 0.29 (0.25; 0.32) 0.04 (0.04; 0.05)
ENT (×103) 17.01 (15.57; 19.88) 55.60 121.64 (107.21; 142.23) 397.64

log10(glucose) 3945 1 α′ (×10−5) 1.09 (0.96; 1.17) 0.22 (0.20; 0.23)
ENT (×103) 4.59 (4.28; 5.22) 15.01 23.1 (21.7; 24.4) 75.37

3866 2 α′ (×10−5) 1.05 (0.96; 1.13) 0.21 (0.19; 0.22)
ENT (×103) 4.75 (4.43; 5.02) 15.52 23.6 (22.7; 26.2) 77.07

glucose without outliers 3816 1 α′ (×10−5) 1.36 (1.25; 1.45) 0.28 (0.26; 0.29)
ENT (×103) 3.68 (3.45; 4.01) 12.02 18.02 (17.36; 19.07) 58.92

3743 2 α′ (×10−5) 1.06 (1.00; 1.10) 0.28 (0.27; 0.30)
ENT (×103) 4.70 (4.53; 4.99) 15.36 17.61 (16.74; 18.74) 57.57

a95% confidence intervals are given in parentheses. Figures are based on 10 000 permutations for each model (1 and 2) and given for the glucose,
log10(glucose) and the glucose after outliers exclusion (N = 129 excluded). bBold figures are the ratios of effective/actual number of tests.
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best balance between generalizability and simplicity (Figures S-3
and S-4). We further compared the proportion of associated
variables from different multiple testing correction strategies

including Bonferroni and FWER control, and Benjamini-Hoch-
berg39 false discovery rate (BH-FDR) procedure (Figure S-5).
In all scenario considered, the largest proportion of associated

Table 3. Number and Percentage of Associated Variables for Models 1 and 2 for Both NOESY and CPMG by Class of Metabolitea

NOESY CPMG

model

number of data
points per
group(%)

number of
significant data
points (%)

number of significant data
points after results
prioritization (%)

number of data
points per group

(%)

number of
significant data
points (%)

number of significant data
points after results
prioritization (%)

1 allb 30 590 (100) 22 066 (72) 18 340 (83) 30 590 (100) 12 303 (40) 9920 (81)
amino-acidsc 4786 (15.65) 3653 (76.3) 3222 (88.2) 4524 (14.79) 2780 (61.5) 2078 (74.7)
carbohydratesc 2394 (7.83) 2204 (92.1) 2192 (99.5) 1826 (5.97) 1763 (96.5) 1734 (98.4)
drug derivativesc 191 (0.62) 191 (100) 116 (60.7) 81 (0.26) 30 (37) 26 (86.7)
lipidsc 4085 (13.35) 2815 (68.9) 2569 (91.3) 3906 (12.77) 2772 (71) 2530 (91.3)
nucleosidesc 116 (0.38) 41 (35.3) 35 (85.4) 103 (0.34) 13 (12.6) 1 (7.7)
organic acidsc 1383 (4.52) 949 (68.6) 838 (88.3) 864 (2.82) 390 (45.1) 266 (68.2)
othersc 377 (1.23) 229 (60.7) 173 (75.5) 363 (1.19) 261 (71.9) 237 (90.8)
proteinsc 549 (1.79) 542 (98.7) 500 (92.3) 499 (1.63) 499 (100) 494 (99)
unassigned 15 978 (52.23) 11 081 (69.4) 8472 (76.5) 10 315 (33.72) 3414 (33.1) 2252 (66)

2 allb 30 590 (100) 13 449 (44) 9610 (71) 30 590 (100) 4909 (16) 3355 (68)
amino-acidsc 4786 (15.65) 3123 (65.3) 2168 (69.4) 4524 (14.79) 1048 (23.2) 602 (57.4)
carbohydratesc 2394 (7.83) 2079 (86.8) 1906 (91.7) 1826 (5.97) 1695 (92.8) 1653 (97.5)
drug derivativesc 191 (0.62) 65 (34) 36 (55.4) 81 (0.26) 24 (29.6) 17 (70.8)
lipidsc 4085 (13.35) 1172 (28.7) 176 (15) 3906 (12.77) 263 (6.7) 116 (44.1)
nucleosidesc 116 (0.38) 7 (6) 0 (0) 103 (0.34) 0(−) 0(−)
organic acidsc 1383 (4.52) 798 (57.7) 462 (57.9) 864 (2.82) 114 (13.2) 18 (15.8)
othersc 377 (1.23) 112 (29.7) 58 (51.8) 363 (1.19) 87 (24) 35 (40.2)
proteinsc 549 (1.79) 529 (96.4) 400 (75.6) 499 (1.63) 407 (81.6) 352 (86.5)
unassigned 15 978 (52.23) 5421 (33.9) 4317 (79.6) 10 315 (33.72) 1067 (10.3) 413 (38.7)

aResults are also given after results prioritization: variables identified in the discovery set and replicated in the validation set in at least one split across
the 100 splits (see Methods). bFigures are given for the whole spectra (N = 30 590 variables) including the unassigned regions. cFigures are based on
the achieved NMR assignment: not all variables have been assigned in the spectra.

Figure 2. Metabolome wide study of glucose (model 2). This Manhattan plot shows the analysis of the 30 590 CPMG features. The signed negative
log10 p-value is plotted against the chemical shift in ppm. To ease the visualization, all log p-value ≤ 10−30 were set to 1 × 10−30. The horizontal dashed
line indicates the α′ per-test significance level controlling the FWER at a 5% level using the Gaussian simulated outcome. Data points are colored by class
of metabolites. Components were: 1, L1; 2, L2; 3, isoleucine; 4, leucine, isoleucine; 5, leucine; 6, valine; 7, L3; 8, lactate; 9, alanine; 10, L4; 11, arginine;
12, lysine; 13, acetate; 14, L5; 15, acetylglycoproteins; 16, methionine; 17, glutamate; 18, glutamine; 19, L6; 20, 3-hydroxybutyrate; 21, pyruvate; 22,
pyroglutamate; 23, citrate; 24, L7; 25, aspartate; 26, albumin; 27, creatine; 28, creatinine; 29, ornithine, tyrosine; 30, ornithine; 31, phenylalanine; 32,
tyrosine; 33, choline; 34, beta-glucose; 35, proline; 36, alpha-glucose, beta-glucose; 37, alpha-glucose; 38, glycine; 39, glycerol; 40, mannose; 41, glyceryl
groups of lipids; 42, APAP glucuronide; 43, L8; 44, uridine; 45, 1-Methylhistidine; 46, histidine; 47, 3-methylhistidine; 48, formate.
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variables was always observed when using a BH-FDR procedure,
and the smallest proportion of associated variables was always
observed when using a Bonferroni procedure (Figure S-5).

Metabolome Wide Association Study of Glucose:
Visualization and Prioritization

We performed the MWAS of blood levels of glucose on both
CPMG and NOESY spectra using both models and setting the
MWSL to that estimated using the Gaussian simulated outcome
(mean = 0, sd = 1, Table S-1). As expected, irrespective of the
model and of the type of spectrum, a very large number of
spectral features were found associated with blood concentration
of glucose (Table 3): for NOESY data, 72% and 44% of the
spectral variables were found significantly associated with glucose
level for models 1 and 2, respectively. These proportions were
40% and 16% for models 1 and 2, respectively, in CPMG data.
Analyses by classes of metabolite for model 1 revealed that

nearly all variables assigned to drug derivative (100%), pro-
teins (98.7%), and carbohydrates (92.1%) were associated
with glucose in NOESY. Similarly, all variables assigned to pro-
teins (100%), carbohydrates (96.5%), and others (71.9%, which
include choline and glycerol) were associated with glucose in
CPMG. The proportion of unassigned associated variables was
higher for NOESY (69.4%) compared to CPMG (33.9%).
Adjusting for Framingham risk score (FRS) variables in model

2 reduced the total number of associations for both NOESY and
CPMG spectra. This reduction was mostly observed for the lipids
class (NOESY, 68.9% vs 28.7%; CPMG, 71% vs 6.7%) and the
“others” class (NOESY, 60.7% vs 29.7%; CPMG, 71.9% vs 24%).
As expected, the proportion of carbohydrate associated variables
was one of the least affected classes by the FRS adjustment
(NOESY, 92.1% vs 86.8%; CPMG, 96.5% vs 92.8%).

The utility of the MWAS approach in metabolic phenotyping
relies on explicit visualization of the results. One primary output
to help identify relevant spectral regions borrows from the field of
genome-wide association studies and reports for each spectral
variable the−log10 p-value multiplied by the sign of the cor-
responding regression coefficient. The resulting signed Manhat-
tan plots (Figure 2 and Figure S-6 for CPMG and NOESY,
respectively) offer a global view of the spectral regions associated
with the outcome of interest, and can be further informed by
the annotation of spectral features. Assigned metabolites found
associated with conventional serum glucose measurements
are reported in Tables S-2 and S-3 for CPMG and NOESY,
respectively. For CPMG, 47 unique metabolites were associated
with glucose for model 1, of which 34 were still associated after
controlling for the FRS variable (44 and 41 for NOESY).
High-resolution visualization is also key to enable peak valida-

tion and subsequent annotation through the inspection of
the shape and multiplicity of the spectral features in the
neighborhood of the associated regions. Such visualization could
be provided by regional plots as exemplified in Figure 3, which
focuses on the glutamine region ([2.4535−2.5045] ppm). The
upper panel represents the high resolution (unsigned) Manhattan
plot where the −log10 p-value (left Y axis) measuring the strength
of association each between peak height and the log10 trans-
formed blood glucose level is represented by a triangle (down
pointing for negative associations). For the region under
investigation, we define the reference feature as the strongest
association (here 2.47175 ppm, p-value <2.10−16, represented in
gray) and color-code the pairwise correlation of each spectral
variable with this reference. The mean-corrected intensity
(i.e., residuals removing the effect of possible confounders:
phase and cohort, see Methods) is also represented (right Y axis)

Figure 3. CPMG-model 2 regional association plots with log10 (glucose) for the glutamine. In the upper plot, the−log10 p-value for the features at two
regions are shown on each plot. Features are colored based on their correlation with the gray hit that has the smallest p-value in the region. The lines
show the mean corrected intensity (i.e., residuals removing the linear effect of the phase and the cohort) in the 5% of samples with high residual glucose
in green and 5% of the samples with low residual glucose in blue. The bottom plot shows the mean spectral intensity inMESA phase 1 (plain line) and in
MESA phase 2 (dashed line). Green circles indicate the proportion of replication after results prioritization.
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for the samples in the fifth (blue line) and 95th (green line)
quantiles of the residuals log10 glucose levels after controlling for
the FRS variables.
From this plot, it is clear that there are strong, and exclusively

positive correlation coefficients among 1H NMR data points
throughout the region as indicated by the color-coded pairwise
correlation coefficients (75% are >0.77). As expected, because
of the local correlation structures in NMR spectra (caused by
the finite peak width and the resonance being split by the
J couplings), data points neighboring the reference signal exhibit
higher correlation levels. More distant spectral variables may also
show strong correlation with the reference peak (e.g., 2.5045,
Spearman correlation = 0.26; 2.4535, Spearman correlation =
0.30), and irrespective of their location in the spectrum, inten-
sities that are the most correlated to the reference peak exhibit
the strongest associations with glucose levels. This arises because
a given metabolite often has several NMR peaks and this pro-
cedure offers a way of finding such linked resonances as an aid
to molecular annotation. For these variables (dark orange and
red triangles), the difference in the mean corrected intensity in
participants with the highest and lowest glucose levels are larger
compared to the spectral variables less correlated to the reference
peak (yellow triangles).
To get further insights into the nature (shape and multiplicity)

of the variables found associated with glucose we represent the
mean spectrum in the bottom panel (left Y axis). Mean spectra
are plotted for each of the analytical phases to assess both
potential technically induced bias across experimental batches,
and possible population heterogeneity across samples assayed in
each phase. While the mean spectrum from phase 2 appears to

have more marked variables (with higher modes), both data sets
yield consistent subspectra in terms of alignment, multiplicity
and overall peak shape.
To accommodate the expected large number of associations

with glucose levels, efficient signal prioritization strategies are
key. One established way to identify robust and replicable
associations is to seek external replication in an independent data
set. However, owing to the specificity of experimental protocols
and the nature of the measurements (which are relative and not
absolute concentrations), external validation is challenging in
metabolic phenotyping, but could however be sought for using
either standardized or annotated data. As a workable alternative
and complementary approach prioritizing relevant metabolic
features, we propose to seek for internal validation and randomly
split the study population in a discovery (80% of the full popula-
tion) and a validation (the remaining 20%) set. The robustness of
an association identified in the full population is then quantified
by the number of times discovered and replicated over the
(N = 100) independent splits. This proportion is represented on
the regional plot (green dots on the bottom panel of Figure 2).
Owing to the strong signals we identify in our glucoseMWAS, we
report very high replication proportions in glucose-associated
regions. As a first approach, prioritized associations were defined
as those discovered and validated in at least one split (i.e., with a
proportion of replication >0). As illustrated in Table 3 and in
Figures 4 and S-7 for CPMG and NOESY, this prioritization
strategy reduced the number of significant associations for model
2 by almost 50 and 30%, respectively. As illustrated in Figure 4,
the associated spectral variables are strongly clustered and define
clear regions that are associated with the blood levels of glucose.

Figure 4.Comparison of results from the analysis inMESA to those from the 80:20 split strategy. Results are presented for the CPMG (N = 30 590 data
points) metabolome wide association study of glucose using model 2. To ease the visualization, all p-value ≤ 10−30 were set to 1 × 10−30. The
−log10(p-value) is signed by the direction of the effect size estimate and is plotted against the chemical shift. The horizontal dashed line indicates the
per-test significance level controlling the FWER at a 5% level. Variables found from the analyses in MESA are presented in black, those discovered and
replicated at least once across the 100 splits are presented in green and those discovered and replicated in 50% of the split are presented in red.
Components were: 1, L1; 2, L2; 3, isoleucine; 4, leucine, isoleucine; 5, leucine; 6, valine; 7, L3; 8, lactate; 9, alanine; 10, L4; 11, arginine; 12, lysine; 13,
acetate; 14, L5; 15, acetylglycoproteins; 16, methionine; 17, glutamate; 18, glutamine; 19, L6; 20, 3-hydroxybutyrate; 21, pyruvate; 22, pyroglutamate;
23, citrate; 24, L7; 25, aspartate; 26, albumin; 27, creatine; 28, creatinine; 29, ornithine, tyrosine; 30, ornithine; 31, phenylalanine; 32, tyrosine; 33,
choline; 34, beta-glucose; 35, proline; 36, alpha-glucose, beta-glucose; 37, alpha-glucose; 38, glycine; 39, glycerol; 40, mannose; 41, glyceryl groups of
lipids; 42, APAP glucuronide; 43, L8; 44, uridine; 45, 1-methylhistidine; 46, histidine; 47, 3-methylhistidine; 48, formate.
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Our prioritization strategy identifies overall the same regions
along the spectra but selects preferentially the strongest asso-
ciated variables within each region and regions that have been
assigned. This is even more apparent when more stringent
prioritization strategies, for instance, in Figure 4 we plot the
signed Manhattan plot for the features discovered and replicated
in a least half of the splits (in red).

■ CONCLUSION
The identification and interpretation of metabolic features that
contribute to a physiological and/or disease-induced outcome
from full resolution NMR data is challenging for many reasons
related to the dimensionality and complexity of metabolic
profiles. The main aim of the present work is to address some of
these issues through the development of a robust multiple testing
strategy, intuitive visualizations and objective ways to prioritize
results. The MWAS approach requires accurate correction for
the large number of tests performed, and therefore needs to
appropriately account for the strong and complex correlation
structures within the NMR spectra. All methods for performing
multiple testing correction assume a valid statistical model that
captures dependencies in the data. While approaches controlling
the FDR usually provide less stringent multiple testing cor-
rection, these have been reported to misperform in cases of high
correlations among predictors.40 As an extension of the MWAS
approach to accommodate continuous variables in a regression
context, we proposed an estimation of the metabolome wide
significance level adopting the same permutation strategy and
investigated the sensitivity of the estimates to the data structure
and to the model parametrization. Our results suggest that in the
case of highly correlated variables (spectral variables) that are
strongly associated with an outcome (here glucose levels), per-
mutations do not succeed in destroying the predictor-outcome
relationship, hence yielding ENT estimates greater than the
actual number of tests performed. Sensitivity analyses removing
extreme values, and/or log transforming glucose levels showed
that outlying observations are driving this unexpected estimate of
the ENT. In the presence of strong correlation (i) between blood
glucose and most of the assayed metabolites, (ii) among the
metabolites, and (iii) between metabolites and adjustment
variables, assumptions (e.g., observations exchangeability under
the null) on which permutation inferences are based may be
violated, and especially in the presence of strong outlying
observations. From our data, MWSL estimates appeared robust
to model parametrization (i.e., marginally affected by the set of
confounding variables considered), but clearly depended on the
correlation structure in the data, which are population and plat-
form specific. This suggests that the MWSL should be tailored
and re-estimated for each data set. MWSL estimates were also
found to be sensitive to the distribution of the outcome and
especially in the case of heavy tailed distributions due to the
presence of outlying observations. While numerical trans-
formations and truncation could be a way forward, one more
general and conservative option could be to calculate the MWSL
once using a virtual predictor sampled from a Gaussian
distribution (Figure S-4).
Using this MWSL approach, we propose extensions of existing

visualization tools for the MWAS. This includes full resolution
signed Manhattan plots included functional annotation and
higher resolution regional plots displaying the per-variable
strength of association as well as spectral summary features
including correlation patterns across spectral variables. In our
proof-of-principle example, we chose glucose as the outcome of

interest which defined a challenging context in terms of results
interpretability as a very large number of strong associations were
identified and the assessment of their relevance went beyond the
observed strong positive correlation for the expected glucose
peaks along the 1H NMR spectra. This called for the definition
of strong result prioritization strategy, which, in less extreme
situations, is also critical to identify the most relevant associations
that are worth dedicating resources for molecular assignment.
Our approach relies on subsampling strategy where discovery
(80%)-replication (20%) splits are used to identify associations
that internally replicate. This strategy was found to be efficient to
prioritize the most robust associations, which were not only
those with the strongest p-values. We performed our internal
validation at the metabolome-wide level, which was computa-
tionally intensive. To scale this approach in real-life studies, one
alternative would consist in restricting the discovery-replication
split strategy for the MWAS candidates that have been identified
in the full population. The overall analytical strategy presented
here provides a general framework for the analysis of cohort
studies where large number of samples are profiled using untar-
geted technologies (e.g., high-resolution NMR, mass spectrom-
etry). Overall, we believe the strategy and approach we present
are generalizable and scalable and may therefore be relevant to
aid the MWAS approach, particularly improving the interpreta-
tion of results.
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