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Abstract	

A	skin	wound	requires	several	cell	lineages	to	exhibit	considerable	plasticity	as	they	

migrate	towards	and	over	the	site	of	damage	to	contribute	to	repair.	The	keratinocytes	that	

re-epithelialize	the	tissue,	the	dermal	fibroblasts	and	potentially	other	mesenchymal	stem	

cell	populations	that	repopulate	damaged	connective	tissue,	the	immune	cells	that	counter	

infections,	and	endothelial	cells	that	re-establish	blood	supply	and	facilitate	the	immune	

response	-	all	of	these	cells	are	“dynamic”	in	that	they	are	activated	by	immediate	wound	

cues,	they	reprogram	to	adopt	cell	behaviours	essential	for	repair	including	migration,	and	

finally	they	must	resolve.	In	adult	tissues,	repair	is	unique	in	its	requirement	for	dramatic	cell	

changes	and	movements	otherwise	associated	only	with	development	and	disease.	

	

	 	



Introduction	

During	embryonic	development,	individual	cells	and	groups	of	cells	are	continually	

migrating	and	epithelial	sheets	are	folding	and	fusing	in	order	to	sculpt	tissues	and	organs	

and	ensure	that	the	right	cell	lineages	are	where	they	need	to	be	in	the	developing	

organism.	Beyond	foetal	stages	however,	cell	movements	are	most	often	associated	with	

pathologies	such	as	metastatic	spread	of	cancer	cells.	But	there	is	one	healthy	scenario,	the	

repair	response	at	any	site	of	tissue	damage,	where	several	cell	lineages	exhibit	considerable	

plasticity	as	they	are	marshalled	to	migrate	towards	and	over	the	site	of	damage	in	order	to	

heal	the	wound.	In	several	ways	wound	healing	appears	to	recapitulate	many	of	the	cell	and	

tissue	migrations	of	embryonic	morphogenesis.		

Wound	repair	begins	with	the	temporary	plugging	of	both	damaged	vessels	and	the	

breach	in	the	barrier	layer	with	a	fibrin	clot	or	scab.		In	subsequent	hours	and	days,	and	even	

weeks,	many	cell	lineages	work	in	a	concerted	fashion	to	repair	the	defect	as	best	they	can.		

Innate	immune	cells,	largely	neutrophils	and	macrophages,	are	recruited	from	local	tissues	

and	from	the	blood	circulation.	The	epidermis	repairs	from	the	wound	margins	and	

potentially	from	epithelial	appendages	if	any	remain,	and	the	dermis	is	reconstituted	by	

fibroblasts	migrating	in	from	various	sources	to	form	a	temporary	wound	granulation	tissue	

which	is	heavily	vascularised	by	local	angiogenesis.	Each	of	the	lineages	involved	in	these	cell	

and	tissue	migrations	is	dramatically	altered	by	local	wound	signals;	their	transcriptomes	

change	significantly	and	in	many	ways	they	can	be	considered	as	transiently	reprogrammed	

during	the	healing	period.	Considering	each	of	these	dynamic	cell	populations	in	turn,	we	

discuss	how	each	contributes	to	the	repair	process	and	what	goes	wrong	if	the	

reprogramming	events	fail.		

	

The	wound	inflammatory	response	

After	tissue	damage,	an	innate	immune	response	is	immediately	triggered,	with	

neutrophils	spilling	out	passively	from	damaged	blood	vessels	or	actively	recruited	by	

diapedesis	from	local	wound	capillaries	(Figure	1).	Macrophages	tend	to	follow	in	the	wake	

of	neutrophils	with	their	numbers	peaking	at	later	stages;	these	cells	derive	from	two	

sources:	tissue	residents	already	in	the	vicinity	of	the	wound,	and	recruited	monocytes	

drawn	from	the	local	wound	vasculature.		



Inflammation,	per	se,	is	not	absolutely	critical	for	healing,	because	embryos	can	

repair	tissue	damage	before	the	first	innate	immune	cells	are	established	[1],	and	neonatal	

mice	null	for	the	leukocyte	lineage	switching	ets-family	transcription	factor	PU.1,	and	lacking	

innate	immune	cell	lineages,	can	repair	wounds	very	effectively	[2].		However,	adult	tissue	

repair	appears	much	more	dependent,	at	least	on	macrophages,	with	classic	anti-

macrophage	serum	knockdown	experiments	in	rabbits	exhibiting	poor	healing	[3],	and	more	

recent,	temporally-regulated	diptheria	toxin-mediated	killing	of	macrophages	in	mice	

revealing	differing	healing	defects	depending	on	what	phase	of	healing	is	targeted	[4].	

Certainly	the	inevitable	inflammatory	response	to	tissue	damage	has	potent	and	important	

paracrine	influence	on	the	repair	process.	

Neutrophils	are	considered	to	be	primarily	bactericidal	at	wounds,	killing	by	means	of	

reactive	oxygen	species	(ROS)	and	neutrophil	extracellular	traps	[5].	In	recent	years	we	have	

learned	more	about	their	diapedesis	and	extravascular	migration	to	sites	of	tissue	damage	

by	intravital	investigations	in	mice;	for	example,	neutrophils	have	been	observed	responding	

to	adenosine	triphosphate	and	formyl-peptide	signals	from	necrotic	cells	[6].	Studies	in	the	

translucent	zebrafish	have	perhaps	provided	the	clearest	opportunities	to	visualise	

neutrophil	migration	towards	and	away	from	sites	of	tissue	damage	and	wound	infection.	

This	model	has	contributed	to	the	identification	of	evolutionarily-conserved	immediate	

damage	signals	following	tissue	damage,	including	calcium	[7]	and	hydrogen	peroxide	[8,9],	

and	subsequent	studies	in	Drosophila	show	that	these	are	the	same	attractants	that	draw	

hemocytes	(fly	innate	immune	cells)	to	wounds	[10,11].	Recent	zebrafish	studies	of	calcium	

dynamics	in	responding	neutrophils	indicate	enrichment	at	the	leading	edge,	at	a	distance	

and	then	as	cells	get	closer	to	the	wound	they	exhibit	long,	whole	cell	calcium	pulses,	and	

disruption	of	these	calcium	dynamics	severely	compromises	homing	of	neutrophils	to	the	

wound	[12].	In	vivo	imaging	of	the	resolution	of	the	innate	immune	response	has	begun	to	

offer	opportunities	to	identify	the	molecular	mechanisms	regulating	reverse	migration	and	

agents	that	might	modulate	this	process	[13,14].	Neutrophil	behaviour	changes	upon	wound	

activation	to	enable	their	important	microbiocidal	and	phagocytic	functions,	but	

interestingly,	this	change	in	phenotype	appears	not	to	disturb	the	cell’s	capacity	to	respond	

to	subsequent	wound	signals	[15].		A	role	for	pro-resolving	factors	in	inflammation,	and	their	

potential	use	in	driving	therapeutic	resolution	of	leukocytes	from	wounds	comes	from	a	



study	in	mouse	where	treatment	with	Chemerin	15	dampened	the	inflammatory	response	

and	improved	healing	[16].	

Macrophages	fulfil	a	portfolio	of	roles	that	change	over	the	duration	of	healing.	

Initially	they	are	bactericidal,	and	voraciously	phagocytose	cell	and	matrix	debris,	particularly	

clearing	red	blood	cells	and	any	spent	neutrophils	at	the	wound	site.	The	long-term	

influence	of	these	early	macrophages	became	evident	when	Lucas	et	al	[4]	depleted	them	

specifically	during	early	time-points	after	injury	–	their	absence	retarded	re-epithelialisation	

as	well	as	reduced	wound	granulation	tissue	and	eventual	scar	size.		Later	in	the	repair	

process,	macrophages	develop	pro-repair	capacity,	for	example	promoting	wound	

angiogenesis	by	release	of	vascular	endothelial	growth	factor	(VEGF)	and	other	angiogenic	

factors	[4].		

Strategic	depletion	experiments	illustrate	that	macrophages	can	orchestrate	key	

behaviours	in	several	host	cell	lineages	within	the	healing	wound.	How	they	might	instruct	

various	aspects	of	the	repair	process	is	not	yet	entirely	clear	but	they	are	known	to	express	

numerous	growth	factors	and	cytokines	at	various	phases	of	the	repair	process;	one	of	

these,	for	example,	TGFβ1	is	known	to	have	profound	effects	at	the	wound	site,	particularly	

in	its	influence	on	fibroblast	deposition	of	scar	collagen	[17].	Further	insights	have	been	

gained	through	microarray	comparisons	of	wild	type	versus	PU.1	knockout	mouse	wounds,	

which	revealed	several	inflammation-dependent	wound	induced	genes	[18].	This	dataset	

reflects	both	the	leukocyte	transcriptional	response	to	injury,	as	well	as	the	indirect	

influence	on	the	surrounding	tissue,	and	mining	for	transcripts	induced	in	wound	fibroblasts	

only	after	macrophage	recruitment	has	been	informative	about	the	pro-fibrotic	influence	of	

inflammation.	For	example,	knocking	down	spp1/osteopontin,	which	is	induced	in	scar-

associated	fibroblasts	by	macrophage-derived,	platelet-derived	growth	factor	(PDGF),	

significantly	reduced	the	extent	of	wound	granulation	tissue	formation	and	scarring	[19].		

The	changeable	cellular	phenotype	of	macrophages,	and	the	range	of	differentiation	

and	activation	states	[20]	helps	to	explain	the	pleiotropic	nature	of	these	cells	and	their	

complex	functions	in	wound	repair.	To	simplify	their	descriptions,	the	extreme	ends	of	the	

most	distinct	polarization	options	(resting,	M0;	bactericidal	and	pro-inflammatory,	M1;	anti-

inflammatory/pro-repair	M2)	are	often	described.	The	spectrum	of	phenotypes	has	been	

revealed	through	sampling	wound	macrophages	harvested	from	polyvinyl	alcohol	(PVA)	

sponges	in	mice	[21,22].	That	prior	experience	can	influence	the	fates	of	these	cells	is	a	



feature	anticipated	to	be	of	relevance	to	the	wound	context.	For	example,	in	response	to	

environmental	changes	such	as	bacteria	exposure	in	an	early	wound,	cells	will	have	been	

epigeneticially	programmed	or	primed	[23,24],	which	can	in	turn	provide	a	level	of	

restriction	for	future	characteristics	[25].	New	insights	into	how	macrophages	might	be	

primed	prior	to	wound	exposure	comes	from	studies	in	Drosophila	where	there	is	clear	

evidence	that	macrophages	are	incapable	of	even	sensing	a	wound	until	first	primed	by	

engulfment	of	apoptotic	debris	and	a	calcium	flash	mediated	signalling	cascade	[26].				

Changes	in	immune	cell	phenotype/plasticity	during	the	wound	inflammatory	

response	may	be	pivotal	in	influencing	how	they	interact	with	the	wound	cells	sharing	their	

environment.		There	have	long	been	hints	that	tissue	scarring	is	evolutionarily	linked	to	the	

type-2-cell	mediated	immune	response	to	parasitic	infections	that	lead	to	fibrous	

encapsulation	of	helminths	as	a	host	protection	response	[27].	Just	as	macrophage	

phenotype-switching	via	IL4R	activation	drives	parasitic	encapsulation,	it	can	lead	to	tissue	

scarring;	a	recent	study	shows	that	this	might	be	mediated	via	Relm-α	signalling	which,	in	

turn,	drives	expression	of	persistent	collagen	cross-linking	enzymes	leading	to	the	bundled	

unresolvable	collagen	of	a	dermal	scar	[28].	

Addressing	the	extent	to	which	the	changing	immune	environment	during	the	time-

course	of	wound	repair	reflects	reprogramming	of	individual	macrophages,	or	successive	

incoming	waves	of	cells	with	different	characteristics	will	require	technically	challenging	live	

imaging	investigations.	A	recent	study	in	healing	wounds	in	the	scalp	of	living	mice	goes	

some	way	towards	characterising	macrophage	influx	into	wounds	and	reveals	a	surprisingly	

early,	transient	population	that	leave	wound	vessels	via	micro-hemorrhages,	rather	than	by	

diapedesis	[29].	

	

Epidermal	repair	

One	of	the	key	tissue	movements	of	any	skin	wound	healing	episode	is	re-

epithelialisation.	In	a	skin	wound	context,	the	triggers	for	rapid	keratinocyte	activation	are	

numerous,	and	include	damage	signals	such	as	H2O2	and	calcium,	changes	in	mechanical	

tension,	pathogen	sensing,	loss	of	electrical	gradient,	and	serum	exposure	[30-33].	Features	

of	activation	include	induction	of	stress	signalling	cascades	leading	to	immediate	early	gene	

activation	(e.g.	Fos	and	early	growth	response	genes,	EGRs	[34,35]),	which	in	turn	mediate	

vast	transcriptional	changes.	The	dramatic	epithelial	response	to	injury	is	not	only	protective	



through	promoting	the	immune	response	and	limiting	DNA	damage	[36,37],	but	also	it	

actively	drives	repair	by	initiating	a	transient	reprogramming	of	the	edge	cells	[38,39],	a	

phenotypic	change	that	has	been	equated	to	a	partial	epithelial-to-mesenchymal	transition	

(EMT)[40,41].	This	renders	the	wound-edge	cells	migratory	and	invasive	[42],	immunogenic	

(and	thus	self-limiting)[43],	and	proliferative	[44].	These	migrating	cells	are	clearly	very	

vulnerable	en	route	because	of	the	loss	of	protective	cornified	and	pigmented	stratified	

layers	of	normal	skin	and	their	exposure	to	increased	stressful	stimuli	including	

inflammation-triggered	ROS	at	the	wound	site.	To	cope	with	these	stresses,	the	epidermal	

cells	activate	a	series	of	interacting	glutathione-NRF2-thioredoxin	pathways	that	together	

enhance	keratinocyte	viability	during	healing	[37].	

It	is	the	basal	cells	of	a	stratified	epidermis	that	attract	most	of	the	attention	in	cell	

migration	studies;	arguably	more	plastic	than	the	differentiated	apical	layers,	the	basal	cells	

at	the	immediate	wound	margin	are	considered	to	take	the	leadership	role,	guiding	

collective	migration	of	the	tissue	layer.	However,	recent	in	vitro	work	and	in	vivo	studies	in	

model	organisms	particularly	amenable	to	live	imaging,	indicate	that	suprabasal	cells	and	

also	many	rows	of	“follower”	cells	are	activated,	and	in	turn	contribute	in	non-passive	ways	

to	forward	migration	of	the	epithelial	sheet	(Figure	1).	Immunostaining	of	repairing	blister	

wounds	showed	changes	in	integrin	expression	in	suprabasal	cells	[45,46].	Electron	

microscopy	(EM)	of	full-thickness	mouse	wounds	shows	that	both	basal	and	immediately	

suprabasal	layers	extending	70	or	more	rows	back	from	the	leading	edge	exhibit	

considerable	loosening	of	adhesions	between	neighbours.	It	appears	that	up-regulation	of	

EphrinB1	in	the	basal	and	suprabasal	cells	may	lead	to	down	regulation	of	components	of	

both	tight	and	adherens	junction	leaving	epithelial	cells	only	loosely	linked	to	one	another	by	

modified	desmosomal	junctions.	This	loosening	of	junctions	between	cells	releases	tension	

and	provides	space	for	shuffling	forward	of	follower	cells	[44].	A	study	of	wounds	made	in	

Drosophila	embryos	similarly	revealed	changes	in	“follower”	cells;	specifically,	ratcheting,	

and	myosin-mediated	cell:cell	junction	shrinkage	episodes	leading	to	cell	intercalations	were	

observed,	just	as	occur	in	several	embryonic	morphogenetic	processes	[47].	In	the	embryo	

these	intercalations	are	believed	to	drive	tissue	extension,	but	in	wound	healing	it	may	be	

less	about	actively	extending	the	tissue,	but	rather,	a	need	for	release	of	epithelial	tension	to	

enable	forward	movement	[48].	It	is	not	yet	known	if	similar	molecular	mechanisms	are	at	

play	in	local	epidermal	stem	cell	populations	(e.g.	interfollicular	epidermis	[49],	hair	follicle	



bulge	[50],	sweat	glands	and	ducts	[51,52]),	allowing	for	their	release	and	recruitment	to	a	

healing	wound.	Although	the	functional	importance	of	the	transient	contribution	of	these	

cells	to	re-epithelialisation	is	debated	[53],	understanding	how	their	migrations	are	

regulated	would	be	valuable	to	many	contexts.		

In	their	effort	to	repair	a	breach	in	the	epidermal	barrier,	migrating	wound-edge	

keratinocytes	and	follower	cells	lay	down	new	basement	membrane	components	ahead	of	

themselves	[54],	and	a	well-organised	substratum	looks	to	be	essential	to	successful	re-

epithelialisation	[55].	However,	these	cells	also	encounter	and	sense,	via	integrins,	the	new	

and	unusual	provisional	wound	extracellular	matrix	(ECM).	Sensing	this	alternative	substrate	

is	an	important	trigger	of	the	wound	response;	contact	with	wound-	or	dermis-associated	

matrix	proteins	(e.g.	collagen	I,	fragmented	ECM	components)	causes	many	cellular	changes	

including	induction	of	protease	expression	[56].	Adopting	this	degradative	phenotype	is	

considered	necessary	for	the	epidermal	tongue	to	cut	its	pathway	between	scab	and	healthy	

wound	granulation	tissue	until	it	meets	its	opposing	partner	to	fuse	to	and	seal	the	wound	

gap	(Figure	1).	Migrating	keratinocytes	appear	to	navigate	this	route	between	tissue	layers	

guided	by	ECM-integrin	“outside-in”	signalling,	as	their	integrin	profile	makes	them	selective	

about	their	substrates	including	an	avoidance	of	fibrinogen/fibrin	[57].		

Several	years	ago	we	showed	that	many	of	the	transient	gene	changes	that	occur	in	

the	advancing	epidermal	front	such	as	upregulation	of	the	epidermal	growth	factor	(EGF)	

receptor,	may	be	downstream	not	just	of	immediate	early	gene	activation	[34,35],	but	also	

dependent	on	epigenetic	unsilencing	mechanisms	mediated	by	clearance	of	particular	

polycomb-deposited	histone	marks	[38,39],	which	need	to	be	reinstated	after	the	normal	

epidermal	architecture	is	restored.	Changes	in	epithelial	cell	behaviour	exhibited	in	a	

repairing	wound	are	not	dissimilar	to	a	number	of	pathologies	involving	migrating	epithelial	

cells	including	metastatic	spread	of	some	cancers,	and	so	transient	epigenetic	regulation	

may	be	a	key	strategy	that	limits	cancer-associated	cell	behaviours	at	the	wound	site.	

	

Wound-associated	fibroblast	dynamics		

Wound-associated	fibroblasts	are	important	for	repopulating	lost	tissue	in	the	wound	

defect,	depositing	new	collagen	matrix,	and	also	contributing	to	closure	through	their	

contractility	(Figure	1).	As	with	the	keratinocytes,	fibroblasts	sense	and	then	“activate”	in	

response	to	many	aspects	of	tissue	damage,	including	the	immediate	cues	such	as	serum	



exposure,	changes	in	mechanical	tension,	and	pathogens	[58-60].	These	cells	then	adapt	to	

the	changing	wound	environment	as	healing	progresses,	fine-tuning	their	behaviours	in	

response	to	changing	mechanical	properties,	inflammatory	and	fibrogenic	signals,	and	

oxygen	levels	[60-62],	producing	first	temporary,	and	then	more	permanent	matrix	with	

varying	composition.	

Alpha-smooth	muscle	actin	induction	and	increased	collagen	I	expression	have	become	

hallmarks	of	dermal	fibroblast	activation	[63],	although	the	wound-induced	phenotypic	

changes	occurring	in	these	cells	extends	much	deeper.	Re-enacting	wound-associated	stimuli	

on	in	vitro	fibroblasts	cultures	has	demonstrated	the	plasticity	of	this	cell	population	–	with	

epigenetic	reprogramming	[64,65]	that	is	certain	to	facilitate	their	dramatic	changes	in	gene	

expression	and	behaviours.	

It	has	always	been	presumed	that	a	skin	wound	activates	dermal	fibroblasts	at	the	

margin	of	the	damage,	and	it	is	these	edge-cells	that	are	triggered	to	migrate	into	the	wound	

bed	where	they	can	make	their	contribution.	The	most	definitive	recent	lineage	studies	in	

mice	have	refined	what	we	know	about	the	origins	and	eventual	fates	of	locally-derived	

wound	fibroblasts;	labelling	sub	populations	of	skin	fibroblasts	at	developmental	stages	and	

then	wounding	adult	mice	demonstrated	that	the	initial	wound	infilling	comes	from	the	

lower	(i.e.	reticular)	dermis	of	adjacent	unwounded	skin,	with	a	subsequent	later	wave,	

behind	the	advancing	wound	epidermis,	deriving	from	upper	(i.e.	papillary)	dermal	cells	of	

the	adjacent	skin	[66].		The	nature	and	timing	of	these	migrations	may,	in	part,	contribute	to	

the	aberrant	architecture	of	wound	scar	tissue	and	explain	why	it	is	generally	impotent	at	

regenerating	new	appendages	(e.g.	hair	and	sweat	glands)	since	the	lower	dermal	cells	do	

not	respond	to	the	inductive	signals	[67].	

Although	these	data	suggest	that	reticular	wound-margin	dermal	fibroblasts	make	the	

major	contribution	to	regenerating	the	dermis,	there	is	evidence	that	alternative	stem	cell	

populations	can	infiltrate	the	wound	also.	Although	their	ultimate	contribution	to	repairing	

tissue	remains	controversial	and	under	investigation,	even	the	smallest	number	of	

infiltrating	cells	could	be	potent	in	their	paracrine	effects	[68,69],	or	provide	a	subordinate	

cell	source	for	repair,	or	contribute	to	wound-associated	pathologies.	For	example,	

multipotent	bone	marrow-derived	mesenchymal	stem	cells	(MSCs)[70,71]	appear	to	be	

recruited	to	sites	of	tissue	injury.	These,	or	even	other	multipotent	cell	populations	[72],	

could	be	already	residing	in	the	skin	(e.g.	peri-vascularly	or	in	the	adipose	tissue	[73,74]),	or	



circulating	as	with	“fibrocytes”	[75,76]	and	recruited	to	the	site	of	injury	in	a	manner	similar	

to	leukocytes.		

Live-imaging	to	dissect	the	mechanisms	of	fibroblast	or	MSC	migration	at	a	cellular	level	

has	been	difficult	because	of	the	tissue	depth	and	lack	of	specific	cell	markers,	but	with	

technical	advances	in	microscopy	and	improved	transcriptional	delineation	of	cell	types	[66],	

visualising	the	movements	of	different	cell	populations	into	the	wound	may	soon	be	

possible.	Nevertheless,	in	vitro	studies	and	histology	of	in	vivo	wounds	have	shown	that	a	

range	of	chemoattractants	such	as	insulin	[77],	platelet	derived	growth	factor	[78]	and	

CCL21	[79],	can	help	draw	fibroblasts	and	MSC	into	wounds	through	directional	cell	

migration.	Growth	factors	also	appear	to	mediate	the	ultimate	fate	of	wound	fibroblasts,	

with	options	including	apoptosis	[80,81]	or	dedifferentiation	and	a	return	to	relative	

quiescence	[82].	

	 Irrespective	of	origin	and	state	of	differentiation,	the	heterogeneous	collection	of	

mesenchymal	cells	within	the	granulation	tissue	are	all	thought	to	be	“dynamic”,	altering	

their	cellular	phenotype	and	migratory	behaviour	when	faced	with	the	complex	wound	

environment.	Single	cell	analysis	of	dissociated	wound	beds	has	the	potential	to	inform	

about	cellular	origins,	and	their	varying	capacities	for	reprogramming	in	response	to	a	

wound,	and	their	potentially	unique	contributions	to	repair.	As	discussed	in	the	

inflammation	section	above,	fibroblasts	in	the	wound	granulation	tissue	go	on	to	lay	down	a	

collagenous	scar	matrix	and	this	is	heavily	influenced	by	signals	from	invading	innate	

immune	cells.	It	will	be	important	in	future	to	begin	to	observe	(ideally	intravitally)	how	the	

migratory	behaviour	of	fibroblasts	impacts	on	matrix	deposition	at	the	wound	site	and	

whether	therapeutic	modulation	of	this	can	be	utilised	to	block	wound	scarring.	

	

Wound	angiogenesis	

Healing	wounds	are	pink	because	of	a	considerable	angiogenic	response	at	sites	of	

tissue	damage	(Figure	1),	which	is	presumed	to	be	in	response	to	the	increasing	metabolic	

demands	of	the	repairing	wound.	Just	as	with	wound	fibroblast	activities,	the	sprouting	of	

vessels	in	wound	granulation	tissue	is	not	easily	amenable	to	live	imaging	(although	

translucent	zebrafish	models	might	soon	change	this),	but	there	are	lessons	to	be	learned	

from	developmental	angiogenesis.	A	study	in	mouse	and	zebrafish	embryos	indicates	that	

endothelial	tip	cell	sprouting	requires	VEGF	and	that	macrophages	(which	might	also	be	the	



primary	source	of	the	VEGF)	act	on	these	sprouts	to	nurture	vessel	anastomosis	[83].	

Consistent	with	this,	deletion	of	VEGF	expression	in	macrophages	severely	reduced	

angiogenesis	in	open	murine	excisional	wounds	[84];	however,	more	recent	studies	indicate	

that	macrophages	can	also	have	a	“dampening”	role	on	wound	angiogenesis	via	non-

canonical	Wnt	signalling	and	activation	of	Flt1	(a	non-signalling	VEGF	receptor),	which	acts	

to	suppress	VEGF-mediated	angiogenesis	[85].	Also,	a	study	in	RhoB	null	mice	showed	that	

this	non-constitutively	expressed	small	GTPase,	acting	via	VEZF1,	is	necessary	for	wound	

blood	vessel	sprouting,	and	that	coincident	with	reduced	wound	angiogenesis	in	KO	mouse	

wounds,	there	was	enhanced	lymphangiogenesis,	which	is	normally	much	delayed	by	

comparison	to	blood	vessel	sprouting	[86].	These	studies	suggest	a	complex	interplay	

between	these	two	vessel	types	at	the	wound	site,	and	of	course	both	will	need	to	remodel	

during	the	resolution	phase	of	wound	repair,	to	re-establish	normal	cutaneous	vessel	

architecture.	This	field	of	research	is	likely	to	rapidly	expand	in	the	coming	years	

(presumably	benefitting	from	angiogenesis	studies	in	developmental	biology	and	cancer),	as	

we	know	that	poor	wound	angiogenesis	is	fundamental	to	chronic	healing.		

	

Conclusions	

The	wound	is	a	complex	in	vivo	masterclass	in	cell	migration,	with	many	cell	lineages	

performing	together	to	heal	the	wound.	Whist	immune	cells	are	designed	for	recruitment	to	

distant	sites,	several	of	the	other	lineages	involved	would	presumably,	in	the	absence	of	a	

nearby	wound	cue,	live	out	their	lives	as	fairly	dormant,	largely	immobile	cells.	For	several	of	

them,	it	seems	clear	that	they	undergo	major	reprogramming	in	order	to	commence	their	

migrations	and	perform	other	new	functions	in	the	wound.	We	clearly	need	to	understand	

these	reprogramming	events	better	in	order	to	learn	how	we	might	enhance	healing	when	it	

goes	wrong,	and,	to	that	end,	we	need	to	develop	better	imaging	approaches	that	allow	us	

to	visualise	these	migration	as	they	occur	in	vivo	in	mammalian	skin	wounds,	and	to	

extrapolate	from	the	genetically	tractable	models	such	as	flies	and	fish.	Normal,	healthy	

wound	repair	is	a	showcase	for	the	adaptability	and	migratory	potential	of	the	cells	in	our	

skin	as	they	recapitulate	processes	that	they	last	undertook	when	they	were	cells	

undergoing	morphogenetic	episodes	in	the	embryo.	
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This	paper	is	exceptional	in	that	it	begins	to	drill	down	to	the	molecular	mechanisms	

underpinning	wound	angiogenic	sprouting;	in	doing	so	it	reveals	a	reciprocal	

interrelationship	between	wound	angiogeneisis	and	lymphangiogenesis	with	the	former	

blocked	and	the	latter	enhanced	in	RhoB	knockout	mice.	

	 	



Figure	1.	Histological	overview	of	a	wound,	highlighting	dynamic	cell	populations	required	

for	successful	repair.		

(Top	image)	Day	3	skin	wound	histology	(H&E,	excisional	4mm	wound	to	the	shaved	back	

skin	of	an	adult	male	mouse).	Scale,	50	µm.	

(i)	Wound	edge	arteriole	(Day	1)	with	wound-polarised	adherence	of	leukocytes	to	the	

endothelial	wall.	Schematic	illustrates	diapedesis	from	the	vessel	and	their	subsequent	

migration	towards	the	wound,	and	potent	paracrine	influence	(green).	Scale:	20	µm.	

(ii)	Wound	edge	dermis	of	a	Day	7	wound.	Schematic	illustrates	dermal	fibroblasts	acquiring	

a	migratory	(blue)	and	subsequently	contractile	(myofibroblast	–	with	stress	fibres)	

phenotype.	Scale:	50 µm.	

(iii)	Extensive	angiogenesis	in	a	Day	5	wound	bed	(some	vessels	indicated	with	arrowheads).	

Schematic	illustrates	the	branching	and	sprouting,	led	by	tip	cells	(green)	and	resulting	in	a			

transient,	dense	vascular	network	in	the	wound	granulation	tissue.	Scale:	50 µm.	

(iv)	Wound	edge	epidermis	(Day	1	wound	–	pink	cells)	migrating	across	the	wound	bed,	

boring	a	path	between	the	granulation	tissue	and	overlying	scab.	Schematic	illustrates	the	

reduction	in	keratinocyte	cell:cell	contacts,	and	the	involvement	of	suprabasal	and	follower	

cell,	and	production	of	new	substratum	as	they	progress.	Scale:	50	µm.	
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