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Abstract
We prove that a certain matrix, which is not image partition regular over R near
zero, is image partition regular over N. This answers a question of De and Hindman.

1. Introduction

Let A be an integer matrix with only finitely many non-zero entries in each row.
We call A kernel partition regular (over N) if, whenever N is finitely colored, the
system of linear equations Ax = 0 has a monochromatic solution; that is, there is
a vector x with entries in N such that Ax = 0 and each entry of x has the same
color. We call A image partition regular (over N) if, whenever N is finitely colored,
there is a vector x with entries in N such that each entry of Ax is in N and has
the same color. We also say that the system of equations Ax = 0 or the system of
expressions Ax is partition regular.

The finite partition regular systems of equations were characterised by Rado [4].
Let A be an m⇥ n matrix and let c(1), . . . , c(n) be the columns of A. Then A has
the columns property if there is a partition [n] = I1 [ I2 [ · · ·[ It of the columns of
A such that

P
i2I1

c(i) = 0, and, for each s,
X
i2Is

c(i) 2 hc(j) : j 2 I1 [ · · · [ Is�1i,

where h·i denotes (rational) linear span and [n] = {1, 2, . . . , n}.

Theorem 1 ([4]). A finite matrix A with integer coe�cients is kernel partition
regular if and only if it has the columns property.

The finite image partition regular systems were characterised by Hindman and
Leader [3].
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In the infinite case even examples of partition regular systems are hard to come
by: see [1] for an overview of what is known. De and Hindman [2, Q3.12] asked
whether the following matrix was image partition regular.0

BBBBBBBBBBBBBBB@

1 · · ·
1 1 · · ·

2 1 · · ·
2 1 · · ·

1 1 1 1 · · ·
4 1 · · ·
4 1 · · ·
4 1 · · ·
4 1 · · ·
...

...
...

...
...

...
...

. . .

1
CCCCCCCCCCCCCCCA

where we have omitted zeroes to make the block structure of the matrix more
apparent. De and Hindman’s matrix corresponds to the following system of linear
expressions.

x21 + x22 x21 + 2y y

x22 + 2y

x41 + x42 + x43 + x44 x41 + 4y
x42 + 4y
x43 + 4y
x44 + 4y

...
x2n1 + · · · + x2n2n x2n1 + 2ny

...
x2n2n + 2ny

...

A matrix A is called image partition regular over R near zero if, for every � > 0,
whenever (��, �) is finitely colored, there is a vector x with entries in R \ {0} such
that each entry of Ax is in (��, �) and has the same color. De and Hindman sought
a matrix that was image partition regular but not image partition regular over R
near zero. It is easy to show that the above matrix is not image partition regular
over R near zero, so showing that it is image partition regular would provide an
example.



INTEGERS: 14 (2014) 3

The main result of this paper is that De and Hindman’s matrix is image partition
regular.

Theorem 2. For any sequence (an) of integer coe�cients, the system of expressions

x11 x11 + a1y y

x21 + x22 x21 + a2y

x22 + a2y

(1)
x31 + x32 + x33 x31 + a3y

x32 + a3y

x33 + a3y

...

is partition regular.

Taking an = n implies that De and Hindman’s matrix is image partition regular.
Barber, Hindman and Leader [1] recently found a di↵erent matrix that is image

partition regular but not image partition regular over R near zero. Their argument
proceeded via the following result on kernel partition regularity.

Theorem 3 ([1]). For any sequence (an) of integer coe�cients, the system of
equations

x11 + a1y = z1

x21 + x22 + a2y = z2

...
xn1 + · · · + xnn + any = zn

...

is partition regular.

In Section 2 we show that Theorem 2 can almost be deduced directly from The-
orem 3. The problem we encounter motivates the proof of Theorem 2 that appears
in Section 3.
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2. A Near Miss

In this section we show that Theorem 2 can almost be deduced directly from The-
orem 3.

Let N be finitely colored. By Theorem 3 there is a monochromatic solution to
the system of equations

x̃11 � a1y = z1

x̃21 + x̃22 � 2a2y = z2

...
x̃n1 + · · · + x̃nn � nany = zn

...

For each n and i, set xni = x̃ni � any. Then

xn1 + · · · + xnn = x̃n1 + · · · + x̃nn � nany = zn,

and
xni + any = x̃ni,

so we have found a monochromatic image for System (1). The problem is that we
have not ensured that the variables xni = x̃ni � any are positive. In Section 3 we
look inside the proof of Theorem 3 to show that we can take (most of) the x̃ni to
be as large as we please.

3. Proof of Theorem 2

The proof of Theorem 3 used a density argument. The (upper) density of a set
S ✓ N is

d(S) = lim sup
n!1

|S \ [n]|
n

.

The density of a set S ✓ Z is d(S \ N). We call S dense if d(S) > 0. We shall use
three properties of density.

1. If A ✓ B, then d(A)  d(B).

2. Density is una↵ected by translation and the addition or removal of finitely
many elements.

3. Whenever N is finitely colored, at least one of the color classes is dense.
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We will also use the standard notation for sumsets and di↵erence sets

A + B = {a + b : a 2 A, b 2 B}
A�B = {a� b : a 2 A, b 2 B}

kA = A + · · · + A| {z }
k times

,

and write m · S = {ms : s 2 S} for the set obtained from S under pointwise
multiplication by m.

We start with two lemmas from [1].

Lemma 4 ([1]). Let A ✓ N be dense. Then there is an m such that, for n � 2/d(A),
nA� nA = m · Z.

Lemma 5 ([1]). Let S ✓ Z be dense with 0 2 S. Then there is an X ✓ Z such
that, for n � 2/d(S), we have S � nS = X.

The following consequence of Lemmas 4 and 5 is mostly implicit in [1]. The
main new observation is that the result still holds if we insist that we use only large
elements of A. Write A>t = {a 2 A : a > t}.

Lemma 6. Let A be a dense subset of N that meets every subgroup of Z, and let m
be the least common multiple of 1, 2, . . . , b1/d(A)c. Then, for n � 2/d(A) and any
t,

A>t � nA>t ◆ m · Z.

Proof. First observe that, for any t, d(A>t) = d(A). Let n � 2/d(A), and let
X = A>t � nA>t. For any a 2 A>t, we have by Lemma 5 that

(A>t � a)� n(A>t � a) = (A>t � a)� (n + 1)(A>t � a),

and so
X = X �A>t + a.

Since a 2 A>t was arbitrary it follows that X = X + A>t � A>t, whence X =
X+l(A>t�A>t) for all l. By Lemma 4 there is an mt 2 Z such that, for l � 2/d(A),
l(A>t �A>t) = mt ·Z. Hence X = X + mt ·Z, and X is a union of cosets of mt ·Z.
Since A contains arbitrarily large multiples of mt, one of these cosets is mt ·Z itself.

Since lA>t � lA>t contains a translate of A>t,

1/mt = d(mt · Z) � d(A),

and mt  1/d(A). So mt divides m and

A>t � nA>t ◆ m · Z.
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Lemma 6 will allow us to find a monochromatic image for all but a finite part
of System (1). The remaining finite part can be handled using Rado’s theorem,
provided we take care to ensure that it gives us a solution inside a dense color class.

Lemma 7 ([1]). Let N be finitely colored. For any l 2 N, there is a c 2 N such
that c · [l] is disjoint from the non-dense color classes.

We can now show that System (1) is partition regular.

Proof of Theorem 2. Let N be r-colored. Suppose first that some color class does
not meet every subgroup of Z; say some class contains no multiple of m. Then
m · N is (r� 1)-colored by the remaining color classes, so by induction on r we can
find a monochromatic image. So we may assume that every color class meets every
subgroup of Z.

Let d be the least density among the dense color classes, and let m be the least
common multiple of 1, 2, . . . , b1/dc. Then for any dense color class A, any t and
n � 2/d,

A>t � nA>t ◆ m · Z.

Now let N = d2/de� 1. We will find a monochromatic image for the the expres-
sions containing only y and xni for n  N using Rado’s theorem. Indeed, consider
the following system of linear equations.

u1 = x11 v11 = x11 + a1y

u2 = x21 + x22 v21 = x21 + a2y

v22 = x22 + a2y

... (2)
uN = xN1 + · · · + xNN vN1 = xN1 + aNy

...
vNN = xNN + aNy

The matrix corresponding to these equations has the form
�
B �I

�
where B is a top-left corner of the matrix corresponding to the expressions of
System (1) and I is an appropriately sized identity matrix. It is easy to check
that this matrix has the columns property, so by Rado’s theorem there is an l such
that, whenever a progression c · [l] is r-colored, it contains a monochromatic solution
to the equations of System (2).
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Apply Lemma 7 to get c with c · [ml] disjoint from the non-dense color classes.
Then mc · [l] ✓ c · [ml] is also disjoint from the non-dense color classes, and by the
choice of l there is a dense color class A such that A \ (mc · [l]) contains a solution
to System (2). Since the un, vni and y are all in A, y and the corresponding xni

make the first part of System (1) monochromatic.
Now y is divisible by m, so for n > N we have that

�nany 2 A>any � nA>any,

so there are x̃ni and zn in A>any such that

�nany = zn � x̃n1 � · · ·� x̃nn.

Set xni = x̃ni � any. Then

xn1 + · · · + xnn = x̃n1 + · · · + x̃nn � nany = zn,

and
xni + any = x̃ni,

for each n > N and 1  i  n. Since x̃ni and zn are in A it follows that the whole
of System (1) is monochromatic.

It remains only to check that all of the variables are positive. But for y and
xni with n  N this is guaranteed by Rado’s theorem; for n > N it holds because
x̃ni > any.
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