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1. Abstract 

Johnson et al. (2012) recently argued that analysis of millisecond-by-millisecond stock-price 
movements between 2006 and 2011 suggests the existence of a step-change or phase 
transition in the dynamics and behaviour of financial markets, in which human traders and 
automated algorithmic “robot” trading systems freely interact. Above a particular time-threshold, 
humans and algorithmic systems trade with one another; below the threshold, there is a 
sudden change to a market in which humans cannot participate and where all transactions are 
robot-to-robot. We refer to this abrupt system transition from a mixed human-robot phase to an 
all-robot phase as the ‘robot phase transition’. At sub-second timescales, below the robot 
transition, Johnson et al. argue that the robot-only market exhibits ‘fractures’ – ultra-fast swings 
in price akin to mini flash-crashes – that are undesirable, little understood, and intriguingly 
appear to be linked to longer-term instability of the market as a whole.  
He we report on using a complementary approach to the historical data analysis employed by 
Johnson et al.: in March 2012 we conducted laboratory-style experiments where human traders 
interacted with algorithmic trading agents (i.e., robots) in minimal experimental models of 
electronic financial markets using De Luca’s (2011) OpEx artificial financial exchange. Our aim 
was to see if correlates of the two regimes suggested by Johnson et al. occur in such 
laboratory conditions. Our results thus far do indeed indicate that when trading robots act on a 
super-human timescale, the market starts to fragment, with statistically lower human-robot 
interactions than we would expect from a fully mixed market. In contrast, when robotic trader-
agents are slowed to a thinking-and-reaction speed similar to that of humans, less 
fragmentation is observed. We tentatively conclude that this is evidence for the robot transition 
occurring in controlled experimental financial market systems.  
The work reported here also explore the effects of increasing the degree of realism in the 
laboratory experiments: we find that some statistically significant effects may be consequences 
of constraints introduced to make the analysis of the experiment results easier, and we report 
on our discovery of a problem with earlier OpEx experiments that casts doubt on their results. 

2. Introduction 

In February 2012, Johnson et al. (2012) published a working paper that immediately received 
widespread media attention, including coverage in eFinancialNews (Price, 2012), New Scientist 
(Giles, 2012) and Wired (Keim, 2012). Having analysed millisecond-by-millisecond stock-price 
movements between 2006 and 2011, Johnson et al. argued that there was evidence for a 
phase transition in the behaviour of financial markets at the sub-second time-scale. At the point 
of this transition, the market dynamics switch from a domain involving interactions among a mix 
of human traders and ‘robot’ automated algorithmic trading systems, to a domain newly-
identified by Johnson et al. in which the automated trading systems interact only among 
themselves, with no human traders involved. Here, we name this abrupt system-wide transition 
from mixed human-algorithm phase to a new all-algorithm phase, the ‘robot phase transition’.  

At sub-second timescales, below the robot transition, the robot-only market exhibits ‘fractures’ 
– ultra-fast swings in price akin to mini flash-crashes – that are undesirable, little understood, 
and intriguingly appear to be linked to longer-term instability of the market as a whole.  

This discovery has the potential for significant impact in the global financial markets. If the short 
term micro-effects can indeed give some indication of longer-term macro-scale behaviour then 
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it is possible that new methods for monitoring the stability of markets could be developed, 
offering early-warning systems for future flash-crashes. 

In March 2012, we were commissioned by the UK Government Office for Science’s Foresight 
unit to run a series of experiments exploring the robot transition under controlled laboratory 
conditions. We did this by varying the speed/reaction of robot-trader agents in OpEx, an 
“artificial stock exchange” electronic market that had been developed as an apparatus for 
evaluating human-robot and robot-robot interaction in electronic markets. OpEx was developed 
by Marco De Luca at the University of Bristol and had been used as the experimental 
economics platform in a number of previous studies (e.g.: De Luca & Cliff, 2011a; De Luca & 
Cliff, 2011b), before being used for a major Foresight review document that De Luca, Charlotte 
Szostek, and we the two authors of this paper had produced in the summer of 2011 (De Luca 
et al., 2011), and then again in a follow-up paper that the four of us subsequently co-authored 
(Cartlidge et al., 2012). In February 2012 OpEx was placed in the public domain as an open-
source release via the popular SourceForge web service (OpEx SourceForge, 2012), as a 
service to the scientific community with the intent of helping other researchers replicate and 
build on our previous experiments.  

In this current paper, our primary aim is to test the hypothesis that when robot trader agents in 
OpEx are able to act/react on a timescale quicker than the human traders are, we will see a 
transition from a mixed market (where humans and robots are equally likely to interact with one 
another) to a more fragmented market where robots are more likely to trade with robots, and 
humans with humans.  

However, in the course of undertaking the experiments reported in this paper, we also wanted 
to explore the effects of increasing the realism of the structure of the experiments conducted on 
OpEx (we explain what we mean by this in more detail in Section 5.2). In doing this, we 
discovered that some statistically significant effects that we observe in artificial, constrained 
experimental set-ups, disappear when we make the experiments more realistic and less 
constrained. The lesson that we draw from this is that the more realistic laboratory experiments 
of humans and robots interacting in electronic markets can be, the better. This might seem like 
a rather obvious observation, but it reinforces the message that was first made in (De Luca et 
al., 2011) that there is a real necessity to break away from experiment designs that have been 
handed down from experimenter to experimenter since the birth of experimental economics in 
Vernon Smith’s laboratory in the late 1950’s.  

Moreover, in conducting the study reported in this paper, our first batch of new experiments 
yielded results that we found very difficult to make sense of, and in the course of trying to 
understand them we identified a problem, a bug, with the OpEx implementation of the robot-
trader algorithm we were using (the “AA” algorithm invented by Vytelingum, 2006). Further 
investigation revealed that this bug had affected the results that were presented in our previous 
co-authored papers (De Luca et al., 2011; Cartlidge et al., 2012). The full implications of this, 
and the lesson to be learned, are discussed in Section 5.3.  

Our first conclusion is that our results are supportive of Johnson et al.’s (2012) hypothesis 
concerning the robot phase transition, although in our experiments the effects of increasing 
robot speed seem to give a progressive response rather than a step-change.  

Our second conclusion is that in experiments such as those reported here, the more realistic 
the set-up of the experiment, the more the results can be trusted: this conclusion is based on 
our observation that when we increased the realism of the experiment set-up, some statistically 
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significant effects seen in results from less-realistic experiment set-ups (ones with simplifying 
constraints introduced for ease of control and analysis) disappeared.  

Our third conclusion will be rather obvious to anyone with a background in laboratory-based 
hard-science research, but nevertheless is probably illuminating to computer science 
researchers who study electronic markets and/or automated trading agents: independent 
replication of results is vitally important in ensuring the quality of research and providing trusted 
results. In the course of conducting the experiments reported here, we identified a bug that 
casts doubt on results in previous papers that we have co-authored. If we hadn’t attempted a 
(semi-independent) replication of our earlier work, we may not have discovered this.  

The remainder of this paper is structured as follows. Section 2 introduces the relevant 
background material, and Section 3 then describes the methods we used for our experiments 
studying human-robot interactions in the OpEx artificial financial exchange. Results from our 
experiments are presented in summary form in Section 4, with more detailed data being made 
available in the Appendix A. In Section 5 we discuss our results, and lay out plans for further 
research. The discussion in Section 5 draws three main conclusions.  

3. Background 

3.1. Human-vs.-robot experimental economics 
There are two complementary approaches for understanding the dynamics of financial 
markets: forensic analysis of real market data, and experimental economics. Forensic analysis 
of real market data is characterised by data-intensive statistical analysis of real-world 
transaction data. In contrast, the experimental economics approach involves setting up simple, 
laboratory-style markets with a small number of participants acting in specified roles, and then 
observing the effects of controlled changes in the market. The former approach is the one 
taken by Johnson et al. (2012) to provide evidence for the existence of a robot phase transition 
in financial markets. The latter approach is the one we take in this report, to see if we can 
identify a correlate of Johnson et al.’s robot phase transition under simple, controlled, 
laboratory conditions. 

The experimental economics approach was established in a series of seminal papers by 
Vernon Smith in the early 1960’s, a contribution for which he was awarded the Nobel Prize in 
Economics in 2002 (for further details, see Smith, 2006). Smith created experimental markets 
with human participants trading via the continuous double auction (CDA) mechanism: the same 
mechanism that underlies the majority of the world’s real financial markets. Buyers and sellers 
were given a limit price - the floor price at which a seller can sell and ceiling price for which a 
buyer can buy - and told to trade. Transaction prices, and the prices of unsuccessful quotes, 
were recorded and the resulting dynamics of the market analysed. Experimental economics 
was born. 

In 2001, a group of researchers at IBM conducted the world’s first experimental economics 
market between humans and robot traders, automated trading algorithms that trade 
autonomously using internal logic capable of self-adaptation (Das et al., 2001). Their seminal 
results showed that the robots – using the ZIP algorithm invented by Cliff at Hewlett-Packard 
Labs (Cliff, 1997), and IBM’s MGD, a modified version of the GD algorithm invented by 
Gjerstad & Dickhaut (1998) – were able to consistently out-perform (extract more profit than) 
the human traders. The authors concluded that the financial impact of their results “…might be 
measured in billions of dollars annually”. The interest of financial institutions trading on the 
markets was piqued, and the world of automated trading has since blossomed. Global financial 
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markets are now argued to be dominated by High Frequency Trading (HFT) robots, with major 
exchanges in the USA and Europe reporting that 30%-50% of all transactions currently involve 
automated traders. 
Surprisingly, given the impact of Das et al.’s (2001) result, there have been extraordinarily few 
human-vs.-robot market experiments conducted in the decade proceeding its publication (for a 
detailed review of those that have been conducted, see De Luca et al., 2011). Indeed, there 
have been so few human-vs.-robot experiments performed that we can briefly describe them all 
here. In a series of studies, Grossklags & Schmidt (2003, 2006) used human-vs.-robot 
experimental markets to observe the effect of knowledge/ignorance of the presence of robot 
trader-agents on the behaviour of human traders: they found that there was, indeed, a 
significant ‘knowledge effect’. In 2010, nearly a decade after the publication of Das et al. 
(2001), De Luca & Cliff (2011a) produced the first replication of the IBM study and confirmed 
the results IBM had presented. De Luca & Cliff (2011b) also demonstrated that a newer robot 
trading algorithm, the Adaptive Aggressive (AA) algorithm invented by Vytelingum (2006), out-
performed the other published trading strategies in both robot-vs.-robot and robot-vs.-human 
markets. Finally, in two recent papers, we the authors, along with our colleagues Marco De 
Luca and Charlotte Szostek, published two papers (De Luca et al., 2011; Cartlidge et al., 2012) 
on the results from human-vs.-robot experimental markets that used a more ‘realistic’ 
continuous-replenishment design than had been used before. The surprising results of these 
experiments are discussed further in Section 5.3. Finally, this report provides what is, to the 
best of our knowledge, the only other documented series of human-vs.-robot market 
experiments, performed in March, 2012. 

Having been demonstrated to be the dominant robot algorithm in the academic literature (De 
Luca & Cliff, 2011b), for all the experiments described in this report, we use the AA strategy as 
the control logic for our robot trader algorithms. AA robots have short-term and longer-term 
learning processes. In the short-term, robots update the aggressiveness of their bidding 
behaviour; with more aggressiveness meaning an agent will trade off profit to improve its 
chance of transacting. In the longer-term, robots learn how to best combine their 
aggressiveness with their estimation of the market equilibrium price, calculated by observing 
transaction prices over a time window, to choose which bids or asks to submit in the market 
(for full details, refer to Vytelingum, 2006). In the designer’s own words: “The principal 
motivation for the short-term learning is to enable the agent to immediately respond to market 
fluctuations, while for the long-term learning it is to adapt to broader trends in the way in which 
the market demand and supply changes over time” (Vytelingum, Cliff, & Jennings, 2008).  

3.2. Measuring the performance of markets  
An ‘ideal’ market can be perfectly described by the aggregate quantity supplied by sellers and 
demanded by buyers (the supply and demand schedules) at every price point. As prices 
increase, in general there is a tendency for supply to increase, with increased potential 
revenues from sales encouraging more sellers to enter the market; while, at the same time, 
there is a tendency for demand to decrease as buyers look to spend their money elsewhere. At 
some price-point, the quantity demanded will equal the quantity supplied. This is the theoretical 
market equilibrium. Fig. 3.2.1 shows an example demand and supply schedule for a theoretical 
market. Market equilibrium is determined by the intersection between supply and demand (P0, 
Q0) toward which an ideal market will tend. For all prices above P0, supply will exceed demand, 
forcing suppliers to reduce their prices to make a trade; whereas for all prices below P0, 
demand exceeds supply, forcing buyers to increase their price to make a trade. All quantity 
demanded and supplied to the left of equilibrium, Q0, is called ‘intra-marginal’; all quantity 
demanded and supplied to the right of equilibrium, Q0, is called ‘extra-marginal’. In an ideal 
market, all intra-marginal units and no extra-marginal units are expected to trade. 
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Figure 3.2.1. Supply and Demand curves (here illustrated as straight lines) relate the 
quantities supplied by sellers and demanded by buyers, respectively, to the price per 
item: as the price increases, the quantity supplied increases but the quantity demanded 
falls. The point at which the two curves intersect is the theoretical equilibrium point for 
this supply and demand schedule: Q0 is the equilibrium quantity and P0 is the equilibrium 
price.  

 

 

In the real world, markets are not ideal. They will always trade away from equilibrium at least 
some of the time. We can use metrics to calculate the ‘performance’ of a market by how far 
from ideal equilibrium it trades, allowing us to compare between markets. In this report, we 
make use of the following metrics for measuring market performance: 

Smith’s alpha: 

Following Vernon Smith (1962), we measure the equilibration (equilibrium-finding) behaviour of 
markets, α, as the root mean square difference between each of n transaction prices, pi (for 
i=1…n) over some period, and the P0 value for that period, expressed as a percentage of the 
equilibrium price: 

   (1) 

In essence, α captures the standard deviation of trade prices about the theoretical equilibrium. 
A low value of α is desirable, indicating a market trading close to P0. 

Allocative efficiency: 

For each trader, i, the maximum theoretical profit available, πi*, is the difference between the 
price they are prepared to pay (their ‘limit price’) and the theoretical market equilibrium price, 
P0. Efficiency, E, is used to calculate the performance of a group of n traders as the mean ratio 
of realised profit, πI, to theoretical profit, πi*: 

   ∑
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theoretical profit available, πi*, on all trades. A value below 1.0 indicates that some 
opportunities have been missed. Finally, a value above 1.0 means that additional profit has 
been made by taking advantage of a trading counterparty’s willingness to trade away from the 
equilibrium price, P0. So, for example, a group of sellers might record an allocative efficiency of 
1.2 if their counterparties (a group of buyers) consistently enter into transactions at prices 
greater than P0; in such a situation, the buyers’ allocative efficiency would not be more than 0.8. 

Profit dispersion: 

Profit dispersion is a measure of the extent to which the profit/utility generated by a group of 
traders in the market differs from the profit that would be expected of them if all transactions 
took place at the equilibrium price. For a group of n traders, profit dispersion is calculated as 
the root mean square difference between the profit achieved, πI, by each trader, i, and the 
maximum theoretical profit available, πi*: 

    (3) 

 

Low values of πdisp indicate that traders are extracting actual profits close to those available if 
all trades take place at the equilibrium price P0; while higher values of πdisp indicate that traders’ 
profits differ from those expected at equilibrium. The attraction of this statistic is that it is not 
masked by zero-sum effects between buyers and sellers. Gode & Sunder (1993) introduced 
this metric after they discovered that the trading activity of human traders and simple “ZI-C” 
robots in market experiments could yield very similar values for a popular measure called 
allocative efficiency, whereas the πdisp values of markets populated by human traders were 
significantly lower than those of markets populated by ZI-C traders.  

Delta profit: 

Delta profit is used to calculate the difference in profit maximising performance between two 
groups, x and y, as a percentage difference relative to the mean of the two groups:  
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Delta profit directly measures the difference in profit gained by two groups. In a perfect market 
with identically matched groups, delta profit should be zero, since all groups should trade at the 
equilibrium price P0. 
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4. Experiment methodology 

4.1. Open Exchange (OpEx) platform 
 

Figure 4.1.1. The Lab-in-a-box hardware arranged ready to run an Open Exchange 
(OpEx) human-vs.-robot trading experiment. Six small net-book computers run human 
trader Sales GUIs, with 3 buyers (near-side) sitting opposite 3 sellers (far-side). Net-book 
clients are networked via Ethernet cable to a network switch for buyers and a network 
switch for sellers, which in turn are connected to a router. The central exchange and 
robots servers run on the dedicated hardware server (standing vertically, top-left), which 
is also networked to the router. Finally, an Administrator laptop (top table, centre; 
networked via the router) is used to remote desktop to the hardware server to enable the 
experiment administrator to configure and run experiments. Photograph Copyright © 
2012 J. Cartlidge. 

 

Open Exchange (OpEx) is a real-time financial-market simulator specifically designed to enable 
economic trading experiments between humans and automated trading algorithms (robots). 
OpEx was designed and developed by Marco De Luca between 2009-2010 while he was a 
PhD student at the University of Bristol, and is now freely available for open-source download 
from SourceForge.net (OpEx SourceForge, 2012; first open-source release in Feb. 2012), 
under the terms of the Creative Commons Public License. For a detailed technical description 
of the OpEx platform, refer to De Luca et al. (2011). 

Historically, trading experiments between humans and robots have rarely been performed. 
Indeed, before the development of OpEx, the number of published academic papers describing 
human-vs.-robot trading experiments could be counted on the fingers of one hand! (De Luca et 
al., 2011). In large part, this was due to the difficulty of running human-vs.-robot experiments, 
which required the proprietary development of relatively sophisticated software and the 
purchase of expensive hardware. The time and expense of such an endeavour often 
outweighed the potential research benefits. To address this issue, De Luca developed OpEx to 
be a multi-purpose off-the-shelf simulation platform that can be easily configured to run human-
vs.-robot trading experiments on generic commodity hardware. At the University of Bristol, the 
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Lab-in-a-box hardware used to run OpEx experiments – including a collection of netbooks, 
windows server, admin laptop, router, switches, network and power cables – costs only a few 
thousand pounds and can easily fit inside one large suitcase. Fig. 4.1.1 shows the Lab-in-a-box 
hardware arranged ready for a human-vs.-robot experiment. 

OpEx has been successfully used in a series of published human-vs.-robot experiments by De 
Luca and others at the University of Bristol (DeLuca & Cliff, 2011a; DeLuca & Cliff, 2011b; 
DeLuca et al., 2011; Cartlidge et al., 2012). These papers demonstrate the utility of OpEx and 
to date have more than doubled the historical human-vs.-robot literature. At the time of writing, 
less than two months after its first release as open-source software on the popular Sourceforge 
website, OpEx has been downloaded more than 100 times (OpEx SourceForge Stats, 2012), 
suggesting that there is significant interest and demand amongst academic and commercial 
researchers for an experimental trading platform.  

In this report, we use the open-source release of OpEx (OpEx SourceForge, 2012, downloaded 
Feb 2012) to perform a series of human-vs.-robot experiments.  

4.2. Experiment design & participation 
Version 1.0 of the OpEx platform was used1

1. Students enrolled on the module Algorithmic and Economic Aspects of the Internet, a final 
year undergraduate and postgraduate module in computer science that includes 
coverage of the design of automated trading agents.

 to perform a total of 48 human-vs.-robot trading 
experiments during March 2012. Experiments took place on Wed. 7th March and Wed. 21st 
March, at Park House Business Centre, Park Street, Bristol, UK. Each day, 24 experiments 
were run. In each experiment, the market contained six human traders (arranged as 3 buyers 
and 3 sellers) and six robot traders (similarly arranged as 3 buyers and 3 sellers). Human 
buyers were seated opposite human sellers (as shown in Fig. 4.1.1). All human participants 
were registered full-time students at the University of Bristol, UK. Participants were selected on 
a first-come basis from the group of students that responded to adverts broadcast to two 
groups: 

2

2. Members of the Bristol Investment Society, a body of students interested in pursuing a 
career in finance.

 

3

We assume that these students have the knowledge and skills suitable to embark on a career 
as a trader in a financial institution. All volunteers were paid £25 for participating in the trading 
experiments, plus, to incentivise traders to make profit, the two human traders scoring the 
highest profit on each experimental day were rewarded with an Apple iPad (cash value £400). 
Since there were 48 participants in total and 4 iPad winners, participants had a 1-in-12 chance 
of winning the prize. This incentive structure produced intense competition and focus among 
participants as they battled for the large value monetary reward, as would traders in real 
financial markets. The total cost for participation and prizes was £25*48 + £400*4 = £2800.  

 

                                            

1 After we downloaded OpEx v.1.0, we made minor edits to introduce the “fast” robots, and to fix a “spread-crossing” 
bug in the OpEx v1.0 code; both edits are discussed at greater length later in this paper.  

2 Module homepage: http://www.cs.bris.ac.uk/Tools/Local/Handbook/unit.jsp?unit=COMSM2006. Last accessed, 
March 28th 2012.  

3 University of Bristol Investment Society: http://www.uobis.co.uk/. Last accessed, 28th March 2012. 

http://www.cs.bris.ac.uk/Tools/Local/Handbook/unit.jsp?unit=COMSM2006�
http://www.uobis.co.uk/�
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To reduce the total number of participants required, each group of participants were used in six 
separate experiments. In that way, we were able to conduct 48 experiments using only 48 
participants. Each experimental day, we ran four sessions, each consisting of six rounds of 
experiments. For each session, a new group of human volunteers was used. At the start of 
each session, humans were randomly allocated to a seat corresponding to a specific market 
role: {Buyer1, Buyer2, Buyer3, Seller1, Seller2, Seller3}. Then, after each experimental round, 
humans rotated seats (market roles) anti-clockwise. Thus, by the end of the session, each 
human had played each market role once, while cohorts of Buyers and Sellers contained a 
different mix of humans each time. Human roles were purposely mixed between experiment 
rounds to reduce the opportunity for collusion and counteract any bias in market role.  

Figure 4.2.1. Sales trading GUI for a human buyer. New client order assignments arrive 
over time in the Client Orders panel (top-left); and listed in descending order of potential 
profit. To work an order, select it by double-clicking. This opens a ‘New Order’ dialogue 
popup (shown top-centre); price and quantity can be selected before order is entered 
into the market. The market Order Book is displayed top-right, with all bids and asks 
displayed. Orders currently in the market are listed in the ‘Orders’ panel (middle); and 
can be amended from here by double-clicking. When an order executes it is removed 
from the orders panel and listed in the ‘Trades’ history panel (bottom). Current profit 
and time left until close is displayed for humans to monitor progress (top-centre, 
obscured by ‘New Order’ pop-up). For further GUI screen shots, refer to Appendix C. 

 

At the start of each session, human participants were seated at a terminal and given a brief 
introduction and tutorial to the system (explaining the human trading GUI illustrated in Fig. 
4.2.1), during which they were able to make test trades among themselves, while no robots 
were present in the market. Participants were told that the ‘aim of the game’ was simply to 
make as much profit as possible by trading client orders that will arrive over time. The tutorial 
lasted approximately 10 minutes, after which the tutorial was ended and the market closed. Six 
rounds of experiments were then run, with each experiment having a market open period of 10 
minutes. Between rounds, approximately two minutes were taken for participants to rotate 
seating positions, and for the administrator to set the new experimental configuration. Thus, in 
total, the session lasted less than 90 minutes, with 60 minutes of experiment time. We were 
able to run four sessions in one business day, allowing us enough time to set up and pack 
away the hardware.  
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4.3. Supply & demand schedules 
 

Figure 4.3.1. Stepped supply and demand curves. Curves show the aggregate quantity 
that participants are prepared to buy (demand) and sell (supply) at every price point. The 
point at which the two curves intersect is the theoretical equilibrium point for the 
market: Q0=144 is the equilibrium quantity; and P0 is the equilibrium price. Values of P0 
used in the experiments are listed in Table 4.3.1. The market is symmetric about P0. 

 

An experimental market is defined by the aggregate supply and demand of participants; 
otherwise called the supply and demand schedules. Fig. 4.3.1 shows the demand and supply 
schedules used for each experiment. The market is purposely symmetric about P0 in order to 
make the theoretical profit of buyers and sellers equal: π*buyers = π*sellers. The market crosses at 
Q0=144, indicating the quantity of intra-marginal units in the market; i.e., the quantity of units 
we would expect to execute in a ‘perfect’ market that consistently trades at the theoretical 
equilibrium price P0. If more than this quantity of units trade, the market must be trading away 
from equilibrium for at least some of the time. The shape of the supply and demand schedules 
were specifically chosen to be qualitatively similar to those used in De Luca et al. (2011), to aid 
in the comparison of results. 
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Table 4.3.1. Permit-schedule timetable. Six permit types are issued to each market 
participant, depending on their role. For each role, there is one human and one robot 
participant. Permit values show limit price - P0. Thus, for e.g., if P0=100, a permit of type 
4 to Buyer1 would have a limit price of 91. For buyers, limit prices are the maximum 
value to bid; and for sellers, limit prices are the minimum value to ask. Numbers in 
brackets show the time-step sequence in which permits are allocated. Thus, after 11 
time-steps, Buyer2 and Seller2 each receive a permit of type 4. For all experiments, the 
inter-arrival time-step between permits is 4 seconds. Permits are always allocated in 
pairs, symmetric about P0. In cyclical markets, the sequence is repeated 8 times until the 
experiment ends. In non-cyclical or ‘random’ markets, the time-step of permits is 
randomised across the run. Participants receive the same set of permits in both cyclical 
and random markets, but in a different order.  

 

The units of supply and demand shown in Fig. 4.3.1 are allocated to market participants during 
the course of an experiment. Rather than allocate all units when the market opens, units to 
trade are continuously drip-fed into the market throughout the market open period. Table 4.3.1 
shows the permit schedule timetable that describes how units are allocated to participants. 
During an experiment, each participant receives six permit types (of 8 units each). The value 
indicates the limit price of the permit, which corresponds directly to the supply and demand 
schedule of Fig. 4.3.1. Limit values set the ceiling price at which a buyer can buy and the floor 
price at which a seller can sell, and are all given relative to the market equilibrium value P0. 
Values in parentheses indicate the time-step that the permit is allocated to a market participant. 
For all experiments, the inter-arrival time of permits, or time-step, was fixed at 4 seconds. 
Permits are always allocated in pairs symmetric about P0, such that the theoretical market 
equilibrium is not altered. To ensure equality between humans and robots, each time a permit 
is allocated to a human, an identical permit is allocated to a robot that has the same role 
(Buyer1, Buyer2, etc.). Thus, each human in the market has a ‘shadow’ robot that plays exactly 
the same role.  

For each experiment, markets are configured to be either ‘cyclical’, or ‘random’. In cyclical 
markets, permits are allocated in strict sequence for the duration of an experiment, following 
the timetable of Table 4.3.1. After 18 time-steps (72 seconds), the cycle restarts. This is 
repeated 8 times before the market is closed. By contrast, in random markets, the permit 
sequence across the entire run is randomised. However, permits are still allocated in 
symmetric Buyer-Seller pairs, and each permit is received by a human and robot playing the 
same role. Overall, the aggregate market supply and demand schedules are unaltered, only 
the order of allocation.  
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Table 4.3.2. Schedule ID table describing the schedules used in experiments: P0 
indicates market equilibrium price; the ‘cyclical’ binary indicates whether the market 
schedule is cyclical or random. Refer to text for details. Experiments in each session 
were run in order from lowest to highest schedule ID.  

 

In De Luca et al. (2011), we discussed at length the importance of trying to incorporate more 
‘realism’ into experimental design. In all previous continuous market human-robot experiments 
(De Luca et al., 2011; Cartlidge et al., 2012), cyclical-replenishment was used, replicating the 
design used by Cliff & Priest (2001). By using cyclical replenishment, therefore, it is easier to 
compare new results with those from the literature. However, cyclical replenishment is 
manifestly artificial: real markets are not cyclical. For this reason, we introduce random-
replenishment here to add more realism. Further, we test both cyclical-replenishment and 
random-replenishment in order to see if any artefactual differences are introduced in the 
results. This enables us to infer that if a statistical difference is present in results from cyclical-
replenishment markets that is not present in random-replenishment markets, ceteris paribus, 
our expectation is then that the effect is an artefactual consequence of the artificial 
experimental constraint of cyclically replenishing the traders’ entitlements to buy and sell. 

During each experimental session, six experiments were run, with each following a different 
supply and demand schedule and permit timetable. Table 4.3.2 summarises the schedule IDs 
used for each experiment, indicating the theoretical equilibrium price of the market, P0, and 
whether or not the market permits are allocated cyclically, or randomly. In every session, 
experiments {1, 2, ..., 6}, were configured to use schedule IDs = {5001, 5002, …, 5006}.  

4.4. Robot configuration 
 

Table 4.4.1. Agent types used in experiments. ‘Maximum spread’ indicates the maximum 
relative spread size that an agent will automatically cross. For instance, a value of 0.01 
means that if the spread is less than 1% of the best ask price, the agent will always 
cross with the best bid/ask on the other side. 

 

In each experiment, a set of robots is configured to ‘shadow’ the human participants. As 
described in section 3.3, above, for each human in the market a ‘shadow’ robot plays the same 
role and receives the same allocation of permits to trade. For each experiment, all robots within 
a market are configured with an identical parameter set, detailed in Table 4.4.1. Agents are 
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selected from one of four configurations: AA-0.1, AA-1, AA-5, and AA-10. The numerical suffix 
indicates a robot’s sleep-wake cycle time in seconds. The greater the value, the longer the 
robot ‘sleeps’ between actions. By varying this sleep parameter, we are able to control the 
‘speed’ at which the robots act. Johnson et al. (2012) suggest that: “in many areas of human 
activity, the quickest that someone can notice [a] cue and physically react, is approximately 
1000 milliseconds”. Thus, to test the effect of robot speed on the market, we select sleep 
values that comfortably range from well below human reaction speed (0.1s) to well above 
human reaction speed (10s). In this way we should be certain that our collection of robot 
configurations ‘cross the boundary’ of human reaction time, enabling us to compare the 
dynamics of markets containing robots that act at super-humanly fast speeds, with markets 
containing robots that act on human time-scales. This will allow us to explore whether a 
correlate of the two regimes proposed by Johnson et al. (2012) exists in our experimental 
market and, if so, where the transition boundary occurs.  

To ensure that robots are able to act sensibly upon waking from sleep, robots are enabled to 
observe the market and perform internal calculations during their ‘sleep’ phase. To achieve 
this, a second ‘internal’ timer is used to control when a robot will observe and calculate. Table 
4.4.1 shows the internal timers used for each robot configuration; in each case, the internal 
timer has a shorter period than the sleep-wake cycle. Robots are also configured to wake from 
sleep upon a new order stimulus and new trade stimulus.  

The final parameter shown in Table 4.4.1 is ‘maximum spread’. This parameter indicates the 
maximum relative spread size that an agent will automatically cross. For instance, a value of 
0.01 means that if the spread is less than 1% of the best ask price, the agent will always cross 
with the best bid/ask on the other side, regardless of other market conditions. Since P0 values 
used in experiments vary from 209 – 291, at equilibrium a spread of 1% of best ask will be less 
than 3, so in effect, agents are configured to ‘jump the spread’ if the difference between best 
bid and ask is less than 3. This function enables robots to trade quickly in converged markets. 
For more on spread-jumping robots, refer to Section 5.3. 

Under all conditions, the algorithm used for robot logic was Adaptive Aggressive (AA), 
introduced in Section 2.1. This algorithm has been shown to outperform other robots from the 
literature in both robot-vs.-robot and robot-vs.-human markets (De Luca & Cliff, 2011b), and so 
represents the current state-of-the-art in published financial-trading algorithms.  

5. Results 

Here, we present detailed discussion of results from a series of experiments run on 21st March 
2012. Results from an earlier series of experiments, run on 7th March 2012, are discussed 
separately in Section 5.3. Throughout this section, for evaluating statistical significance we use 
the nonparametric Robust Rank Order (RRO) test reported by Feltovich (2003).  

During one experiment (session 2, round 6), a problem caused the GUI trading interface of 
human Seller 2 to close and reopen after approximately 4 minutes, leading to some loss of 
order information and resulting in a low efficiency for the human. For this reason, we treat the 
results of session 2, round 6, on Day 2 as ‘suspect’ data. Unless otherwise stated, we do not 
include these suspect data in the results presented.  

5.1. Market data 
OpEx records time-stamped data for every exchange event. This produces rich datasets 
containing every quote (orders entered into the exchange’s order-book) and trade (orders that 
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execute in the exchange) in a market. In total, we gathered 8 hours of trading data (two days 
each involving four one-hour sessions), but for brevity we explore only a small set of indicative 
results here; however, for completeness, further datasets are presented in Appendix A. 

Figs. 5.1.1-5.1.4, plot time series of quotes and trades for two cyclical markets with AA-0.1 
robots (Figs. 5.1.1 & 5.1.2) and AA-10 robots (Figs. 5.1.3 & 5.1.4). In each plot, the dotted 
horizontal line represents the theoretical market equilibrium, P0, and vertical dotted lines 
indicate the start of each new permit replenishment cycle (every 72s). In both markets, we see 
trade activity is largely clustered in the first half of each permit-replenishment cycle; this 
correlates with the phase in which intra-marginal units are allocated and trades are easiest to 
execute. After the initial ‘exploratory’ period, execution prices tend toward P0 in subsequent 
cycles.  

Figure 5.1.1. Time series of quote and trade prices from a cyclical market (i.d. 5001) 
containing AA-0.1 robots. The dotted horizontal line represents the theoretical market 
equilibrium, P0. Vertical dotted lines indicate the start of each new permit replenishment 
cycle (every 72s). In the initial period, robots (blue) ‘explore’ the space of prices. In 
subsequent periods, robots quote much closer to equilibrium. Robot quotes are densely 
clustered near to the start of each period, during the phase that intra-marginal units are 
allocated. In contrast, humans (red) tend to enter ‘exploratory’ quotes throughout the 
market’s open period.  
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Figure 5.1.2. Time series of trade prices from a cyclical market (i.d. 5001) containing AA-
0.1 robots. We see that the majority of trades occur in the first half of each cycle period, 
as intra-marginal units are allocated to market participants during this phase. After the 
initial ‘exploratory’ period, trade prices tend toward P0 in subsequent cycles. Blue 
markets indicate a trade between homogeneous counterparties (agent-agent or human-
human); red markers indicate trades between heterogeneous counterparties (agent-
human or human-agent). We see the majority of trades are homogeneous (blue: totals 
indicated in legend parentheses). 
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Figure 5.1.3. Time series of quote prices from a cyclical market (i.d. 5001) containing AA-
10 robots. In the initial period, robots (blue) and humans (red) shout at prices much 
greater than equilibrium. In subsequent periods, quotes are distributed symmetrically 
about equilibrium. Overall, there is less activity in the market than observed with AA-0.1 
robots (Figure 5.1.1). 
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Figure 5.1.4. Time series of trade prices from a cyclical market (i.d. 5001) containing AA-
10 robots. The market initially trades very far from equilibrium; and does not trade near 
equilibrium until mid-way through Cycle 2. As the market settles near equilibrium, the 
majority of trades become clustered in the first half of each cycle period, during the time 
that intra-marginal units are allocated. The proportion of humans hitting robots is higher 
than AA-0.1, as robots are more likely to leave unamended quotes on the order book for 
longer. 

 

5.2. Smith’s α 
 

Figure 5.2.1. Smith’s α plotted for each robot type. Under all conditions, α rapidly falls 
from approx 10% in the initial period to approx 2% in the second period. For the 
remaining periods, α continues to fall gradually, tending to approx 1% by market close. 
There is no significant difference in α between robot types. 

 

We can see the equilibration behaviour of the markets more clearly by plotting Smith’s α for 
each cycle period. Fig. 5.2.1 plots mean α for markets containing each robot agent type. There 
is no difference between robots. Under all conditions, α rapidly falls from a value close to 10% 
in the initial period, to approx 2% in period two; α then continuous to fall more gradually over 
the course of an experiment, tending to approx 1% by market close.  
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Figure 5.2.2. Smith’s α plotted for each market type (±95% confidence interval). For 
cyclical markets, alpha values are significantly higher during the initial period. For the 
remaining periods, there is no significant difference.  

 

In Fig.5.2.2 we see mean α (±95% confidence interval) plotted for cyclical and random 
markets. Under both conditions, α follows a similar pattern, tending to approx 1% by market 
close. However, in the first period, cyclical markets produce significantly greater α than random 
markets (RRO, p<0.0005). This is due to the sequential order allocation of permits in cyclical 
markets, where limit prices furthest from equilibrium are allocated first. This enables 
‘exploratory’ shouts and trades to occur far from equilibrium. In comparison, in random 
markets, permits are not ordered by limit price, thus making it likely that limit prices of early 
orders are closer to equilibrium than they are in cyclical markets. For full Robust Rank Order 
analysis of Smith’s α values during the first trading cycle, refer to Appendix A.2.4. 

5.3. Efficiency 
 

Table 5.3.1. Table summarising mean results for each robot type. Under all conditions, 
robots achieve greater efficiency than humans and secure delta profit gains of between 
0.4% and 1.8%.  

 

When comparing the group of 23 robot efficiencies with the group of 23 human efficiencies 
across all experiments, robots achieve a significantly greater efficiency (RRO, p<0.025). 
Grouping by market type, robots achieve significantly greater efficiency in random markets 
(RRO, p<0.1) and robots achieve significantly greater efficiency in cyclical markets (RRO, 
p<0.1). When comparing the efficiencies of robots with the efficiencies of humans across all 
markets grouped by robot type, robots are still shown to be more efficient but the difference is 
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only significant for robots AA-0.1 and AA-5 (RRO, p<0.104). The difference between robots 
AA-10 and humans is not significant at the p=0.104 level and the difference between robots 
AA-1 and humans is not significant at the p=0.104 level. However, if we include the ‘suspect’ 
results for session 2 round 6, the efficiency of AA-1 robots is significantly greater than the 
efficiency of humans (RRO, p<0.104).  

Mean results for each robot type averaged across all experiments are summarised in Table 
5.3.1. We see that the efficiency of robots is greater than the efficiency of humans under every 
condition, with robots securing a delta profit gain of between 0.4% and 1.8%.  

Figure 5.3.1. Mean efficiency of robots across all markets (±95% confidence interval). As 
sleep time increases (left to right), mean efficiency of robots appears to decrease. 
However, the difference is not significant.  

 

Fig. 5.3.1 plots mean efficiency of robots grouped by type. As robot sleep time decreases, the 
efficiency of robots appears to increase, however, across all markets this difference is not 
significant. When comparing data from only cyclical markets, however, AA-0.1 robots attain a 
mean efficiency score significantly higher than AA-1 (RRO, p=0.05), AA-5 (RRO, p=0.05), and 
AA-10 (RRO p=0.1). For full Robust Rank Order analysis of efficiency scores, refer to Appendix 
A.2.2. 

5.4. Profit dispersion 
 

Table 5.4.1. Summary of profit dispersion for markets. When comparing random with 
cyclical markets, profit dispersion in random markets is significantly lower for agents, 
humans, and the market as a whole. 
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Comparing robot types, there is no significant difference in profit dispersion of markets, robots, 
or humans. However, comparing cyclical and random markets, shows that random markets 
have significantly lower profit dispersion of the market as a whole (RRO, 0.005<p<0.01), 
significantly lower profit dispersion of humans (RRO, 0.025<p<0.05), and significantly lower 
profit dispersion of agents (RRO, 0.001<p<0.005). For full Robust Rank Order analysis of profit 
dispersion, refer to Appendix A.2.3. 

5.5. Execution counterparties 
 

Table 5.5.1. Mean proportion of counterparty executions grouped by robot type. X<Y 
denotes “a price posted by participant X is hit by participant Y”. We see that the 
proportion of homogeneous counterparty interactions increases as sleep-wake cycle 
decreases.  

 

Table 5.5.1 shows the mean proportion of counterparty executions grouped by robot type. In a 
fully mixed market, we expect roughly half of all trades to have homogeneous counterparties 
(humans trading with humans and robots trading with robots) and the other half to have 
heterogeneous counterparties (humans trading with agents, or vice versa).  

Figure 5.5.1. Proportion of homogeneous counterparty executions: i.e., trades that take 
place between two humans or two robots. In a mixed market, the proportion of 
homogeneous counterparties should be 50%. When agent sleep time is 0.1s, the 
proportion of homogeneous counterparties is always greater than 50% indicating some 
market fragmentation.  

 

Fig. 5.5.1 plots the median number of homogeneous counterparties in markets containing each 
of the four robot types, with error bars showing the range of values. There appears to be an 
inverse relationship between robot sleep time and proportion of homogeneous counterparties. 
RRO tests show that the proportion of homogeneous interactions in AA-0.1 markets is 
significantly higher than AA-1 and AA-5 markets (p<0.051), and AA-10 markets (p=0.0011); 
and for AA-1 and AA-5 markets the proportion is significantly higher than AA-10 (p<0.104). For 
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AA-10 robots, the proportion of homogeneous counterparties is significantly lower in random 
markets than cyclical markets (p<0.05). For all other robot types, there is no significant 
difference in the proportion of homogeneous counterparties between markets. 

If we assume a normal distribution for the counterparty distributions, then calculating 
confidence intervals shows that in all (six) markets containing AA-0.1 robots, the proportion of 
homogeneous counterparties is significantly greater than 50% (p<0.0001). In contrast, for 
markets containing AA-1 robots (five), AA-5 robots (six), and AA-10 robots (six), the null 
hypothesis that the proportion of homogeneous counterparties is 50% is not rejected at the 
10% level of significance. This suggests that for the fastest robots (AA-0.1) there is a trend to 
market fragmentation, with humans trading with humans and robots trading with robots more 
than would be expected by chance. For a full summary of Robust Rank Order analysis of 
execution counterparties, refer to Appendix A.2.1. 

6. Discussion 

6.1. Evidence for the ‘robot phase transition’ 
In Section 4, above, we presented results of laboratory experiments performed on Wed 7th 
March. Here, we summarize the main results that hold across all markets. In Section 5.2, 
below, we discuss results that demonstrate significant differences between cyclical and random 
markets. 

Across all markets, and for all robot types, robots are shown to outperform humans, securing 
greater allocative efficiency scores under every condition and gaining a delta profit increase of 
between 0.4%-1.8%. These results are significant across all markets and robot types, except 
AA-10, the slowest of the robots.  

For readers familiar with our previous work (De Luca et al., 2011; Cartlidge et al., 2012), this 
result may come as something as a surprise: prima facie, this is the first time that robots have 
been shown to be more efficient than humans in a continuous replenishment, real-time 
experimental market with liquidity drip-fed into the market over time. There is weak evidence 
(not statistically significant) of a trend for the efficiency of agents to decrease as sleep time of 
agents increases, suggesting that speed is beneficial to agents. This is an intuitively appealing 
interpretation, but is not confirmed with a reasonable level of statistical significance by our 
results. Furthermore, the prima facie novelty of this result is primarily due to problems with the 
earlier results published in (De Luca et al., 2011; Cartlidge et al., 2012). Those earlier results, 
we learned in the course of analysing the results of the experiments reported here, were 
affected by a bug in the OpEx implementation of the MGD robot-trader algorithm, and fixing 
that bug was the main cause of the increase in efficiency with respect to those earlier results: 
we discuss this further in Section 5.3. 

Across all markets, α values start high (in the region of 10%) as traders ‘explore’ the space of 
prices and then quickly reduce, with markets tending to an equilibration level of α=1%. This 
demonstrates markets trading at a level much closer to equilibrium than previously observed in 
De Luca et al., (2011) and Cartlidge et al., (2012); and suggests that the price-discovery of 
markets is regularly finding values close to the theoretical equilibrium value.  

These results demonstrate a well-functioning robot-human market trading near equilibrium, 
with robots out-competing humans on profit. This is an interesting result, but for our purpose of 
exploring the robot phase transition described by Johnson et al. (2012) it only serves as 
demonstrative proof that our experimental markets are performing as we would expect. The 
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real interest lies in whether we can observe a phase transition between two regimes: one 
dominated by robot-robot interactions, and one dominated by human-robot interactions. We 
seek evidence of this by observing the proportion of homogeneous counterparties within a 
market; that is, the number of trade executions that occur between a pair of humans or a pair of 
robots, as a proportion of all market trades. Theory suggests that in a fully mixed market with 
no asymmetry in the behaviour of participants, we should expect 50% of trade counterparties to 
be homogeneous, and 50% to be heterogeneous, as traders execute with counterparties at 
random. From Section 4.5, evidence demonstrates that for markets containing AA-0.1 robots, 
the proportion of homogeneous counterparties is significantly higher than we would expect in a 
mixed market, whereas with slower-acting robots, the proportion of homogeneous 
counterparties cannot be significantly differentiated from 50%. We present this as tentative first 
evidence for a robot-phase transition in experimental markets with a boundary between 100 
milliseconds and 1 second, although in our experiments the effects of increasing robot speed 
seem to give a progressive response rather than a step-change. However, we feel obliged to 
caveat this result as non-conclusive proof until further experiments have been run and results 
are replicated (for more on the replication of results, refer to Section 5.2).  

The careful reader may have noticed that the results presented have not demonstrated the 
‘fractures’ – an ultra-fast series of multiple sequential up-tick or down-tick trades that cause 
market price to deviate rapidly from equilibrium and then just as quickly return - that Johnson et 
al. (2012) showed occur in real markets. Since we are constraining market participants to one 
role (as buyer, or seller) and strictly controlling the flow of orders into the market and limit 
prices of trades, the simple markets we have constructed do not have the capacity to 
demonstrate such fractures. For this reason, we use the proportion of homogeneous 
counterparties as proxy evidence for the robot phase transition. 

6.2. Artefacts or evidence? 
As we argued in Section 3.3, our cyclical-replenishment experimental markets are a poorer 
approximation to real-world markets than are the random-replenishment markets. For that 
reason, where our results from cyclical markets show a significant effect of agent-speed that is 
not also present in the random markets is best interpreted as another indication that 
introducing artificial constraints into experimental markets for ease of analysis runs the risk of 
also introducing artefacts that, because they are statistically significant, can be misleading. The 
following relationships were all observed to be statistically significant in cyclical-replenishment 
markets and not statistically significant in random-replenishment markets; providing further 
support for the argument for ‘realism’ in artificial-market experiment design that we advanced at 
length in De Luca et al. (2011). 

• Cyclical-replenishment markets produced significantly greater α values in the first period of 
trade. This is a direct consequence of cyclical-replenishment allocating orders in a 
monotonically decreasing sequence from most profitable to least profitable. As such, the first 
orders allocated into the market have limit prices far from equilibrium. Since the market is 
empty, there is no mechanism for price discovery available other than trial-and-error 
exploration; leading to α. In random-replenishment markets, the initial orders entering the 
market are drawn at random from the demand and supply schedules. This (in the limit) leads 
to lower bounds on limit prices and leads to lower α. In subsequent periods, price discovery is 
led by the order book, resulting in much lower α values in both market types (with no 
significant difference).  

• In cyclical-replenishment markets, the efficiency of AA-0.1 robots is significantly higher than 
the efficiency of the other robot types. While there is some evidence of an inverse relationship 
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between robot sleep time and robot efficiency across all markets, we infer that this difference 
is an artefact of cyclical replenishment until further experimental trials can confirm otherwise. 

• When comparing random and cyclical markets, profit dispersion in cyclical-replenishment 
markets is significantly higher for agents, humans, and the market as a whole. Since lower 
profit dispersion is a desirable property of a market, this suggests that the relatively high profit 
dispersion observed in previous cyclical-replenishment experiments (De Luca et al., 2011; 
Cartlidge et al., 2012) is an artefact of the experimental design.  

These results demonstrate dangers of accidently introducing artefacts through experimental 
simplification and give justification to De Luca et al.’s (2011) argument for more realism in the 
design of experiment scenarios for experimental-economics-style studies of human and robot 
traders interacting in electronic markets. 

6.3. Reproduction vs. replication: A methodological journey through the 
badlands of ‘spread-jumping’ robots. 

On Wed. 7th March, 2012, we ran 24 human-vs.-robot trading experiments using random-
replenishment markets, with the same P0 values and supply and demand schedules as Day 2 
(for full results data, refer to Appendix B).  

As we started to analyse the data we collected, we were confused by our findings: time series 
plots of trade prices (e.g., Fig. 6.3.1) showed that trades were consistently taking place at 
prices more than 5% away from the equilibrium price P0. Comparison results of the efficiency of 
humans and robots showed that humans significantly outperformed robots across all markets, 
with a significant delta profit in favour of humans of 11.3% (RRO, p<0.0005). Across all 
markets, the mean efficiency of agents was only 0.887, and the market as a whole was only 
0.94. Humans, meanwhile, were securing a healthy mean efficiency across all markets of 
0.994. This left us pondering just what was making the robots perform so poorly, that was also 
enabling the humans to perform so well? 
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Figure 6.3.1. Series of trade prices from day 1, session 1, round 1 (i.d. 1001), a random-
replenishment market containing AA-0.1 robots. We see that the majority of trades are 
symmetrically distributed around P0, but execute some distance away (compare with 
results from day 2, Figs. 5.1.2 and 5.1.4, where trades execute much closer to 
equilibrium). The majority of trades are executed by robots ‘hitting’ a human quote 
(open faced red square), suggesting that intransigent humans tend to passively post 
quotes on the order book and wait for a ‘hit’, while robots trade more aggressively, 
executing against posted quotes.  

 

Observation of time-series data of trades (Fig. 6.3.1) and anecdotal evidence of human 
participants suggested that the dominant strategy of humans was to passively post quotes on 
the order book away from equilibrium, i.e. away from P0, and then wait intransigently for a more 
aggressive counterparty to hit the quote. Further analysis of execution counterparties in the 
market confirmed that robots were acting as the aggressive counterparties in the market. 
Indeed, the market was dominated by robot traders executing against quotes published by 
humans, accounting for a staggering 63.1% of all trades.  

But why were AA robots accepting human quotes away from equilibrium time and time again? 
Nothing in the original design of AA suggests that this should happen (Vytelingum, 2006; 
Vytelingum, Cliff, & Jennings, 2008). AA robots estimate market equilibrium and then adapt 
their aggressiveness over time to maximise profit; they should consistently trade aggressively 
away from P0.  

This led us to rigorously test the source code of OpEx, publicly available since the open-source 
release of OpEx in Feb 2012. It was through this that we discovered an unanticipated feature, a 
‘bug’, in the execution logic of OpEx-AA agents that does not exist in the original AA definition: 
if the spread between the best bid and ask is less than 15% of the best ask, then execute 
against the best bid/offer on the other side of the book if it is within limit price bounds. This logic 
induces ‘spread-jumping’ behaviour in AA robots that explains the market dynamics we 
observe – namely, aggressive execution behaviour across wide spreads away from equilibrium 
values. We decided that the results from Wed 7th March were contaminated by the spread-
jumping behaviour of robots and decided to perform a second day of experiments on Wed 21st 
March (detailed in Section 4). We altered the spread-jumping parameter from the absurdly 
provocative value of 15%, to a much more conservative value of 1% for the experiments of Day 
2. The bug was reported to De Luca and acknowledged on the OpEx SourceForge download 
page: “Latest News: 25 March 2012: Bug fixed in AA Agent. AA Agent would cross the spread 
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if the relative spread is <= 0.15. The bug has been fixed in version 1.1” (OpEx SourceForge, 
2012).  

This episode serves as an exemplar to highlight an important methodological point that has 
been raised before elsewhere (De Luca et al., 2011): empirical results gathered through 
experimentation should not be fully trusted until they have been replicated at least once; and 
yet there is an embarrassingly poor record in the literature on robot-human trading 
experiments. For example, the experiments reported by De Luca & Cliff (2011a) were the first-
ever replication of a key paper in the field, widely-cited, that had been published a decade 
previously. That is, for ten years, very many people cited the paper but no-one took the step of 
confirming its results via direct replication. Similarly, Toft (2007) reported significant difficulty in 
replicating the published results for a number of peer-reviewed trading-agent studies, and also 
discussed the difficulties he encountered when he contacted the researchers concerned and 
asked them to help him better understand how they had generated their published results.  

Put simply, the computer science researchers who work on studies of trader-agents have a 
simple but very valuable lesson to learn from the replication-as-standard approach that is 
commonplace in “hard science” (physics, chemistry, biology) laboratories around the world.  

Unfortunately, the problem we faced here is that in truth we were reproducing experimental 
results, not independently replicating them (that is, we used the same platform on which the 
previous results had been generated, rather than independently rebuilding a substantial part of 
the platform ourselves). Because of this, we reproduced results that were contaminated by the 
same bug as the original ones. We hope this serves as something of a salutary tale for other 
researchers engaged in similar research. 

Given the significant differences in our results from Day 1 and Day 2, we must conclude that 
the spread-jumping behaviour of AA-robots has a significant effect on market dynamics. For 
this reason, in light of our discovery of the spread-jumping bug, we now have serious doubts 
about the tenability of the conclusions reached in De Luca et al. (2011) and Cartlidge et al. 
(2012), and we suggest that they be regarded with extreme doubt, at the very least, until they 
have been replicated independently.  

6.4. Future work 
As usual, in trying to explore the research question driving this report, on the nature of the 
robot phase transition, many pertinent questions have arisen, including: 

• What would we need to change to observe market dynamics analogous to the market 
‘fractures’ reported by Johnson et al. (2102)? Could the introduction of role diversity - 
enabling participants to buy and sell and hence ‘make the market’ – produce dynamics 
qualitatively similar to the ultra-fast mini-crashes observed in real markets?  

• What happens if we vary the rate of order replenishment inter-arrival times? When orders 
start to arrive faster than humans can react, do we see a robot phase transition here? 

• What happens if we vary the proportion of robots in the market? Are market dynamics 
significantly different when the market is dominated by robots? How does this effect the robot 
phase transition? 
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• What happens if robots do not wake up on new trade stimuli? Does this make a fairer proxy of 
agent ‘speed’? How does this change affect the robot phase transition? 

While these questions are interesting, progress will necessarily be slow. Unlike many facets of 
computer science, where variations on a question theme can be easily tweaked by altering the 
values of some parameters and then pressing ‘run’, experimental economics offers the 
pragmatic challenge of soliciting and remunerating participants, arranging a venue, ensuring 
participants arrive, and finally, ensuring that the system is ‘correctly’ configured and functioning 
error-free during the ‘one-shot performance’ of each experiment. For many empirical computer 
scientists, this is an alien landscape.  

7. Conclusions 

We have presented results from a series of human-vs.-robot experimental financial markets to 
test the hypothesis that when robot trader agents in OpEx are able to act/react on a timescale 
quicker than the human traders are, we will see a transition from a mixed market (where 
humans and robots are equally likely to interact with one another) to a more fragmented market 
where robots are more likely to trade with robots, and humans with humans, similar to the robot 
phase transition that Johnson et al. (2012) presented evidence for in real financial markets. Our 
primary conclusion is that our results are supportive of Johnson et al.’s (2012) hypothesis 
concerning the robot phase transition, although in our experiments the effects of increasing 
robot speed seem to give a progressive response rather than a step-change.  

During the course of running the experiments presented in this paper, we also explored the 
effects of increasing the ‘realism’ of the structure of the experiments conducted on OpEx. In 
doing this, we discovered that some statistically significant effects that we observe in artificial, 
constrained experimental set-ups, disappear when we make the experiments more realistic 
and less constrained. This leads us to our second conclusion: that in experiments such as 
those reported here, the more realistic the set-up of the experiment, the more the results can 
be trusted.  

Our third and final conclusion will be rather obvious to anyone with a background in laboratory-
based hard-science research, but nevertheless is probably illuminating to computer science 
researchers who study electronic markets and/or automated trading agents: independent 
replication of results is vitally important in ensuring the quality of research and providing trusted 
results. During the course of conducting the experiments reported here, we identified a bug that 
casts doubt on results in previous papers that we have co-authored. If we hadn’t attempted a 
(semi-independent) replication of our earlier work, we may not have discovered this.  
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Appendix A – Detailed results from day 2, Wed. 21st March, 2012  

Time series figures of quotes and trades 
Quote and trade graphs are presented for cyclical-replenishment markets with SID = 5001 and 
random-replenishment markets with SID=5002 for all robot types. These 16 figures display one 
indicative run from each experimental market condition. The full set of figures (48) is too large 
to be presented here. 

Human-vs-robots-AA-0.1 in a cyclical-replenishment market 

Figure A.1.1a. Time series of quote prices from a cyclical-replenishment market on Day 
2 (i.d. 5001). 

 

Figure A.1.1b. Time series of trade prices from a cyclical-replenishment market on Day 2 
(i.d. 5001). 
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Human-vs-robots-AA-0.1 in a random-replenishment market 

Figure A.1.2a. Time series of quote prices from a random-replenishment market on Day 
2 (i.d. 5002). 

 

Figure A.1.2b. Time series of trade prices from a random-replenishment market on Day 2 
(i.d. 5002). 
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Human-vs-robots-AA-1 in a cyclical-replenishment market 

Figure A.1.3a. Time series of quote prices from a cyclical-replenishment market on Day 
2 (i.d. 5001). 

 

 

Figure A.1.3b. Time series of trade prices from a cyclical-replenishment market on Day 2 
(i.d. 5001). 

 

7.1.  
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Human-vs-robots-AA-1 in a random-replenishment market 

Figure A.1.4a. Time series of quote prices from a random-replenishment market on Day 
2 (i.d. 5002). 

 

 

Figure A.1.4b. Time series of trade prices from a random-replenishment market on Day 2 
(i.d. 5002). 

 

7.2.  
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Human-vs-robots-AA-5 in a cyclical-replenishment market 

Figure A.1.5a. Time series of quote prices from a cyclical-replenishment market on Day 
2 (i.d. 5001). 

 

 

Figure A.1.5b. Time series of trade prices from a cyclical-replenishment market on Day 2 
(i.d. 5001). 
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Human-vs-robots-AA-5 in a random-replenishment market 

Figure A.1.6a. Time series of quote prices from a random-replenishment market on Day 
2 (i.d. 5002). 

 

 

Figure A.1.6b. Time series of trade prices from a random-replenishment market on Day 2 
(i.d. 5002). 
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Human-vs-robots-AA-10 in a cyclical-replenishment market 

Figure A.1.7a. Time series of quote prices from a cyclical-replenishment market on Day 
2 (i.d. 5001). 

 

 

Figure A.1.7b. Time series of trade prices from a cyclical-replenishment market on Day 2 
(i.d. 5001). 
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Human-vs-robots-AA-10 in a random-replenishment market 

Figure A.1.8a. Time series of quote prices from a random-replenishment market on Day 
2 (i.d. 5002). 

 

 

Figure A.1.8b. Time series of trade prices from a random-replenishment market on Day 2 
(i.d. 5002). 
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Robust Rank Order (RRO) analysis for day 2, Wed 21st March, 2012 
A.2.1 Execution counterparties 

Table A.2.1a. Summary of RRO comparisons for proportion of Agent-Agent executions. 
Top: across all markets, the proportion of Agent-Agent executions is significantly 
greater when agent sleep time = 0.1s, and the proportion of Agent-Agent executions is 
significantly lower when sleep time = 10s. Middle: in cyclical-replenishment markets, 
sleep = 0.1s produces significantly more Agent-Agent executions. Bottom: in random-
replenishment markets, sleep = 10s produces significantly less Agent-Agent executions. 

 

Table A.2.1b. Summary of RRO comparisons for proportion of Human-Human 
executions. Across all markets, the proportion of Human-Human interactions is 
significantly greater when sleep=0.1s compared with sleep=10s 
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Table A.2.1c. Summary of RRO comparisons for proportion of homogeneous 
counterparty executions. Top: across all markets, the proportion of homogeneous 
counterparties is significantly greater when agent sleep time = 0.1s, compared with 
agent sleep time = 10s. Middle: in cyclical-replenishment markets, the proportion of 
homogeneous counterparty executions is significantly greater when sleep time = 0.1s. 
Bottom: in random-replenishment markets, the proportion of homogeneous 
counterparty executions is significantly lower when sleep time = 10s. 
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A.2.2 Efficiency: Human vs. robots 

Table A.2.2.1. RRO comparisons of the efficiency of robots-vs.-humans by market type. 
Robots outperform humans across all markets (p<0.025), in cyclical-replenishment 
markets (p<0.1) and in random-replenishment markets (p<0.1). 
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Table A.2.2.2. RRO comparisons of the efficiency of robots-vs.-humans by robot type. 
Robots AA-0.1 and AA-5 outperform humans, (p<0.104). AA-1 and AA-10 agents do not 
significantly outperform humans. However, if when we add the ‘suspect’ session2, 
round 2, data to the analysis of AA-1, the difference becomes significant (p<0.104). 
Overall, RRO(Agents-vs-Humans) shows humans outperform traders. 
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A.2.3. Profit dispersion 

Table A.2.3.1. RRO comparisons of the profit dispersion of markets, robots and humans, 
by market type. Random-replenishment markets produce significantly lower profit 
dispersion of markets (0.005<p<0.01), robots (0.001<p<0.005), and humans 
(0.025<p<0.05). 
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A.2.4. Smith’s α 

Table A.2.4.1. RRO comparisons of Smith’s α for the first permit schedule period in 
cyclical-replenishment and random-replenishment markets. Smith’s α is significantly 
lower for random-replenishment markets (p<0.0005). 
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Appendix B – Summary of results for day 1, Wed 7th March, 2012 

Figure B.1. Series of quote and trade prices from Day 1, session 1, round 1 (i.d. 1001); a 
random-replenishment market containing AA-0.1 robots. Vertical dotted lines divide time 
into one minute periods. Quote prices are distributed roughly symmetrical about P0.  

 

Figure B.2. Series of trade prices from Day 1, session 1, round 1 (i.d. 1001), a random-
replenishment market containing AA-0.1 robots. We see that trades occur some 
distance away from P0, but are symmetrically distributed around it. The majority of 
trades are executed by robots ‘hitting’ a human quote (open faced red square), 
suggesting that humans tend to passively post quotes on the order book and wait, while 
robots trade more aggressively.  
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Figure B.3. Smith’s α plotted for Day 1. Under all conditions, α gradually tends towards 
approx 2%. This is approx double the value of α that Day 2 markets tend to. In De Luca 
et al. (2011), under similar experimental conditions, but using cyclical-replenishment 
markets, mean α values across all AA-robot-vs.-human markets tended to approx. 7%. 
This suggests that random-replenishment helps markets to equilibrate. 

 

Table B.4. Summary of results for Day 1. Across all robot conditions, the efficiency of 
humans is greater than the efficiency of agents, with delta profit ranging from 9.0% to 
14.0% in favour of humans. Mean agent efficiency is less than 0.9 under all robot 
conditions. The efficiency of markets is roughly 5% lower than on Day 2.  

 

Table B.5. Summary of counterparty executions for Day 1. For all robot types, markets 
are dominated by trades where robots hit humans (H<A: 61.3% mean), suggesting that 
humans tend to passively post quotes on the order book and wait to be ‘hit’ robots 
trading aggressively.  
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Table B.6. RRO comparison on efficiency of robots vs. efficiency of humans across all 
markets on Day 1, showing humans outperforming robots (p<0.0005).  
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Appendix C – Screenshots of OpEx sales trading GUI  

Figure C.1. Sales trading GUI for humans: market closed. Client orders to be worked 
arrive in the panel, top-left. The order book view is top-right. Personal profit and loss 
(PNL) and time remaining until market close are between client orders and order book. 
Orders being worked in the market are shown in the middle panel. Executed trades 
history is listed in the bottom panel.  

 

Figure C.2. Sales trading GUI for humans: enter buy order using ‘New Order’ popup. The 
‘New Order’ pop-up opens when a client order is double-clicked. 
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Figure C.3. Sales trading GUI for humans: order executes. The screen flashes green to 
indicate an order has executed. 

 

Figure C.4. Sales trading GUI for humans: amend an order that is currently quoted on 
the order book using the ‘Amend Order’ popup. The ‘Amend Order’ pop-up opens when 
a client order, listed in the middle ‘Orders’ panel, is double-clicked. 
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