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Abstract

A variational model describing the interactive buckling of thin-walled rectangular hollow
section struts with geometric imperfections is developed based on analytical techniques.
A system of nonlinear differential and integral equilibrium equations is derived and solved
using numerical continuation. Imperfection sensitivity studies focus on the cases where the
global and local buckling loads are close. The equilibrium behaviour of struts with varying
imperfection sizes, characterized by the equilibrium paths and the progressive change in
local buckling wavelength, is highlighted and compared. The numerical results reveal that
struts exhibiting mode interaction are very sensitive to both local and global imperfec-
tions. The results from the variational model are verified using the finite element method
in conjunction with the static Riks method and show good comparisons. A simplified
method to calculate the pitchfork bifurcation load where mode interaction is triggered for
struts with a global imperfection is developed for the first time. The simplified method is
calibrated to predict the ultimate load for struts with tolerance level global imperfections
and combined imperfections based on the parametric study, which also reveals that local
and global imperfections are relatively more significant where global and local buckling
are critical respectively. Finally, the ultimate load for struts with tolerance level geomet-
ric imperfections is compared with the existing Direct Strength Method (DSM). Potential
dangers of making unsafe load-carrying capacity predictions by the DSM are highlighted
and an improved strength equation is proposed.

Keywords: Mode interaction; Geometric imperfections; Length effects; Direct Strength
Method.

1. Introduction

Buckling instabilities are the principal failure mode for structural members made from
high-strength lightweight materials [1, 2, 3, 4]. Moreover, compression members made
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from thin-walled plated elements are vulnerable to a variety of different elastic instability
phenomena [5, 6, 7, 8, 9, 10]. In practice, since the post-buckling behaviour of plates is
stable, the post-buckling strength of such elements is included in design codes for this to
be exploited and hence make more efficient use of the material [11, 12]. Even though the
possible individual buckling modes taken in isolation are stable or neutral in terms of their
post-buckling behaviour, the triggering of various combinations of modes simultaneously
can lead to a violent destabilization after the ultimate load is reached [13, 14, 15, 16, 17].
More importantly, such structural components tend to be highly sensitive to imperfections
[18, 19, 20, 21, 22, 23, 24, 25]; a tiny imperfection may lead to a significant erosion in the
load-carrying capacity.

Early work investigating the imperfection sensitivity of thin-walled plated structures
exhibiting mode interaction was conducted by van der Neut [5]. Using a simplified model
comprising two load-carrying flanges and a pair of rigid webs with no longitudinal stiffness,
the erosion of load-carrying capacity due to local and global geometric imperfections was
investigated. It was found that when the ratio of the global buckling load to the local
buckling load is close to unity, the aforementioned erosion is significant and the failure
may be explosive due to a snap-back instability. It was also identified that the erosion is
principally derived from local imperfections in the flanges. However, owing to the increased
technical complexity, the local imperfections in the flange were limited to the eigenmode
corresponding to the lowest local buckling load. Using largely the same methodology,
Koiter and Pignataro [18] also identified the sensitivity of stiffened plates to both local and
global imperfections. However, their findings emphasized that the effects identified in [5]
were perhaps overestimated by the classical asymptotic formulae, except for vanishingly
small imperfections.

Wadee and his collaborators have developed a series of analytical models to study the
imperfection sensitivity of sandwich panels [22], stiffened plates [24] and I-section struts [23,
25] that exhibit mode interaction. It has been determined that these compression members
are sensitive to both local and global geometric imperfections. Moreover, using the form
of the local imperfection that matches the least stable localized post-buckling mode for
the strut on a softening foundation closely – derived from a first order approximation of a
multiple scale perturbation analysis [22], the worst form of the local imperfections has been
identified in terms of the initial wavelength, amplitude and degree of localization. It has
also been found that the localized imperfection may be even more severe than those that
are affine to the local buckling eigenmodes, particularly for cases where the imperfection
sizes are practically realistic.

Previous work, specifically on imperfection sensitivity in box-section columns, has
mainly concerned short columns, where the local buckling stress is very close to the ma-
terial yield stress. Graves Smith [26] developed an analytical model based on variational
principles to investigate the effects of geometric imperfections and residual stresses on the
load-carrying capacity of thin-walled welded box-section columns. Material nonlinearity
was also considered in the model. Loughlan et al. [27] approached the same problem using
the finite element (FE) method. Both works identified characteristic unstable equilibrium
paths and confirmed that local imperfections are significant in eroding the load-carrying
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capacity.
Maquoi and Massonnet [28] studied the collapse load of square box-section columns with

geometric imperfections using the software developed by Klöppel and Schubert [29]. They
determined the behaviour in terms of ‘efficiency charts’ [30], which shows the relationship
of the ultimate load for thin-walled struts versus the ratio of the global and local buckling
loads under a constant weight constraint for optimum design purposes. They determined
that the respective curves were very flat in the vicinity where the local and global buckling
loads are equal, signifying that reaching the linear critical buckling load was practically
unachievable for such components with realistically sized initial imperfections.

Kiymaz [31] investigated the effects of column out-of-straightness, plate imperfections,
residual stresses and material plasticity on the ultimate load and post-buckling behaviour
of square hollow section columns exhibiting mode interaction using the finite element (FE)
package Abaqus. Three example columns with typical slendernesses were analysed, where
(i) global buckling was clearly critical, (ii) global and local buckling were triggered simulta-
neously, and (iii) local buckling was clearly critical. The severe erosion in the load-carrying
capacity due to imperfections in the case where the local and global buckling loads were
the same was again observed.

Degée et al. [32] investigated the effects of various imperfections, i.e. residual stresses,
local and global geometric imperfections, on the load-carrying capacity of slender welded
RHS columns exhibiting mode interaction through experimental and numerical methods.
By amplifying the local and global geometric imperfections, they found that a model with
a local imperfection of 1/250 of the cross-section width and a global imperfection of 1/725
of the column length showed good agreement with a model including residual stresses.

There has also been a great deal of effort in measuring the local imperfection distribution
of thin-walled section members [33, 34, 35]. However, since the geometric imperfections of
thin-walled section members are affected by a number of different factors, such as material
properties, plate thickness, manufacturing methods and cross-section geometric properties
[33], there seems to be no real consensus on a consistent or unified method to determine
both the distribution and magnitude of geometric imperfections that reflect imperfections
actually found in practice.

The current work extends the previously developed variational models [36, 37] to study
the imperfection sensitivity of rectangular hollow section struts exhibiting local–global
mode interaction. The developed system of nonlinear ordinary differential and integral
equations subject to boundary conditions is solved using the well-known numerical contin-
uation software Auto-07p [38]. The resulting equilibrium paths are presented for various
different cases and the erosion in the load-carrying capacity due to imperfections is ob-
served. The results from the variational model show good comparisons with the numerical
results using the FE method in conjunction with the static Riks method [39] developed
within the commercial packageAbaqus [40]. A simplified method to calculate the pitchfork
bifurcation load where mode interaction is triggered for struts with global imperfections is
developed for the first time. The relative significance of global and local imperfections for
struts with different lengths is investigated. Based on the numerical results, the simplified
method is calibrated to predict the ultimate load for struts with tolerance level global
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imperfections and combined local and global imperfections. A parametric study varying
the strut length is conducted and a comparison with current design guidelines using the
Direct Strength Method (DSM) [41] is made. The potential for making unsafe predictions
of actual load-carrying capacity using the current relevant DSM expression is highlighted
and a refined equation is proposed for the cases considered. The current work facilitates a
better understanding of the imperfection sensitivity of thin-walled rectangular hollow sec-
tion struts exhibiting mode interaction, which will allow the establishment of more rational
and robust design guidance for such structural components in future.

2. Development of the variational model

A thin-walled rectangular hollow section strut of length L with simply-supported bound-
ary conditions under a concentric load P is considered, as shown in Figure 1. The web depth
and thickness are d and tw respectively; the flange width and thickness are b and tf respec-
tively. The strut is assumed to be made from a linear elastic, homogeneous and isotropic
material with Young’s modulus E, Poisson’s ratio ν and shear modulus G = E/ [2 (1 + ν)].
The joints between the webs and flanges are assumed to be rigid, which implies that the
webs and flanges remain perpendicular at their common edges during local buckling [42].

Figure 1: (a) Plan view of the thin-walled rectangular hollow section strut of length L under a concentric
load P . The lateral and longitudinal coordinates are x and z respectively. (b) Cross-section geometry of
the strut; the vertical coordinate is y.

2.1. Modal descriptions
The description of the global and local modal displacements adopts the same approach

as in the recent study for the perfect system [37], as shown in Figure 2. The degrees of
freedom known as ‘sway’ and ‘tilt’ [43, 13], as shown in Figure 2(a), are introduced in
combination to account for the effects of shear, since previous studies [13, 14, 16, 44, 45]
have demonstrated that including the induced flexural shear strain in the total potential
energy formulation is a way to preserve the terms necessary to model interactive buckling
successfully. The pure lateral displacement W and the corresponding pure rotation of the
plane section θ are defined by the following expressions:

W (z) = −qsL sin
(πz

L

)

, θ (z) = −qtπ cos
(πz

L

)

, (1)
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where qs and qt are the generalized coordinates defined as the normalized amplitude of the
sway and tilt components of the global buckling mode respectively. The local buckling

Figure 2: (a) Global buckling mode bending about the weak axis y: sway and tilt components. (b) Local
buckling mode: out-of-plane mode in the flanges wf(x, z) and in the more compressed web wwc(y, z);
in-plane mode in the flanges uf(x, z) and in the more compressed web uwc(y, z).

mode, including out-of-plane and in-plane displacements, as shown in Figure 2(b), is ex-
pressed as a combination of the modes in the pure local buckling case and the case where
global buckling is critical:

wf(x, z) = f1f(x)w1(z) + f2f(x)w2(z),

wwc(y, z) = f1wc(y)w1(z) + f2wc(y)w2(z),

wwt(y, z) = f1wt(y)w1(z) + f2wt(y)w2(z),

uf(x, z) = g1f(x)u1(z) + g2f(x)u2(z),

uwc(y, z) = g1wc(y)u1(z) + g2wc(y)u2(z),

uwt(y, z) = g1wt(y)u1(z) + g2wt(y)u2(z),

(2)

where f and g are the cross-section components for the out-of-plane and in-plane com-
ponents respectively; wi and ui, where i = {1, 2}, are the longitudinal out-of-plane and
in-plane displacement components respectively. Subscripts 1 and 2 represent the cases
where the critical buckling modes are local and global respectively, as shown in Figure 3.
The subscripts ‘f’ and ‘w’ represent the flanges and webs respectively; subscripts ‘c’ and
‘t’ represent the more and less compressed webs respectively. The cross-section component
of the local out-of-plane displacement field, as shown in Figure 3, is estimated by applying
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Figure 3: Cross-section components of the local out-of-plane displacement field. (a) Pure local buckling
case. (b) Interactive buckling case where global buckling is critical.

appropriate kinematic and static boundary conditions for each plate and their joints in
conjunction with the Rayleigh–Ritz method, the detailed derivation of which can be found
in previous work [36, 37]:

f1wc = f1wt = −
4 (φcφ

3
t + 1)

πφcφ3
t − φcφ3

t − 4
cos

(πy

d

)

+
(3 + π)φcφ

3
t

πφcφ3
t − φcφ3

t − 4

(

1−
4y2

d2

)

, (3)

f1f = −
4π

φc (πφcφ3
t − φcφ3

t − 4)

(

x

b
+

1

2

)(

x

b
−

1

2

)

, (4)

f2wc =
−2 (2φcφ

3
t + 1)

πφcφ3
t − 4φcφ3

t − 2
cos

πy

d
+

πφcφ
3
t

πφcφ3
t − 4φcφ3

t − 2

(

1−
4y2

d2

)

, (5)

f2f = −
2π

φc (πφcφ3
t − 4φcφ3

t − 2)

(

x

b
+

1

2

)2(
x

b
−

1

2

)

, (6)

f2wt = 0. (7)

Here, φc = d/b is the cross-section aspect ratio and φt = tf/tw is the flange–web thickness
ratio. It should be mentioned that the above assumption for f1f and f1w is only valid for
rectangular cross-sections (d > b), where the critical local buckling stress for the webs is
smaller than that for the flanges. As for the in-plane shape function, a recent numerical
study [46] demonstrated that the profile is very close to that of the out-of-plane components.
Therefore, these components are in fact assumed to be the same, i.e. gif = fif , giwc = fiwc
and giwt = fiwt. It should be noted that this assumption may not be consistent with
classical theory [47], but the shape function forms do satisfy the kinematic boundary
conditions. Moreover, since the energy would be minimized by the longitudinal components
of the in-plane displacement, i.e. u1(z) and u2(z), the approximate nature of the shape
function should be mitigated somewhat.
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2.2. Imperfections description

An initial out-of-straightness in the x-direction, W0, and an initial pure rotation of the
plane section θ0, corresponding to the sway and tilt global buckling mode in Eq. (1), are
introduced to the whole strut respectively as components that form the global imperfection:

W0(z) = −qs0L sin
(πz

L

)

, θ0 (z) = −qt0π cos
(πz

L

)

, (8)

with qs0 and qt0 being the respective normalized amplitudes. A recent study [37] showed
that in the transition from the pure local buckling mode, shown in Figure 3(a), to the
global buckling induced interactive mode, shown in Figure 3(b), there is a redistribution
of stiffness across the cross-section. Specifically, owing to the rigid connection between
each individual plates, the less compressed web provides additional restraint to the more
compressed side [48, 49, 50, 37]. Hence, there is an effective increase in the axial stiffness
of the more compressed web and flanges, thus leading to a higher resistance to compressive
stresses. It implies that the mono-symmetric cross-section imperfection profile would be
effectively more severe than the doubly-symmetric case. Therefore, the mono-symmetric
cross-section deformation profile, as shown in Figure 3(b), is used as the cross-section
component for the local imperfection. The local imperfection is introduced by defining an
initial out-of-plane deflection in both flanges and webs, corresponding to the local mode
description in Eq. (2):

wf0(x, z) = f2f(x)w0(z), wwc0(y, z) = f2wc(y)w0(z), wwt0(y, z) = f2wt(y)w0(z), (9)

where the cross-section components f are the same as described in Eqs. (5)–(7); the longitu-
dinal component of the local imperfection w0(z) is derived from a first-order approximation
from a multiple scale perturbation analysis of a strut on a nonlinear softening foundation,
which has been demonstrated to match the least stable localized post-buckling mode shape
very well [51]:

w0(z) = A0 sech
[

α
( z

L
− η

)]

cos
[

βπ
( z

L
− η

)]

, (10)

where z ∈ [0, L] and the imperfection is symmetric about z/L = η. Since previous work
on sandwich panels [22], I-section struts [23], stiffened plates [24] and functionally graded
carbon nanotube-reinforced composite beams [52] have demonstrated that the worst case
occurs when the local imperfection is symmetric about midspan, the value of η is selected
to be 1/2. The quantity A0 controls the amplitude of the imperfection component. The
parameters α and β control the degree of localization of the imperfection and the number
of sinusoidal half waves of the longitudinal imperfection component respectively, as shown
in Figure 4. When α = 0, the function is periodic; with the increase of α, the function
becomes increasingly localized. Moreover, in order to be in accord with the symmetry
condition at midspan, β should be an odd number.

2.3. Total potential energy

The total potential energy V of the strut is determined with the principal contributions
from the bending energy in both webs due to global buckling, the bending energy in the
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Figure 4: The profile of the normalized local imperfection function, w0(z)/A0. (a) Localized imperfections
introduced by varying the localization parameter α from zero to 10. (b) Periodic imperfections (α = 0)
with different numbers of half sine waves by varying the frequency parameter β from 1 to 9.

flanges and webs due to local buckling, the membrane strain energy due to both global
and local buckling, and the work done by the external load PE , where E is the total
end-shortening. The formulation of the total potential energy functional follows a similar
approach, as found in previous work [37], but currently accounts for the scenarios where
both global and local geometric imperfections exist. The unloaded strut with initial global
and local imperfections is assumed to be stress-relieved [53, 22, 23, 24]. The case of the
global imperfection W0 is illustrated in Figure 5. For the local imperfection case, w0 would
replace W0 and the flexural rigidity of the flanges Df = Et3f / [12 (1− ν2)] or the webs
Dw = Et3w/ [12 (1− ν2)] would replace the flexural rigidity of the web about the local weak
neutral axis EIw = Edt3w/12.

Figure 5: Introduction of the global imperfection. (a) The out-of-straightness sway component W0 and
(b) the pure rotation tilt component θ0.
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It should be stressed that only bending energy stored in the webs contributes to the
global bending energy Ub,o through the sway mode, since the membrane energy stored in
the flanges accounts for the effect of global bending through the tilt mode, see Figure 2(a).
Moreover, since the webs are relatively thin, the shear strain through the thickness may
be neglected. Therefore, the global bending energy, Ub,o, can be expressed thus:

Ub,o = 2

∫ L

0

EIw
2

(χ− χ0)
2 dz = EIw

∫ L

0

(qs − qs0)
2 π

4

L2
sin2 πz

L
dz, (11)

with χ = Ẅ and χ0 = Ẅ0, where dots represent derivatives with respect to z. The factor
of 2 is included to account for both webs.

The local bending energy stored in both flanges, the more compressed web and the less
compressed web can be determined by the standard expression for the strain energy of
bending of a plate [54], hence:

Ub,fl = Df

∫ L

0

∫ b/2

−b/2

{

[

∂2 (wf − wf0)

∂z2
+

∂2 (wf − wf0)

∂x2

]2

(12)

− 2(1− ν)

[

∂2 (wf − wf0)

∂z2
∂2 (wf − wf0)

∂x2

−

(

∂2 (wf − wf0)

∂z∂x

)2 ]
}

dx dz,

Ub,wcl =
Dw

2

∫ L

0

∫ d/2

−d/2

{

[

∂2 (wwc − wwc0)

∂z2
+

∂2 (wwc − wwc0)

∂y2

]2

(13)

− 2(1− ν)

[

∂2 (wwc − wwc0)

∂z2
∂2 (wwc − wwc0)

∂y2

−

(

∂2 (wwc − wwc0)

∂z∂y

)2 ]
}

dy dz,

Ub,wtl =
Dw

2

∫ L

0

∫ d/2

−d/2

{

[

∂2 (wwt − wwt0)

∂z2
+

∂2 (wwt − wwt0)

∂y2

]2

(14)

− 2(1− ν)

[

∂2 (wwt − wwt0)

∂z2
∂2 (wwt − wwt0)

∂y2

−

(

∂2 (wwt − wwt0)

∂z∂y

)2 ]
}

dy dz.

The membrane strain energy in the flanges Um,f is derived from considering the direct
strains (εz) and the shear strains (γxz) in the flanges. The direct strains comprise three
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contributions, the first term from the global tilt mode, the next three terms from the local
mode obtained based on von Kármán plate theory and finally a purely in-plane compressive
strain ∆:

εz,f =
∂ut

∂z
+

∂uf

∂z
+

1

2

(

∂wf

∂z

)2

−
1

2

(

∂wf0

∂z

)2

−∆

= −x (qt − qt0)
π2

L
sin

πz

L
+ {g1f}x u̇1 + {g2f}x u̇2 +

1

2

{

f 2
1f

}

x
ẇ2

1

+
1

2

{

f 2
2f

}

x

(

ẇ2
2 − ẇ2

0

)

+ {f1ff2f}x ẇ1ẇ2 −∆. (15)

The shear strain component can be written thus:

γxz,f =
∂uf

∂x
+

∂ (W −W0)

∂z
− (θ − θ0) +

∂wf

∂x

∂wf

∂z
−

∂wf0

∂x

∂wf0

∂z

= {g′1f}x u1 + {g′2f}x u2 − [(qs − qt)− (qs0 − qt0)] π cos
πz

L
+ {f ′

1ff1f}x ẇ1w1 + {f ′

2ff2f}x (ẇ2w2 − ẇ0w0)

+ {f ′

1ff2f}xw1ẇ2 + {f1ff
′

2f}x ẇ1w2, (16)

where primes denote differentiation with respect to x and the terms in the braces represent
a definite integration with respect to the variable denoted by the subscript, thus:

{F (x)}x =

∫ b/2

−b/2

F (x) dx, (17)

where F is an example function. From the previous numerical study [46], the transverse
stress component was shown to be tiny when compared with the longitudinal stress, a
finding that also coincides with earlier work [18]. Therefore, the complete expression for
the membrane strain energy stored in the flanges can be written thus if the transverse
strain is simplified to be εx,f = −νεz,f :

Um,f = Ufd + Ufs = 2

∫ L

0

∫ tf/2

−tf/2

∫ b/2

−b/2

1

2

(

Eε2z,f +Gγ2
xz,f

)

dx dy dz. (18)

The membrane strain energy in the webs also comprises direct and shear strain energy
contributions. The complete expressions for the direct strain in the more compressed and
less compressed webs are very similar to those for the flanges presented in Eq. (15), thus:

εz,wc =
∂ut,wc

∂z
+

∂uwc

∂z
+

1

2

(

∂wwc

∂z

)2

−
1

2

(

∂wwc0

∂z

)2

−∆

= − (qt − qt0)
bπ2

2L
sin

πz

L
+ {g1wc}y u̇1 + {g2wc}y u̇2

+
1

2

{

f 2
1wc

}

y
ẇ2

1 +
1

2

{

f 2
2wc

}

y

(

ẇ2
2 − ẇ2

0

)

+ {f1wcf2wc}y ẇ1ẇ2 −∆,

(19)

10



εz,wt =
∂ut,wt

∂z
+

∂uwt

∂z
+

1

2

(

∂wwt

∂z

)2

−
1

2

(

∂wwt0

∂z

)2

−∆

= (qt − qt0)
bπ2

2L
sin

πz

L
+ {g1wt}y u̇1 + {g2wt}y u̇2

+
1

2

{

f 2
1wt

}

y
ẇ2

1 +
1

2

{

f 2
2wt

}

y

(

ẇ2
2 − ẇ2

0

)

+ {f1wtf2wt}y ẇ1ẇ2 −∆.

(20)

Unlike the flanges, the shear strains in the webs only contain the terms from the local
mode due to their relatively small thickness, thus:

γyz,wc =
∂uwc

∂y
+

∂wwc

∂y

∂wwc

∂z
−

∂wwc0

∂y

∂wwc0

∂z

= {g′1wc}y u1 + {g′2wc}y u2 + {f ′

1wcf1wc}y ẇ1w1

+ {f ′

2wcf2wc}y (ẇ2w2 − ẇ0w0) + {f ′

1wcf2wc}y w1ẇ2 + {f1wcf
′

2wc}y ẇ1w2,

(21)

γyz,wt =
∂uwt

∂y
+

∂wwt

∂y

∂wwt

∂z
−

∂wwt0

∂y

∂wwt0

∂z

= {g′1wt}y u1 + {g′2wt}y u2 + {f ′

1wtf1wt}y ẇ1w1

+ {f ′

2wtf2wt}y (ẇ2w2 − ẇ0w0) + {f ′

1wtf2wt}y w1ẇ2 + {f1wtf
′

2wt}y ẇ1w2.

(22)

Again, assuming that εy,wc = −νεz,wc and εy,wt = −νεz,wt, the membrane strain energy
stored in both webs is given thus:

Um,w =
1

2

∫ L

0

∫ d/2

−d/2

∫ tw/2

−tw/2

[

E
(

ε2z,wc + ε2z,wt

)

+G
(

γ2
yz,wc + γ2

yz,wt

)]

dx dy dz. (23)

The total end-shortening E comprises terms from pure squash, the global sway mode and
the local in-plane displacement. The expression for the work done by the external load is
given by:

PE = P

∫ L

0

[

∆+
(

q2s − q2s0
) π2

2
cos2

πz

L
−∆m

]

dz, (24)

where:

∆m =

(

2φt {g1f}x + {g1wc}y + {g1wt}y

)

u̇1 +
(

2φt {g2f}x + {g2wc}y + {g2wt}y

)

u̇2

2b(φt + φc)
. (25)

In summary, the total potential energy V can be expressed by the summation of all the
strain energy terms minus the work done by the external load:

V = Ub,o + Ub,fl + Ub,wcl + Ub,wtl + Um,f + Um,w − PE . (26)
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2.4. Variational formulation and eigenvalue analysis

The governing equations for equilibrium are obtained by performing the calculus of
variations on the total potential energy V following the well established procedure presented
in previous work [55, 16, 36, 37]. The integrand of the total potential energy V can be
expressed as a Lagrangian (L) of the form:

V =

∫ L

0

L (ẅi, ẇi, wi, u̇i, ui, z) dz, (27)

where i = {1, 2}. Equilibrium of the system requires that V is stationary for any small
changes in wi and ui. Therefore, the governing equilibrium equations can be obtained by
setting the first variation of V to zero:

δV =

∫ L

0

[

∂L

∂ẅi
δẅi +

∂L

∂ẇi
δẇi +

∂L

∂wi
δwi +

∂L

∂u̇i
δu̇i +

∂L

∂ui
δui

]

dz = 0. (28)

Since δẅi = d(δẇi)/dz, δẇi = d(δwi)/dz and δu̇i = d(δui)/dz, integration by parts allows
the development of the Euler–Lagrange equations for wi and ui, which comprise a fourth
order ordinary differential equation (ODE) for wi and second order ODE for ui, thus:

d2

dz2

(

∂L

∂ẅi

)

−
d

dz

(

∂L

∂ẇi

)

+
∂L

∂wi
= 0, (29)

d

dz

(

∂L

∂u̇i

)

−
∂L

∂ui
= 0. (30)

Moreover, equilibrium also requires the minimization of V with respect to the generalized
coordinates qs, qt and ∆, leading to three integral equations:

∂V

∂qs
= 0,

∂V

∂qt
= 0,

∂V

∂∆
= 0. (31)

The first expression in Eq. (31) provides a relationship between the global imperfection
parameters qs0 and qt0 that is obtained by setting global mode amplitudes qs and qt, and
local buckling mode functions, i.e. ui, wi and their derivatives with respect to z, to zero:

qs0 = (1 + s) qt0, (32)

where s is the shear correction factor, thus:

s =
π2Eb2

4GL2

(

1

3
+

φc

φt

)

. (33)

It should be mentioned that the corresponding relationship, qs = (1 + s)qt, also applies
before local buckling is triggered [37].
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The boundary conditions for wi, ui and their derivatives are for simply-supported con-
ditions at z = 0 and for symmetry conditions at z = L/2:

wi(0) = ẅi(0) = ẇi(L/2) =
...
wi(L/2) = ui(L/2) = 0. (34)

Two further boundary conditions can be obtained from the variational formulation with
regards to the in-plane displacements ui, hence:

[

∂L

∂u̇i

δui

]L

0

= 0. (35)

Linear eigenvalue analysis for the perfect strut is conducted to determine the global buck-
ling load PC

o . This is evaluated by considering the condition where the Hessian matrix Vij

is singular, where qs = qt = 0 and w1 = w2 = u1 = u2 = 0:

det (Vij) =

∣

∣

∣

∣

∣

∂2V
∂q2

s

∂2V
∂qs∂qt

∂2V
∂qt∂qs

∂2V
∂q2

t

∣

∣

∣

∣

∣

= 0. (36)

Solving Eq. (36) gives the following expression:

PC
o =

2π2EIw
L2

+
π2Etfb

3

2 (1 + s)L2

(

1

3
+

φc

φt

)

. (37)

Note that if Euler–Bernoulli bending theory had been assumed, the shear modulus G → ∞
and hence s → 0, then PC

o would reduce to the classical Euler buckling load, as would be
expected.

3. Numerical results, verification and discussion

Previous studies on the imperfection sensitivity of thin-walled struts [5, 18, 23, 24, 56]
found that the maximum erosion in the load-carrying capacity principally occurs within the
range where the global buckling load is close to the local buckling load, i.e. the transitional
range between zones 1 and 2 and the whole range of zone 2, as shown schematically
in Figure 6. Therefore, the imperfection sensitivity of two typical length struts, where
global and local buckling are critical respectively but the ratio of the global and local
buckling loads is close to unity in both cases, are analysed in detail. The cross-section
geometry and material properties of the example struts are presented in Table 1 with Table
2 summarizing the strut lengths, the buckling loads and corresponding zones, as defined
in [37]. The effects of global imperfections, local imperfections and their combination on
the nonlinear equilibrium path and load-carrying capacity of the two example struts are
investigated. Since the complete system of the nonlinear coupled ordinary differential
equations is too complicated to be solved analytically, the solution is obtained within the
powerful numerical continuation and bifurcation software Auto-07p [38]. The software
has been shown in previous studies [13, 57, 55, 44, 23, 36, 37] to be capable of solving
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Figure 6: The van der Neut curve for the geometrically perfect and imperfect cases [5]. The quantity η
is the stiffness reduction factor due to the local buckling of the flanges; Pu, P

C
o and PC

l are the ultimate,
the global buckling and the local buckling loads respectively. The imperfect case line shows that within
zones 1–3, there is a reduced ultimate load compared to the perfect case. There is also an ‘erosion balance
point’ marked where the curve for the imperfect case intersects with the perfect case.

Table 1: Cross-section geometry and material properties of the rectangular hollow section struts in the
numerical examples.

Flange width b 60 mm
Web depth d 120 mm
Flange thickness tf 1 mm
Web thickness tw 1 mm
Young’s Modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

coupled nonlinear differential equations subject to boundary and integral conditions, and
importantly, tracing the evolution of solutions with varying system parameters, which in
the present case are the nonlinear equilibrium paths. Moreover, it has the key capability
of finding and classifying different kinds of bifurcation points and switching between, as
well as tracing, different solution branches.

Typical equilibrium paths for perfect and imperfect example struts alongside the nu-
merical continuation procedures to solve the equilibrium paths using Auto are shown
diagrammatically in Figure 7. For the case where only the global imperfection exists two
stages are required to obtain the whole equilibrium path, as shown in Figure 7(a–b). Branch
switching is necessary at the pitchfork bifurcation point (B) [58], which is the generic term
for a conventional symmetric (stable or unstable) bifurcation [6], where local and hence

Table 2: Theoretical values of the global and local buckling loads for the two separate lengths studied.

L (mm) PC
o (kN) PC

l,Auto (kN) PC
l,Abaqus (kN) PC

o /P
C
l Zone Length description

4800 22.67 24.61 24.57 0.92 1 ‘Long’
4500 25.79 24.61 24.58 1.05 2 ‘Transitional’
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Figure 7: Sketches of the equilibrium paths and their numerical continuation procedures in Auto for
the imperfect struts primarily in zones 1 and 2. (a) Global buckling being critical with an initial out-of-
straightness global imperfection qs0 only; (b) local buckling being critical with qs0 only; (c) global buckling
being critical with a mono-symmetric local imperfection w0 only or with both w0 and qs0; (d) local buckling
being critical with w0 only or with both w0 and qs0. The thicker and thinner lines represent the imperfect
and perfect systems respectively. Circles represent critical (C) and secondary (S) bifurcation points for
the perfect systems and a pitchfork bifurcation point (B) for the imperfect system; PC

o , PC
l , PB and Pu

represent the global buckling load, the local buckling load, the load at the pitchfork bifurcation point and
the ultimate load respectively.
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interactive buckling is triggered, to trace the post-buckling equilibrium path. For the cases
with pure local imperfections and with combined local and global imperfections, only one
run is required to obtain the whole equilibrium path, as shown in Figure 7(c, d). The
mono-symmetric local imperfection immediately breaks the symmetry as the numerical
run begins and therefore qs and qt are introduced without the need for branch switching.

3.1. Global imperfections (qs0 6= 0, w0 = 0)

In this section, the effects of a purely global imperfection are studied. Only initial
sway and tilt imperfections, i.e. qs0 and qt0, which satisfy the relationship from Eq. (32),
are introduced. A set of values for the normalized initial sway imperfection amplitude
qs0 ranging from 10−4 to 10−3 is selected for analysis. Figures 8 and 9 show a family of
equilibrium paths with increasing global imperfection size and the relationship between the
ultimate load and the global imperfection amplitude for the long (zone 1) and transitional
length (zone 2) struts respectively. It is clearly observed that the ultimate load decreases
as the imperfection size increases. For qs0 = 1/1000, which is the tolerance level for
global imperfections recommended in the relevant part of Eurocode 3 [11], the erosion
in the load-carrying capacity is approximately 25% compared with the critical buckling
load of the perfect system for both struts. From the equilibrium path, the transition from
highly unstable to approximately neutral post-buckling behaviour can be observed with the
increase of the global imperfection size qs0. Specifically, the snap-back and the sharp load
drop at the secondary bifurcation in the load–end-shortening relationship for the perfect
case disappear gradually with the increase of the imperfection size. It can also be seen
that all equilibrium paths converge asymptotically to the same state, as would be expected
from classical studies [6].

Moreover, for the perfect case and the cases where the imperfection size is vanishingly
small, the triggering of local buckling represents the ultimate state, which is followed by
unstable post-buckling behaviour. However, with increasing imperfection size, there is a
further increase in the load-carrying capacity after local buckling in the more compressed
web is triggered, as shown in Figures 8 and 9, which has also been reported previously [5,
59, 60, 25]. Therefore, it would seem that determining the load at the pitchfork bifurcation
point PB would provide a safe, yet accurate, method to predict the ultimate load for struts
with purely global imperfections.

As shown in Figure 10(a) and (c), the global imperfection size also affects the profile of
the interactive buckling mode in the proximity of the pitchfork bifurcation point. For the
long length strut, the interactive buckling mode becomes more localized with increasing
imperfection size. As for the transitional length strut, the global imperfection imme-
diately breaks the symmetry, making the profile change from approximately periodically
distributed along the length to localized at mid-span. The increasing imperfection size also
increases the degree of localization of the interactive buckling mode as that for the long
length strut. It should be noted that in both cases the increase in the degree of localization
is accompanied by a reduction in the wavelength. With the progress of mode interaction,
the post-buckling mode spreads towards the boundary and becomes distributed along the
whole length of the strut, as shown in Figure 10(b, d). It can be concluded that, in a
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Figure 8: Equilibrium paths and the imperfection sensitivity graph for the long length strut (L = 4.8m)
with different global imperfection sizes qs0. Graphs of the normalized load ratio p = P/PC, where PC

is the critical buckling load for the perfect strut, versus (a) the normalized end-shortening E/L, and (b)
the normalized amplitude of the sway mode qs; (c) shows the normalized maximum amplitude of the local
buckling deflection in the more compressed web wwc,max/tw versus qs; (d) shows the normalized ultimate
load pu = Pu/P

C from both the FE and variational models and the normalized load at the pitchfork
bifurcation point for the imperfect system pB = PB/PC against qs0 showing the sensitivity to initial
global imperfections. Circles in (a) and (b) represent bifurcation points.
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Figure 9: Equilibrium paths and the imperfection sensitivity graph for the transitional length strut (L =
4.5m) with different global imperfection sizes qs0. Graphs (a)–(d) are as described in Figure 8.
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Figure 10: Numerical solutions of the longitudinal profile of the local out-of-plane displacement in the
more compressed web w̄wc = wwc/wwc(z̄ = 1) at (a, c) the pitchfork bifurcation point and (b, d) where
qs = 8 × 10−3 for the long length strut (a–b) and the transitional length strut (c–d) respectively. The
dashed, dot-dashed and solid lines represent the cases with perfect and imperfect (qs0 = 10−4 and 10−3)
geometries respectively. Note that the longitudinal coordinate is normalized with respect to half of the
strut length z̄ = 2z/L.

similar way to the equilibrium path, the post-buckling mode also converges approximately
to the same profile in the far-field post-buckling range.

3.2. Local imperfections (w0 6= 0, qs0 = 0)

For the study where only local imperfections exist, the global imperfection parameters
qs0 and qt0 are set to zero. The cross-section profile of the local imperfection is assumed
to be mono-symmetric and defined by Eqs. (5)–(7). The longitudinal component of the
local imperfection w0 is determined based on fitting the longitudinal component of the first
local buckling mode from the FE models using Eq. (10). The profile of the imperfection
is shown in Figure 11. For the long length strut, it is determined that α = 4.314 and
β = 47; whereas for the transitional length strut, α = 5 and β = 47. A set of values for
the normalized local imperfection amplitude A0/tw ranging from 0.01 to 0.6 is selected for
analysis.

Figures 12 and 13 show a family of equilibrium paths with increasing local imperfection
size and the relationship between the ultimate load and the local imperfection amplitude
for the long and transitional length struts respectively. The ultimate load drops sub-
stantially with increasing local imperfection amplitude. For A0/tw = 0.6 = d/(200tw),
which is the tolerance level for local imperfections recommended in Eurocode 3 [11], the
erosion in the load-carrying capacity is greater than 20% compared with the perfect case
for both struts considered. As for the equilibrium paths, in a similar way to the global
imperfection case, a transition from highly unstable to mildly stable behaviour is observed
in both struts with increasing local imperfection size. Specifically, for the perfect case and
the cases where the imperfection size is vanishingly small, reaching the ultimate load is
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Figure 11: Longitudinal component of initial local imperfections for (a) the long length strut and (b) the
transitional length strut. Solid and dashed lines represent fitting functions and the first local buckling
mode from FE respectively. Note that the longitudinal coordinate is defined as in Figure 10.

accompanied by potentially unstable behaviour, i.e. snap-backs in the load–end-shortening
relationship and a simultaneous sharp load drop may be expected. However, for the cases
with larger imperfection sizes, the behaviour is relatively stable, i.e. the stiffness decreases
with increase of the applied load but remains positive and the deformation level at the
ultimate load is relatively large.

It should be noted that there is a snap-back in the qs–wwc/tw relationship for the long
length strut with a normalized local imperfection amplitude A0/tw = 0.01, as shown in
Figure 12(c). It corresponds to a jump in the local mode, as shown in Figure 14. Before the
mode jump occurs at qs = 0.002, the number of peaks and troughs in the form of wwc with
A0/tw = 0.01 is the same as that for the strut with A0/tw = 0.14, which is determined by
the pre-defined local imperfection function, as shown in Figures 11(a) and 14(a). However,
after the mode jump, there are more peaks and troughs for the strut with A0/tw = 0.01
and the number is the same as that for the perfect case, as shown in Figure 14(b); this
finding is also in accord with previous studies [23, 24]. With increasing local imperfection
size, the formation of new peaks or troughs requires more membrane strain energy, which
would necessitate a longer snap-back path. This, perhaps, explains why no mode jump
is observed for the cases with larger imperfection sizes in the current deformation range,
i.e. where qs < 10−2. It should also be noted that the mode jumping phenomenon is not
observed in the transitional length strut with the same imperfection size (A0/tw = 0.01)
before qs = 10−2, which in fact occurs at qs = 1.2× 10−2. This may, in turn, be explained
by the fact that local buckling is critical in that case and the local mode defined by the
imperfection is well developed, thus requiring an excessive amount of strain energy (and
hence a longer snap-back path) to trigger any jump in the post-buckling mode.

3.3. Combined imperfections (qs0 6= 0, w0 6= 0)

The effects of combining local and global imperfections are now studied. As mentioned
earlier, according to Eurocode 3 [11, 32], the tolerance levels for global and local imper-
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Figure 12: Equilibrium paths and the imperfection sensitivity graph for the long length strut with different
local imperfection amplitudes A0. Graphs (a–c) are as described in Figure 8. Graph (d) shows the
normalized ultimate load pu from both FE and variational models against A0 showing the sensitivity to
initial local imperfections.
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Figure 13: Equilibrium paths and the imperfection sensitivity graph for the transitional length strut with
different local imperfection amplitudes A0. Graphs (a)–(d) are as described in Figure 12.
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Figure 14: Evolution of the numerical solutions for the normalized local out-of-plane displacement in the
more compressed web where (a) qs = 0.002 and (b) qs = 0.008 for the long length strut with different
local imperfection amplitudes A0. The solid, dot-dashed and dashed lines represent where A0/tw = 0.14,
A0/tw = 0.01 and the perfect case respectively.

fections are qs0,tolL = L/1000 and A0,tol = d/200 respectively. Hence, the imperfection
combination selected currently is set to be proportional to and also normalized with re-
spect to this combination, which is defined as WE0 = W̄E0{qs0,tolL,A0,tol}, where W̄E0 is a
non-dimensional scaling factor.

Figures 15 and 16 show the nonlinear equilibrium paths and the imperfection sensitivity
relationship for both example struts. With increasing imperfection size, a transition from
highly unstable to mildly stable behaviour is also observed. It should be noted that there
remains a snap-back in the relationship between the local and global mode amplitudes for
the long length strut with W̄E0 = 1/60, where the global and local imperfection amplitudes
are L/60000 and d/12000 respectively; this implies that there is a jump in the local mode.

Moreover, compared with purely global or local imperfection cases, the introduction of
the other imperfection-type leads to a further 10% load drop. For the imperfections at the
Eurocode 3 tolerance levels (W̄E0 = 1), the load-carrying capacity erosion in comparison
with the perfect case is over 30% for both struts. According to the definition suggested by
Gioncu [7], this may be classified as a strong interaction. A larger load-carrying capacity
erosion would be expected for the cases where PC

o /P
C
l is approximately unity.

3.4. Verification and discussion

For verification purposes, nonlinear FE models of the example struts with the same
material and geometric properties and geometric imperfections as the variational model
were developed in the commercial FE package Abaqus [40] using the four-noded, reduced-
integration S4R shell elements. Two different methods were adopted to model the geomet-
ric imperfections in the FE models: the first one used the keyword ‘*IMPERFECTION’
to introduce the shape of eigenmodes from linear buckling analysis, which is very straight-
forward; the second one used Matlab [61] to generate the nodal coordinates input file for
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Figure 15: Equilibrium paths and the imperfection sensitivity graph for the long length strut with different
normalized combined imperfection sizes W̄E0. Graphs (a)–(c) are as described in Figure 8. Graph (d)
shows the normalized ultimate load pu from both the FE and variational models against W̄E0 showing the
sensitivity to the combined local and global imperfections. Note that W̄E0 = 1 corresponds to the global
imperfection amplitude qs0L being L/1000 and the local imperfection amplitude A0 being d/200.

24



E/L ×10-4
0 1 2 3 4 5 6

p

0

0.2

0.4

0.6

0.8

1

(a)

Perfect

W̄E0 = 1/60

W̄E0 = 1/6

W̄E0 = 1

qs
0 0.002 0.004 0.006 0.008 0.01

p

0

0.2

0.4

0.6

0.8

1

(b)

Perfect

W̄E0 = 1/60

W̄E0 = 1/6

W̄E0 = 1

qs
0 0.002 0.004 0.006 0.008 0.01

w
w
c,
m
ax
/t

w

0

0.5

1

1.5

2
(c)

Perfect

W̄E0 = 1/60

W̄E0 = 1/6

W̄E0 = 1

W̄E0

0 0.2 0.4 0.6 0.8 1

p u

0.2

0.4

0.6

0.8

1

(d)

FE

Variational

pu = 1− 0.348W̄
1/3
E0

W̄E0 increasing W̄E0 increasing

W̄E0 increasing

Figure 16: Equilibrium paths and the imperfection sensitivity graph for the transitional length strut with
different normalized combined imperfection sizes W̄E0. Graphs (a)–(d) are as described in Figure 15.

the FE model with pre-defined global and local imperfections from Eqs. (8) and (9) respec-
tively, which can model more general imperfection cases. For the pure global imperfection
case and the perfect case, the first method was adopted to introduce the imperfection or
the necessary geometric perturbation to simulate the post-buckling response of the perfect
case; the second method was used in the cases where local imperfections were introduced
either with or without the global imperfection.

Owing to the discontinuous pitchfork bifurcation response at the initial instability, it
was not possible to analyse the interactive post-buckling behaviour of the cases, where
only global imperfections or only symmetric local imperfections exist, in Abaqus directly,
unless imperfections existed naturally from the discretization. Therefore, an initial pertur-
bation in the geometry was introduced to transform the discontinuous bifurcation problem
into a continuous one [62]. In the current study, the eigenmode shapes from linear buckling
analysis were adopted as the profiles for the initial local or global geometric perturbations

25



and the scale factors for the local and global perturbations were set to 10−3tw and 10−6L
respectively. These were sufficiently small sizes to ensure that the response essentially
mimicked the perfect cases as far as possible, without encountering the pitchfork bifur-
cations that would have led to convergence problems. As for the nonlinear solution, the
Riks arclength method [39] was adopted to trace the nonlinear equilibrium path. The full
modelling details, such as meshing size, convergence control, and boundary conditions, can
be found in [36].

The comparison of the ultimate load from the FE and the variational models are shown
in (d) of Figures 8–9, 12–13, 15–16 (inclusive). The results from the variational models
generally show good comparisons with those from the FE models, with the variational
models generally predicting slightly higher ultimate loads. The discrepancy increases with
increasing imperfection size and the maximum relative difference (Pu−Pu,FE)/Pu,FE, which
occurs at the tolerance imperfection combination case (W̄E0 = 1) for the transitional length
strut, is slightly below 8%.

The reasons for the stiffer response or higher ultimate load prediction of the variational
model for the perfect case have been discussed thoroughly in [37] and also apply currently.
Firstly, when the more compressed web buckles, the neutral axis for strut flexure would
move to the less compressed side, thus introducing an additional bending moment to the
strut. The effect becomes more significant with the progression of interactive post-buckling,
which facilitates the load reaching the ultimate value and subsequently dropping. In order
to consider this effect, an additional displacement function would need to be introduced
in the current model to describe the movement of the neutral axis. Secondly, in the
current formulation, it is assumed that the effect of local buckling on the transverse stress
in each plate is negligible, which leads to the relationship εx = −νεz in the flanges and
εy = −νεz in the webs. In fact, this assumption is valid only when the local out-of-plane
displacement of the plate is small. In the advanced post-buckling range, the assumption
would be no longer valid, as demonstrated in Figure 17. The assumption also simplifies the
transverse displacement field, i.e. the in-plane displacement field across the cross-section
[37], which may lead to a ‘locking’ problem (essentially, a stiffer response), as reported by a
recent study [63]. Moreover, the in-plane cross-section displacement would also reduce the
effective flexural rigidity of the strut. To resolve the problem, an independent local mode
to describe the transverse in-plane displacement field in both flanges and webs would be
required, but this would complicate the variational model considerably.

Thirdly, in the current formulation, the cross-section component of the direct in-plane
displacement field is assumed to be the same as that of the out-of-plane one. Although this
assumption satisfies the kinematic boundary conditions, it does not represent the actual
cross-sectional displacement field very well. To describe the cross-section component of
the direct in-plane displacement field better, the solutions from classical theory [47] could
be adopted with the introduction of more functions to describe the variation of the cross-
section component along the strut length. However, the current model accuracy suggests
that any advantage would be minor and be mostly offset by the additional model complex-
ity. Finally, the cross-section profile of the local mode is assumed to remain unchanged
along the length of the strut and also throughout the progression of mode interaction, and
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Figure 17: Membrane stress distributions along the strut corner line of the more compressed web at the ulti-
mate load from FE for the transitional length strut with the tolerance imperfection combination (W̄E0=1).
Solid and dot-dashed lines represent the longitudinal and transverse stresses respectively, showing that the
transverse stresses are definitely not zero.

the only variable is the modal amplitude, as can be seen in Eq. (2). However, the profile is
affected by the ratio of axial force and bending moment, which varies along the length and
also throughout the entire loading history. Furthermore, some higher order effects, such as
those discussed in [37], would also affect the cross-section profile. All of these factors taken
together lead to the stiffer response of the variational model, thus overestimating the ulti-
mate load especially in the cases where the imperfection size is close to the recommended
tolerance levels within the Eurocode. However, the errors are within generally acceptable
bounds and the variational model does provide a better insight into the system mechanics.

Based on the FE results, curves have been fitted to describe the ultimate load–normalized
imperfection size relationship, as shown in (d) of Figures 8–9, 12–13, 15–16 (inclusive).
For the pure global imperfection case, the expressions for both example struts indicate
approximately a 1/2 power law relationship; for the pure local imperfection and combined
imperfection cases, the expressions for both example struts indicate approximately a 1/3
power law relationship, which is also observed in I-section struts susceptible to mode inter-
action [64]. Moreover, the transitional length strut exhibits relatively more sensitivity to
global imperfections and the long length strut exhibits relatively more sensitivity to pure
local and combined imperfections.

4. Variational model application and parametric study

4.1. Simplified method to predict load at pitchfork bifurcation (qs0 6= 0, w0 = 0)

From the numerical results hitherto, it was demonstrated that for the case where only
a global imperfection exists, the load at the pitchfork bifurcation point PB can be used to
predict the ultimate load with relatively good accuracy and be safe, as shown in Figures
8(d) and 9(d). Therefore, a simplified method to predict PB is proposed based on the
method developed in previous work [36], which determined the local buckling load of the
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more compressed web undergoing global buckling and the corresponding global buckling
amplitude at the secondary bifurcation point for perfect thin-walled rectangular section
struts exhibiting global–local mode interaction.

Equation (31) provides the governing equation for the relationship between qs, qt and
P along the equilibrium path. By setting the terms related to the local mode to be zero,
the first two expressions of Eq. (31) can be written as:

∂V

∂qs
= π2GtfbL [(qs − qt)− (qs0 − qt0)] +

π4EIw (qs − qs0)

L
− P

π2Lqs
2

= 0, (38)

∂V

∂qt
=

π4Etfb
3

4L

(

1

3
+

φc

φt

)

(qt − qt0)− π2GtfbL [(qs − qt)− (qs0 − qt0)] = 0. (39)

Substituting Eq. (39) into Eq. (38) to remove the shear term and using the relationship in
Eq. (32) gives the following expression:

P = PC
o

(

qs − qs0
qs

)

. (40)

If no local buckling occurs, P would increase with qs and tend towards PC
o in the limit.

However, the bending stiffness would drop due to local buckling in the more compressed
web and flanges. Since the transverse stress component is neglected currently, the direct
stress in the more compressed web σwc before local buckling occurs can be written thus:

σwc = Eεwc = −
π2Eb (qt − qt0)

2L
sin

πz

L
−

P

Ag

, (41)

where Ag = 2(btf +dtw) is the gross cross-sectional area. From the numerical results shown
in Figures 10(a, c), the local mode is initially localized. Instead of analysing the whole
web with the entire strut length, it was demonstrated in [36] that when σwc at mid-span
reaches the local buckling stress of the more compressed web σC

wc, interactive buckling can
be assumed to have been triggered. The expression for the local buckling stress of the more
compressed web element restrained by both flanges is given by:

σC
wc =

kpπ
2E

12(1− ν2)(d/tw)2
(42)

and the complete expression for the plate buckling coefficient kp may be found in [36].
For the practically significant case where the cross-section has a uniform wall thickness
(φt = 1), the expression for kp was determined to be thus:

kp = 4.33 + 0.76φc − 0.1φ2
c. (43)

By substituting Eqs. (32) and (40) into Eq. (41), the relationship between PB and the
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global imperfection size qs0 is obtained:

PB =
Ag

2

[

π2Ebqs0
2(1 + s)L

+
PC
o

Ag

+ σC
wc

−

√

(

PC
o

Ag

− σC
wc

)2

+
π2Ebqs0
2(1 + s)L

(

π2Ebqs0
2(1 + s)L

+
2PC

o

Ag

+ 2σC
wc

)

]

.

(44)

Figure 18 shows the comparison of the normalized load pB = PB/PC obtained from Eq.
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Figure 18: Comparison of the normalized load pB using the simplified method and the full variational
model against the normalized ultimate load pu from the FE models for (a) the long length strut and (b)
the transitional length strut. Note that only global imperfections are included in both example struts.

(44) and the full variational model against the normalized ultimate load pu = Pu/P
C from

the FE model for example struts with purely global imperfections for different imperfection
sizes. For the long length strut, the simplified method shows excellent comparisons with the
full variational model for PB, as shown in Figure 18(a). For the transitional length strut,
the comparison is good for the cases where the global imperfection size is larger than 10−4.
For tiny global imperfections, the simplified method would overestimate PB. This is caused
by the fact that when the imperfection size is vanishingly small, the system would behave
very similarly to the perfect system, i.e. the less compressed web would also buckle [37]
and therefore the restraints on the more compressed web would be smaller, which leads to
a smaller value of kp. In general, for the current two example struts, the simplified method
provides a safe, yet accurate prediction of the ultimate load for different imperfection sizes.
Finally, it should be mentioned that if the material yield stress fy replaced σC

wc in Eq. (44),
the equation would revert to the classical Perry–Robertson formula [12] for the failure load
of an imperfect column.
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4.2. Simplified method to predict the ultimate load (qs0 = 10−3, w0 = 0)

Figure 19 presents the relationship between the ultimate and pitchfork bifurcation loads
for different length struts with tolerance level global imperfections (qs0 = 10−3). In the
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Figure 19: Length effects on the ultimate and pitchfork bifurcation load of thin-walled RHS struts with
purely tolerance level global imperfections (qs0 = 10−3). Note that the cross-section and material properties
of the struts are presented in Table 1.

range where global buckling is critical (PC
o /P

C
l < 1), the ultimate load is approximately

the same as the pitchfork bifurcation load. Therefore, Eq. (44) can be used as an accurate
prediction of the ultimate load for such cases. However, in the range where local buckling
is critical, the pitchfork bifurcation load is significantly smaller than the ultimate load
and the difference increases with decreasing strut length, which implies that the triggering
of local–global mode interaction in such cases does not lead to unstable post-buckling
behaviour.

The prerequisite of the simplified method for predicting the ultimate load is that the
effective global buckling load ΦrP

C
o is less than or very close to PB, where Φr is the bending

stiffness reduction factor due to local buckling of the more compressed web and flanges [37].
Otherwise, the load would still increase beyond PB with a reduced stiffness and would tend
to ΦrP

C
o , even though mode interaction is triggered, as shown in Figures 8 and 9. Therefore,

more calibration parameters could be introduced in Eq. (44) to fit it for the whole length
range. An equation is proposed based on the FE results in the range where PC

o /P
C
l 6 4:

Pu,glob,tol =

{

PB
tol for PC

o /P
C
l 6 1,

PB
tol

[

0.32
(

PC
o /P

C
l − 1

)

+ 1
]

for 1 < PC
o /P

C
l 6 4.

(45)
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The average ratio of Eq. (45) to Pu,FE,glob,tol is 0.998 and the coefficient of variation (COV)
is 0.96%, which represents an excellent fit. However, it should be noted that the equation
is only valid for the current geometric parameter space; an extensive parametric study on
geometric properties, i.e. plate width–thickness ratio and cross-section aspect ratio, would
be required to make the equation more generic and this is currently being undertaken.

4.3. Simplified method to predict the ultimate load (qs0 = 10−3, A0 = d/200)

In this subsection, the ultimate load for thin-walled RHS struts with purely tolerance
level local imperfections, purely tolerance level global imperfections and their combinations
for different length struts is investigated. The aim is to establish the relationship between
the ultimate load for the cases with purely tolerance level global imperfections and those
with tolerance level combined imperfections alongside calibrating Eq. (45) to be valid for
the latter cases.

Figure 20(a) shows the ultimate load for thin-walled RHS struts with purely tolerance
level local imperfections, purely tolerance level global imperfections and their combinations
in the range: PC

o /P
C
l =[0.2, 2.0]. It can be observed that the struts exhibit sensitivity to
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Figure 20: (a) Effects of tolerance level local imperfections, global imperfections and their combination on
the ultimate load for thin-walled RHS struts with different lengths. (b) Ratio of Pu,tol to Pu,glob,tol versus
the strut length, where Pu,tol and Pu,glob,tol represent the ultimate load with tolerance level combined
imperfections and tolerance level global imperfections respectively. Note that material and cross-section
properties are presented in Table 1. Local imperfection profiles are affine to the lowest local buckling mode
from linear buckling analysis using FE models.

both local and global imperfections and the load erosion is most significant at the point
where PC

o /P
C
l =1. For the current example struts with the cross-section properties as

presented in Table 1 and the imperfection tolerance level (A0/t=0.6 and qs0=10−3) selected,
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the ultimate load erosion due to purely tolerance level local and global imperfections is
nearly equal at the point where PC

o /P
C
l =1. Therefore, an opportunity to determine the

relative significance of both imperfection types on the ultimate load erosion for different
length ranges is provided. The principal finding from Figure 20(a) is that the ultimate
load with purely local imperfections is lower than that with purely global imperfections in
the range where global buckling is critical and vice versa. This observation implies that
struts where global buckling is critical are more sensitive to local imperfections than global
imperfections and vice versa.

The underlying mechanism of the critical buckling mode dependent imperfection sensi-
tivity may be explained based on the interactive buckling behaviour of perfect systems. No
matter to which type the critical buckling mode belongs, the failure of perfect thin-walled
RHS struts is controlled by the symmetry breaking action of mode interaction [65, 37]. In
the perfect case or the case with imperfections purely in the shape of the primary buck-
ling mode, the secondary buckling mode would be triggered when the primary mode is
fully developed. Since the primary mode is stable or neutral, the imperfect system would
approximate to the perfect case in the purely elastic scenarios. The imperfections with in-
teractive post-buckling mode profiles would have an immediate destabilization effect on the
system, i.e. a reduction in stiffness, which would facilitate the triggering of the secondary
mode and expedite the reaching of the ultimate state [65].

As for the effects of superposing a tolerance level global imperfection on a local imperfec-
tion, the ratio of the ultimate load for struts with purely tolerance level local imperfections
to that of struts with combined imperfections, Pu,loc,tol/Pu,tol, almost remains constant in
the range where global buckling is critical, with the average and the COV being 0.896
and 1.2% respectively. It should be noted that the value is very close to the strength
reduction factor 0.877 of the nominal strength for slender elastic columns from the cur-
rent Direct Strength Method (DSM) [66]. In the range where local buckling is critical,
Pu,loc,tol/Pu,tol increases with increasing PC

o /P
C
l , with Pu,loc,tol/Pu,tol=0.965 at PC

o /P
C
l =2.

The ratio remains approximately constant beyond the point. As for the effects of superpos-
ing a tolerance level local imperfection on struts with a tolerance level global imperfection,
Pu,glob,tol/Pu,tol increases with the increasing PC

o /P
C
l from 0.839 at PC

o /P
C
l =0.2 to 0.985 at

PC
o /P

C
l =2, as shown in Figure 20(b), and the ratio converges gradually to unity beyond

this point.
As shown in Figure 20(b), a curve is fitted based on the numerical results to describe

the relationship between Pu,tol and Pu,glob,tol:

Pu,tol =

[

0.836 +
0.18

1.2 + (PC
o /P

C
l )

−4.24

]

Pu,glob,tol. (46)

The average ratio of Eq. (46) to FE results in the range PC
o /P

C
l =[0.2, 4] is 1.000 and the

COV is 0.63%. In a similar way to Eq. (45), the current equation is also limited to the
current geometric space and further parametric studies are necessary to validate it for a
wider range of cases.
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4.4. Comparison with current design guidelines

In current design guidelines, the effective width method [67] and the Direct Strength
Method (DSM) [66] can be used to consider the effects of local–global mode interaction on
the ultimate strength. Owing to its relative simplicity, the DSM is used as the reference for
the current parametric study on length, where the actual load-carrying capacity for struts
susceptible to mode interaction is evaluated using the following expression:

Pnl

Pne

=

{

1 for λ̄l ≤ 0.776,
[

1− 0.15
(

PC
l /Pne

)0.4
]

(

PC
l /Pne

)0.4
for λ̄l > 0.776,

(47)

where Pnl and Pne are the nominal axial strengths for local and global buckling respectively,
and the local slenderness λ̄l =

√

Pne/PC
l with PC

l being the critical elastic local buckling
load. Moreover, Pne is defined thus:

Pne

Py

=

{

0.658λ̄
2
o for λ̄o ≤ 1.5,

0.877/λ̄2
o for λ̄o > 1.5.

(48)

Here, the global slenderness λ̄o =
√

Py/PC
o , the squash load of the gross cross-section Py =

Agfy and PC
o is the elastic critical buckling load for either flexural, torsional, or flexural–

torsional buckling. Currently, since globally slender geometries are being considered, i.e.
λ̄o > 1.5, Pne can be expressed as:

Pne = 0.877PC
o . (49)

As can be seen from Eq. (47), a calibration exponent, which is a function of the ratio
of PC

l and Pne, is introduced to consider the effects of mode interaction in the imperfection
sensitive zone. By substituting Eq. (49) into Eq. (47), the strength curve for struts, with
cross-section and material properties given in Table 1, is presented in Figure 21. The
imperfection sensitivity zone due to local–global interactive buckling suggested by the
DSM for the current case is 0.687 < PC

o /P
C
l < 1.455, where the upper bound is the erosion

balance point, as defined in Figure 6. The maximum load erosion occurs at PC
o /P

C
l = 1

and is found to be 22.2%.
However, from the previous section, the load erosion due to the tolerance imperfection

at the ‘naive optimum’ point, where PC
o /P

C
l = 1, is approximately 40%, as shown in

Figure 21. Therefore, a parametric study on strut length using the verified variational and
the FE models is conducted to show the ultimate load erosion at different lengths and
identify the ‘imperfection sensitive’ zone, thus checking the validity of the DSM for such
cases. As shown in Figure 21, the ultimate loads predicted by the verified variational and
the FE models are significantly lower than those predicted by the DSM. Moreover, the
erosion balance point also moves from zone 3 to zone 4. The range of the ‘imperfection
sensitive’ zone in zone 1, where global buckling is critical, is also much wider than that
suggested by the DSM. Therefore, a refined DSM-style equation based on fitting the FE
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Figure 21: Numerically obtained van der Neut curve for perfect and imperfect struts with cross-section
and material properties presented in Table 1 and tolerance level geometric imperfection sizes recommended
by EC3 [11]. Strength predictions using current and proposed DSM equations are also plotted.

results is proposed:

Pnl

Pne

=

[

1− 0.29

(

PC
l

Pne

)0.275
]

(

PC
l

Pne

)0.275

. (50)

The mean value of the ratio of the ultimate load from Eq. (50) and the FE models in the
current length range is 0.994 and the coefficient of variation is 1.46%. It should be strongly
emphasized that Eq. (50) is only valid for the current geometric parameter space. A more
extensive parametric study is essential to make the new equation valid for much larger
geometric parameter spaces. Moreover, the lower bound for the imperfection sensitivity
zone due to local–global interactive buckling for the current example struts is tiny, i.e.
PC
o /P

C
l < 0.01, which is much smaller than that defined by the current DSM. This may

be attributed from the global and local imperfection size adopted in the current study. As
shown in Figure 22, the value of PC

o /P
C
l at the point where the effects of local–global mode

interaction can be neglected, i.e. Pu=0.877PC
o , decreases with the increasing imperfection

size. In particular, it is very sensitive to the local imperfection size. Therefore, the lower
boundary is not given in the current equation and will be the subject of further research.
Finally, it should also be stressed that the errors between the results from the variational
and the FE models increase marginally with the increasing value of PC

o /P
C
l , i.e. with the
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l at the lower bound of the imperfection sensitivity zone defined where
Pu = 0.877PC

o versus (a) the global imperfection size without any local imperfection and (b) the local
imperfection superposed with the global imperfection where qs0=10−3.

strut length decreasing; for instance, at PC
o /P

C
l = 1.8, the ratio of the ultimate loads

determined from the variational and the FE models is approximately 1.099.

5. Concluding remarks

A nonlinear variational model for axially-loaded thin-walled rectangular hollow section
struts with initial global and local geometric imperfections has been developed using ana-
lytical techniques. Numerical examples, focusing on cases where the global buckling load
is close to the local buckling load, have been presented and verified using the FE package
Abaqus. The sensitivity of two example struts exhibiting mode interaction to initial geo-
metric imperfections has been quantified. With the increase of the geometric imperfection
size, a transition from highly unstable to neutrally or mildly stable post-buckling behaviour
is observed. A progressive change in the local buckling mode is identified in terms of both
wavelength and amplitude. In particular, mode jumping within the interactive buckling
mode, i.e. the change in the number of troughs and peaks of the local mode and snap-backs
in the equilibrium path, is also observed in the cases where the local imperfection size is
vanishingly small. A simplified method to predict the load at the pitchfork bifurcation
point, where interactive buckling is triggered, is proposed for struts with purely global
imperfections based on the verified variational model; it is demonstrated to be simple, yet
safe and accurate for the cases studied.

A parametric study on the effects of global tolerance imperfections, local tolerance
imperfections and their combinations on the ultimate load for struts with different lengths
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was conducted. It was revealed that for struts with tolerance level global imperfections,
the post-buckling behaviour after the pitchfork bifurcation point is unstable and stable
for struts with global buckling and local buckling being critical respectively. It was also
found that local imperfections are more significant than global imperfections for struts with
global buckling being critical and global imperfections are more significant for struts with
local buckling being critical. This is attributed to the characteristic behaviour where the
alternative imperfection type would facilitate the necessary symmetry breaking to trigger
interactive buckling. Based on the parametric study results, the simplified method to
predict the pitchfork bifurcation load is calibrated to calculate the ultimate load for struts
with tolerance level global and combined imperfections. A parametric study on strut length
demonstrated the potential dangers of making unsafe predictions of actual load-carrying
capacity by using the current guidelines of the Direct Strength Method (DSM). Therefore,
a refined DSM equation has been proposed based on the present results.

Further research is being conducted to study the post-buckling behaviour and ultimate
load-carrying capacity of perfect and imperfect struts exhibiting mode interaction in much
wider geometric parameter spaces, i.e. different cross-section aspect ratios, plate width–
thickness ratios and strut lengths. Moreover, the effects of material nonlinearity are also
being investigated. The ultimate goal of the work is to provide robust design guidance on
thin-walled rectangular hollow section struts susceptible to mode interaction for industrial
practice.
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