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In finite element analysis it is well known that hexahedral elements are the preferred type of three
dimensional element because of their accuracy and convergence properties. However, in general it is
not possible to mesh complex geometry problems using purely hexahedral meshes. Indeed for highly
complex geometries a mixture of hexahedra and tetrahedra is often required. However, in order to geo-
metrically link hexahedra and tetrahedra, in a conforming finite element mesh, pyramid elements will be
required. Until recently the basis functions of pyramid elements were not fully understood from a math-
ematical or computational perspective. Indeed only first-order pyramid basis functions were rigorously
derived and used within the field of finite elements. This paper makes use of a method developed by
Bergot that enables the generation of second and higher-order basis functions, applying them to finite
element discretisations of the neutron transport equation in order to solve nuclear reactor physics,
radiation shielding and nuclear criticality problems. The results demonstrate that the pyramid elements
perform well in almost all cases in terms of both solution accuracy and convergence properties.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

This paper investigates the use of pyramid elements when com-
puting solutions to the neutron transport equation using a discrete
ordinate (SN) angular discretisation and a discontinuous Galerkin
finite element (DGFEM) spatial discretisation (Reed and Hill,
1973; Wareing et al., 2001). An efficient and accurate solution of
the neutron transport equation is essential for a variety of nuclear
reactor physics, radiation shielding and nuclear criticality safety
assessment problems. When creating a finite element mesh most
mesh generators will often employ tetrahedral elements, espe-
cially for highly complex geometries. This is because the tetrahe-
dron is a simplex granting it maximum flexibility to mesh
complex geometries (Frey and George, 2008), meaning that several
robust and simple tetrahedral meshing algorithms exist, such as
advancing front and Delaunay. When computing solutions to finite
element problems hexahedral elements are, in general, more effi-
cient than tetrahedral elements (Cifuentes and Kalbag, 1992;
Benzley et al., 1995). However, one of the main issues in using hex-
ahedral elements is that no general robust meshing algorithm
exists for hexahedral elements for complex geometries
(Schneiders, 2000; Puso and Solberg, 2006).

In order to mesh complex geometries while retaining the
favourable properties of hexahedral elements some mesh genera-
tors will generate a mixed element mesh where predominantly
hexahedral elements are used for the majority of the problem
domain with a mixture of tetrahedra, wedges (triangular prisms),
and pyramids used to mesh the difficult regions. Pyramid elements
are also generated by octree based mesh generators as a part of
their mesh refinement process (Dawes et al., 2009) and may be
used in order to create a link between regions of high refinement
and low refinement hexahedral elements without the need for
hanging nodes.

The implementation of nodal finite elements for tetrahedral and
hexahedral and wedge elements is well understood. However,
pyramid elements will naturally have both polynomial and rational
shape functions. Therefore, finding a set of basis functions which
provides an effective and stable finite element solution can be
challenging. A set of effective basis functions for first-order
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pyramids has been known for some time (Coulomb et al., 1997),
but it was not until a study by (Bergot et al., 2010) that a system
of generating correct basis functions for second-order and higher
pyramid elements was established.

A previous paper (O’Malley et al., 2017a) examined the perfor-
mance of pyramid elements generated using the Bergot method
when solving the neutron diffusion equation. This paper examines
instead their performance when solving the neutron transport
equation. The neutron transport equation is hyperbolic whereas
the neutron diffusion equation is elliptic, therefore quite different
computational behaviour is possible. A three dimensional discon-
tinuous Galerkin finite element (DGFEM) discretisation with dis-
crete ordinates (SN) angular approximation is used (Wareing
et al., 2001). Various nuclear reactor physics, radiation shielding
and nuclear criticality problems will be solved in order to demon-
strate the computational performance of the pyramid elements.
These numerical solutions will then be compared against results
obtained with more conventional finite element types such as
tetrahedra and hexahedra.

2. Neutron transport overview

This paper solves the transport equation using a discontinuous
(SN) method established in (Wareing et al., 2001). The mono-
energetic steady state transport equation, solving for the angular

neutron flux wðr; bXÞ (cm�2s�1Sr�1) at position r and neutron direc-

tion of motion bX, is shown in Eq. 1.

bX � rwðr; bXÞ þ RtðrÞwðr; bXÞ ¼
Z
4p
Rsðr; bX0

! bXÞwðr; bX0ÞdX0 þ Qðr; bXÞ ð1Þ
where RtðrÞ (cm�1) represents the total macroscopic material cross

section of the medium at a given position and Rsðr; bX0 ! bXÞ (cm�1-
Sr�1) represents the macroscopic differential scattering cross sec-

tion from direction bX0 to direction bX at a given position. Qðr; bXÞ
(cm�3s�1Sr�1) is a source term representing any neutrons entering
the system.

For the case of a neutron transport problem discretised over
multiple energy groups the problem must be solved by iterating
through the energy groups performing mono-energetic calcula-
tions in each one. The removal from each system due to scatter
to another energy group is tracked and neutrons entering due to
scatter from other energy groups are added to the source term Q.
In the case where there is a fission source an iterative eigenvalue
method is used (Warsa et al., 2004a). In all cases the basic mono-
energetic system defined in Eq. 1 is used.

The scalar neutron flux /ðrÞ may be defined as:

/ðrÞ ¼ R d bXwðr; bXÞ. Let L represent the streaming and removal of

neutrons bX � r þ RtðrÞ
� �

, the inversion of this operator is the

equivalent of inverting the local element matrices as described in
(Wareing et al., 2001). The operator D represents the conversion
of angular flux to scalar flux such that / ¼ Dw and M represents
a mapping of scalar flux to angular flux (although w–M/). S is
used to represent the action of neutron scatter cross-sections. This
notation allows the transport equation shown in Eq. (1) to be
expressed as shown in Eq. (2) (Warsa et al., 2004b):

Lw ¼ MSDwþ Q ð2Þ
By multiplying through by the term DL�1 the equation may be

expressed in terms of scalar flux:

/ ¼ DL�1MS/þ DL�1Q ð3Þ
leading to:
ðI� DL�1MSÞ/ ¼ DL�1Q ð4Þ
The expression DL�1Q is simple to calculate and may be

referred to as the swept flux. The operator ðI� DL�1MSÞ is well
defined, meaning that calculating ðI� DL�1MSÞ/ for a known / is
trivial. For an unknown /, letting A ¼ ðI� DL�1MSÞ and
b ¼ DL�1Q allows the transport equation to be posed as a standard
Ax ¼ bmatrix problem and it may then be solved using an standard
linear algebra techniques (Warsa et al., 2004b). Direct solution
methods are impractical for most practical neutron transport prob-
lems so indirect or iterative methods are usually employed, this
paper uses a GMRES solver for this purpose (Saad, 2003).

3. Pyramid elements

In order to create a set of basis functions for an element it is first
necessary to define a set of expressions which form an orthogonal

basis of the finite element space bPr (Bathe, 1996). These are defined

here through Jacobi polynomials, where the function Pa;b
m ðxÞ is a

Jacobi polynomial function of order m and a weighting of

ð1� xÞað1þ xÞb (Szego, 1975).
For a finite element order r, (Bergot et al., 2010) defines a for-

mula for the orthogonal bases wðx; y; zÞ of a pyramid element with
the formula:

wi;j;kðx; y; zÞ ¼ P0;0
i

x
1� z

� �
P0;0
j

y
1� z

� �
ð1� zÞmaxði;jÞP 2 maxði;jÞ;0

k ð2z� 1Þ
ð5Þ

where:

0 6 i 6 r; 0 6 j 6 r; 0 6 k 6 r �maxði; jÞ ð6Þ
This equation will generate n orthogonal bases where:

n ¼ 1
6
ðr þ 1Þðr þ 2Þð2r þ 3Þ ð7Þ

meaning that n is the number of degrees of freedom of a pyramid
element with order r.

Once the orthogonal bases are established it is possible to
define a set of basis functions using the nodal positions of a refer-
ence element. This method is specified in (Bergot et al., 2010). The
typical reference element for a first-order five node pyramid is
shown in Fig. 1.

4. Results

This section presents a variety of neutron transport problems to
be solved using pyramid elements of both first and second-order.
Some problems will be constructed entirely of pyramid elements
in a manner which is useful for testing but not representative of
how these elements would be used in real reactor physics applica-
tions. Others will use the pyramids in a more realistic way within a
mixed element mesh in order to mesh more complex geometries.
All problems will compare the computational performance of using
pyramid elements against other more conventional element types.

Many of the problems studied here will use the neutron multi-
plication factor Keff as a benchmark for solution accuracy. Keff is a
property of system in which neutrons are being generated by
nuclear fission (multiplying systems), representing the ratio of
neutrons entering and leaving the system. In multiplying systems
the absolute neutron flux is not fixed, only its relative distribution,
so in these cases Keff is a useful quantity for benchmarking the
accuracy of the solution. The accuracy of problems using pyramid
elements will be judged not just by the absolute error of Keff from
a reference solution, as this is dependant on a great many factors,



Fig. 1. Reference first-order pyramid element. As shown in (Bedrosian, 1992) it is
impossible to choose polynomial shape functions for a pyramid element while
preserving conformity with other elements. The Bergot method (Bergot et al., 2010)
outlined above creates an orthogonal base which uses Jacobi polynomials up to
order r in the x and y coordinates but is not polynomial in the z coordiante. This
enables the generation of a set of non-polynomial basis functions for the pyramid
element which conform with standard hexahedral and tetrahedral elements.
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but on the error relative to that when using other elements and the
convergence towards a value as mesh refinement is increased. It is
not the intent of this paper to try to show that pyramids have
improved computational performance over other element types.
The purpose instead is to demonstrate that they provide a reason-
able alternative to other element types in situations where the
problem geometry makes their use desirable for meshing purposes.
For all timing results in this paper the problems were run in paral-
lel on a computer with two Intel Xeon E5-2680 2.80 GHz proces-
sors, each of which possesses ten cores with hyper-threading for
a total of forty processes.
Fig. 2. L2-error results for MMS with h
4.1. L2-error analysis

A method of manufactured solutions (MMS) problem is per-
formed for a homogeneous cubic problem of dimensions 1.0 cm
� 1.0 cm � 1.0 cm. The exact solution of the MMS problem in
terms of scalar flux / is chosen to be:

/ðx; y; zÞ ¼ 24p
3

ðx2 � x4Þðy2 � y4Þðz2 � z4Þ ð8Þ

The domain is discretised into structured hexahedral and struc-
tured pyramidmeshes of first and second-order with varying levels
of mesh refinement, a transport solution is obtained, and the L2-
error is calculated and plotted alongside element characteristic
length lc. Here for a problem with NE elements the characteristic
length is defined as lc ¼ 1ffiffiffiffi

NE
3
p .

The L2-error results for this problem are plotted in Fig. 2. These
results show that when plotted on a logarithmic scale the L2-error
scales linearly with the characteristic length in all cases. For first-
order elements, both with hexahedra and pyramids, this scaling
occurs with a gradient of roughly 2 and for second-order cases
the gradient is roughly 3. These results match the expected results
for an L2-error analysis of a finite element problem. This demon-
strates that the pyramid elements are producing the expected
computational convergence rates for first and second-order finite
elements.
4.2. Takeda 2 nuclear reactor physics benchmark problem

The Takeda benchmarks (Takeda and Ikeda, 1991) are a set of
three-dimensional nuclear reactor physics benchmarks. This sec-
tion will study results for the second of the Takeda benchmark
problems, Takeda 2, which is a core for a fast breeder reactor.
The geometry of this problem is shown in Fig. 3a and b. There
are two variations of this problem; in case 1 the control rod (CR)
is fully withdrawn leaving only a sodium filled space (CRP), in case
2 the control rod is half inserted and the other half is filled with
sodium.

The Takeda benchmark specification (Takeda and Ikeda, 1991)
lists criticality results obtained by various individuals for both
cases of this problem, displayed in Table 1.
exahedral and pyramid elements.



Fig. 3. Geometry of the Takeda 2 nuclear reactor physics benchmark problem (Takeda and Ikeda, 1991).

Table 1
Keff results for Takeda 2 benchmark from various studies using S8 angular quadrature.
If a length is given it refers to the element size (Takeda and Ikeda, 1991). Case 1 is for
control rod fully removed and case 2 is for the control rod half inserted.

Study Case 1 Keff Case 2 Keff

Buckel 0.97341 0.95925
Alcouffe 0.97348 0.95931
Lee 0.97311 0.95899
Yaroslavzeva 0.97347 0.95924
Yamamoto 0.97345 0.95922
Takeda 5 cm 0.97361 0.95934
Takeda 2.5 cm 0.97339 0.95928
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Due to the simple structure of the geometry it is relatively
straightforward to create a mesh of the Takeda problem using
structured cubic hexahedral elements. It is also possible, by split-
ting each hexahedra into six pyramids, to create a fully structured
pyramid mesh in the same manner. This splitting was achieved
using a python script to create a structured mesh of hexahedra, a
node was then added to the centre point of each hexahedra and
six pyramids were created each of which has this central node as
their apex and a face of the hexahedra as their base. The problem
is run with first and second-order hexahedra and pyramids using
S8 angular quadrature.
Table 2
Obtained criticality results for Takeda 2 benchmark discretised with structured hexahedra

First-order

Element Length (cm) Case 1 Keff Ca

Hexahedra
5.0 0.97356 0.9
2.5 0.97365 0.9

Pyramids
5.0 0.97361 0.9
2.5 0.97366 0.9
For the results in Table 2 with hexahedral elements the element
length refers to the side length of the elements which are all cubic.
For the pyramid problems it represents the side length of a cube
which has been split into six identical pyramids. These results
demonstrate clearly that the usage of pyramid elements in place
of hexahedra has not impacted on the problem solution, for the
higher refinement second-order cases the Keff is identical for both
hexahedra and pyramids to an accuracy of five significant figures.
4.3. Kobayashi dog leg duct radiation shielding problem

In (Kobayashi and Sugimura, 2001) three radiation shielding
benchmark solutions are presented. As these problems are mono-
energetic fixed source problems they are well suited for studying
the spatial convergence of numerical solutions. For the purposes
of this spatial convergence study the third Kobayashi problem,
which is a dog leg duct radiation shielding problem, is analysed.
The dog leg duct featured in this problem makes it challenging
for SN neutron transport solvers. Indeed a high level of angular
quadrature will be required in order to adequately resolve the ani-
sotropic angular flux through the dog leg duct. The geometry of the
Kobayashi problem is shown in Fig. 4a, b and c, with the material
properties for two cases shown in Table 3.

As well as defining the problem the Kobayashi paper also
defines scalar flux values at various locations for both cases of
and pyramids.

Second-order

se 2 Keff Case 1 Keff Case 2 Keff

5769 0.97366 0.95805
5799 0.97366 0.95806

5790 0.97366 0.95806
5803 0.97366 0.95806



Fig. 4. Geometry of the Kobayashi dog leg duct radiation shielding problem (Kobayashi and Sugimura, 2001).

Table 3
Material properties for both cases of the Kobayashi problem.

Case 1 Case 2
Fixed Source Rt Rs Rs

Region (n cm�3 s�1) (cm�1) (cm�1) (cm�1)

Source 1.0 0.1 0.0 0.05
Duct 0.0 1.0 � 10�4 0.0 0.5 � 10�4

Body 0.0 0.1 0.0 0.05
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the problem. For case 1 where there is no neutron scatter analyti-
cally calculated flux values are provided as well as values calcu-
lated from the GMVP Monte Carlo code (Nakagawa et al., 1990).
For case 2 only Monte Carlo values are provided as an analytical
solution is not obtainable. The flux values are defined at 22 discrete
points in the system. When the problem is solved in our neutron
transport code the scalar flux values at each of these points are
taken to determine the accuracy of the solution. By subtracting
our value from the reference value and dividing by the reference
value a relative error may be obtained for each point, multiplying
this value by 100 yields the percentage error for each point.

For case 2, the scatter case, these percentage errors are plotted in
Fig. 5a, b, and c for various discretisations of the Kobayashi problem
using structured hexahedra and pyramids and with a variety of
orders of SN quadrature. These figures show how the accuracy of
each case varies with SN order and how they compare to the results
from GMVP. The presence of a duct and the low scatter within this
problem even for case 2 makes it particularly challenging for a SN
code, and therefore high angular quadratures are necessary for good
accuracy asmay be seen from the results for the S32 case and below.
For the S64 and S128 cases however there is significantly better accu-
racywith the error at some points falling within the 1rMonte Carlo
error. This is the case for both hexahedra and pyramids, although
S128 for the higher refinement pyramid mesh was not possible due
to the large memory requirement exceeding what was available
(the computer used had approximately 256 Gb of RAM).

As well as calculating the percentage error at each of the 22
points it is possible to create a more general accuracy metric for
the whole problem by taking the square root of the summation of
the square of the error at all points. This gives an accuracy metric
whichwill be referred to as the RMSerror, explicitly defined in Eq. 9:

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX22
i¼1

/calc
i � /ref

i

/ref
i

 !2
vuut ð9Þ

Using this RMS error formula it is possible to quickly obtain a
rough estimate of the accuracy of a large number of solutions of
the Kobayashi problem, as seen in Figs. 6 and 7. Here various
spatial refinements of the problem are run using structured



Fig. 5. Scalar flux percentage error from GMVP Monte Carlo values at 22 discrete
points in case 2 of the Kobayashi radiation shielding problem. The points are
discrete values, lines connect them for visual clarity.
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hexahedral, tetrahedral and pyramid elements for S128 angular
quadrature. The high memory requirements of S128 prevented
any higher refinements than those shown from being studied,
but some trends may still be observed. Second-order elements per-
form better than first order and hexahedral elements are generally
superior, which is to be expected. The pyramid and tetrahedral ele-
ments both perform well however. It is notable that pyramids
appear to be trending towards superior performance for higher
refinement second-order elements, but more data points for higher
spatial refinement cases would be necessary to confirm this trend.

4.4. GODIVA nuclear criticality benchmark problem

The GODIVA nuclear criticality benchmark problem, defined in
specification 1-A1 (page 12) of (ANL, 1972), is a homogeneous
sphere of highly enriched uranium in a vacuum. Since the sphere
is fully symmetrical in the x, y and z planes it may be modelled
as a single octant of a sphere with reflective boundaries on these
planes. The simplest way to mesh a spherical body is with unstruc-
tured tetrahedra. It is possible to generate a hexahedral mesh on a
sphere problem but doing so requires significant pre-processing
effort (Wareing et al., 2001). However, it is possible to create a
structured hexahedral mesh for a sphere octant using some tetra-
hedral, pyramid and wedge elements. Fig. 8 illustrates how the
mesh is formed.

The GODIVA benchmark problem was solved using meshes of
the kind shown in Fig. 8 with varying refinements and also meshes
formed of exclusively unstructured tetrahedra. These will be
known as the structured and unstructured cases respectively. A
very high spatial refinement variant of the structured case with
137,500 s-order elements was used to calculate a benchmark crit-
icality (Keff) for the problem, which was calculated as 0.99845. This
value is acceptably close to the values for Keff given in (ANL, 1972)
for S8 angular quadrature. Then the GODIVA problem was run with
first and second-order elements for the unstructured and struc-
tured case, with the error relative to this reference Keff plotted
against the solution time. An S8 angular quadrature was used for
all solutions.

Figs. 9 and 10 display the GODIVA benchmark problem results.
Fig. 9 shows that as the spatial refinement increases all of the dif-
ferent meshes are converging on the same numerical value. Fig. 10
demonstrates that, while for lower spatial refinement problems
the unstructured mesh performs better, when high refinement
accuracy is required a structured mesh is muchmore computation-
ally efficient. This study demonstrates how these pyramid ele-
ments may be used as part of a mixed mesh in order to easily
generate well performing structured meshes for difficult geometry.

4.5. Linking regions with varying spatial refinement

Using a structure of pyramid and tetrahedral elements it is pos-
sible to link regions of low and high refinement hexahedral ele-
ments without the need for hanging nodes, an example of such a
mesh structure is demonstrated in (O’Malley et al., 2017a). If the
faces of a low refinement cubic mesh are all to be connected to a
high refinement outer cube then an additional structure of pyra-
mids, tetrahedra, and prisms is needed in order to connect the
edges. A basic example of where this might be useful for a neutron
transport problem is a homogeneous cube with bare boundaries,
since the flux profile will change relatively little in the centre. It
is therefore feasible to use a low refinement mesh there without
a significant loss of accuracy.

An octant of such a problem with reflective boundaries on three
faces is generated, illustrated in Fig. 11, which with the reflective



Fig. 6. RMS error plotted against solution time for various spatial refinements of case 1 of the Kobayashi radiation shielding problem. S128 quadrature.

Fig. 7. RMS error plotted against solution time for various spatial refinements of case 2 of the Kobayashi radiation shielding problem. S128 quadrature.
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boundaries is equivalent to a full cube with the low refinement
region in the centre and the high refinement region surrounding
it. The octant is 2 cm � 2 cm � 2 cm in dimension and the material
properties are homogeneous and monoenergetic with
Ra ¼ 1:0cm�1;Rs ¼ 1:0cm�1; mRf ¼ 1:0cm�1, and Rt ¼ 2:0cm�1.

The problem is first run for a fixed refinement mesh consisting
purely of hexahedra and then for the problem with linked regions
of varying refinement. The criticality Keff is calculated and the
absolute error between the calculated Keff and a reference Keff

determined from a particularly high spatial refinement case is
obtained.
The results in Table 4 show that even for this simple example,
where there is only a modest reduction in the number of elements
present, there is a noticeable saving of computational time. In addi-
tion, the accuracy loss is fairly minor, particularly for the second-
order elements.

4.6. Highly scattering Kobayashi dog leg problem with reflector

Diffusion synthetic acceleration (DSA) is a vital tool for obtain-
ing computationally efficient convergence of neutron transport
problems containing highly diffusive regions (Adams and Martin,



Fig. 8. Visualisation of GODIVA quarter octant meshed with structured hexahedra.
Some tetrahedra (green), wedges (yellow) and pyramids (red) must be included.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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1992). In order to test the computational performance of the pyra-
mid elements with a transport solver using DSA, a variation of the
Kobayashi dog leg duct problem is used. The material properties
for the source and duct are the same as for Kobayashi Case 2 stud-
ied previously but this time the macroscopic scattering cross-
section in the body is much higher. In addition to this a 20 cm thick
high scatter reflector is added to boundaries of the problem which
previously had a reflective boundary condition and all boundaries
are treated as bare. These changes make the problem significantly
more challenging for standard transport sweep based solvers and
therefore necessitate the use of DSA. The material properties for
this case are shown in Table 5.
Fig. 9. Calculated Keff of GODIVA nuclear criticality benchmark proble
The spatial discretisation scheme used for the DSA acceleration
of this problem is a modified interior penalty (MIP) (Wang and
Ragusa, 2010). A major reason for choosing this scheme is that it
provides a symmetric discontinuous spatial discretisation of the
neutron diffusion equation so that computationally efficient pre-
conditioned conjugate gradient (CG) solvers can be used to solve
the resulting symmetric positive definite (SPD) system of equa-
tions. The conjugate gradient solver is preconditioned using multi-
level algorithms based upon a continuous projection of the
discontinuous spatial discretisation which have been shown to
be effective for neutron diffusion problems (O’Malley et al.,
2017b,c). These multilevel preconditioners make use of the alge-
braic multigrid algorithm AGMG for the low-level correction
(Notay, 2010, 2012, 2014; Napov and Notay, 2012).

The GMRES iterations required to solve the transport problem
and solution time for the high scatter Kobayashi problem are
recorded for various mesh refinements of structured hexahedral,
tetrahedral, and pyramid elements using S32 angular quadrature.
The problem is run both with and without DSA and results are tab-
ulated in Table 6. The high scatter Kobayashi is run in parallel in
much the same way as for previous results, but the AGMG code
used did not support OpenMP parallelism so the low-level correc-
tion of the diffusion preconditioner is run in serial. The impact of
this on the timings shown would likely be minimal however.

The results provide strong evidence that the pyramid elements
are performing well within the DSA framework. The iterations
required for the neutron transport solver to complete are being
reduced well with a small increase in time required per iteration
and the performance of the pyramids matches well that of the hex-
ahedral and tetrahedral elements.

For the lower spatial refinement cases the DSA is not reducing
the iteration number by as much as might be expected. This is
due to the fact that there are a low number of elements spanning
the width of the duct and the penalisation terms at the borders
of the duct are therefore leading to a poor diffusion approximation
of the transport problem. If a discontinuous spatial discretisation
method without any penalisation were to be used for the DSA, such
as the Adams-Martin method (Adams and Martin, 1992), then the
number of iterations would be significantly lower, particularly for
the lower refinements. This would not be a stable method for some
cases however so a penalised method such as MIP is necessary.
m for all cases as the number of degrees of freedom is increased.



Fig. 10. Solution time for GODIVA nuclear criticality benchmark problem plotted against Keff error from reference value of 0.99845.

Fig. 11. Octant of a cube with a high refinement region exterior linked to a low
refinement core using a structure of tetrahedra (green), pyramids (blue) and prisms
(yellow). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 4
Criticality results for cubic problem with constant refinement and varying refinement linked
elements in the varied case.

First-order

Ele Length (cm) Keff Error Tim

Homogeneous Spatial Refinement
0.1 3.587 � 10�6 107
0.05 4.799 � 10�7 834

Heterogeneous Spatial Refinement
0.1 1.133 � 10�5 97.
0.05 1.509 � 10�6 792

Table 5
Material properties for the modified Kobayashi problem.

Fixed Source Rt Rs

Region (n cm�3 s�1) (cm�1) (cm�1)

Source 1.0 0.1 0.05
Duct 0.0 1.0 � 10�4 0.5 � 10�4

Body 0.0 1.1 1.05
Reflector 0.0 10.5 10.0
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5. Conclusions

This paper examined the computational performance of pyra-
mid elements, with basis functions generated using the Bergot
method, when solving discontinuous Galerkin discrete ordinate
discretisations of the neutron transport equation. Through direct
comparison with the performance of other element types, in par-
ticular tetrahedra and hexahedra, it was demonstrated that these
elements perform well in terms of accuracy and convergence for
a variety of nuclear reactor physics, radiation shielding, and
nuclear criticality benchmarks.

For geometrically simple structured geometries hexahedral ele-
ments are generally considered to be the best performing for three
dimensional cases. An L2 error analysis of an MMS problem along
with numerical simulations of the Takeda and Kobayashi bench-
mark problems, on full pyramid structured meshes, demonstrated
that pyramid elements have a computational efficiency and accu-
racy relatively close to hexahedral elements.
with pyramids. Ele length refers to the dimensions of the high refinement hexahedral

Second-order

e (s) Keff Error Time (s)

.1 5.146 � 10�9 836.0

.4 2.503 � 10�10 6024.0

7 5.330 � 10�9 717.6
.0 3.324 � 10�10 5658.3



Table 6
High scatter Kobayashi run with and without DSA.

No DSA DSA

Degrees of
Freedom

Iterations Time/Iteration(s) Iterations Time/Iteration(s)

First-order Hexahedra
6144 114 0.152 75 0.166
49152 125 1.61 67 1.79
393216 131 15.1 55 16.0

Second-order Hexahedra
20736 127 1.81 69 1.70
165888 129 13.7 56 15.2
1327104 134 111.7 40 129.7

First-order Tetrahedra
18432 126 0.468 61 0.533
147456 133 6.23 52 6.80
1179648 134 55.0 43 58.3

Second-order Tetrahedra
46080 133 1.41 58 1.73
368640 132 13.8 44 16.2
2949120 134 116.3 35 131.5

First-order Pyramids
23040 124 0.834 51 0.865
184320 134 8.54 41 9.35
1474560 133 74.1 34 80.0

Second-order Pyramids
64512 133 3.48 48 3.75
516096 133 28.8 34 32.7
4128768 132 225.5 29 272.1
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Next, numerical simulations of the GODIVA nuclear criticality
benchmark case comparing a basic mesh generated using unstruc-
tured tetrahedra with an extruded structured mesh which made
use of pyramids to mesh a corner demonstrated a more realistic
application of pyramid elements. By making use of some pyramid
elements this hexahedrally dominatedmesh is far simpler to gener-
ate than a fully hexahedral mesh would be for this geometry. How-
ever, the accuracy and solution times were clearly superior to the
unstructured tetrahedral mesh with highly refined spatial meshes.

Finally a high scatter variation of the Kobayashi benchmark
problem was used to test the pyramid elements for a more chal-
lenging neutron transport problemwhich made use of DSA. Overall
the results presented in this paper demonstrate that the Bergot
pyramid elements can be computationally competitive with hexa-
hedral elements for a wide variety of typical neutron transport
problems. Future work might focus on investigating the perfor-
mance of the pyramids in less structured meshes, or when the
pyramid elements are highly distorted.
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