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Lack of strong completeness for stochastic flows
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Abstract

It is well-known that a stochastic differential equation (SDE) on a Euclidean space
driven by a Brownian motion with Lipschitz coefficients generates a stochastic
flow of homeomorphisms. When the coefficients are only locally Lipschitz, then a
maximal continuous flow still exists but explosion in finite time may occur. If – in
addition – the coefficients grow at most linearly, then this flow has the property that
for each fixed initial conditionx, the solution exists for all times almost surely. If
the exceptional set of measure zero can be chosen independently x, then the max-
imal flow is calledstrongly complete. The question, whether an SDE with locally
Lipschitz continuous coefficients satisfying a linear growth condition is strongly
complete was open for many years. In this paper, we constructa 2-dimensional
SDE with coefficients which are even bounded (and smooth) andwhich is not
strongly complete thus answering the question in the negative.
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Keywords. Stochastic flow; strong completeness; weak completeness; stochastic dif-
ferential equation; homogenization;

1 Introduction

We will assume throughout that(Ω,F ,P) is a given probability space. Let us consider
the following stochastic differential equation (SDE) onR

d

dXt =

n∑

i=1

σi(Xt) dBi
t + σ0(Xt) dt, (1.1)

whereB1, ..., Bn are independent standard Wiener processes defined on(Ω,F ,P) and
theσi are locally Lipschitz continuous vector fields and hence theSDE has a unique
local solution for each initial conditionX(0) = x.
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It is well-known that such SDEs with global Lipschitz coefficients do not only pos-
sess a unique global solution for each fixed initial condition but also a version of the
global solution which is continuous in the initial data, [2]. This global solution gener-
ates in fact astochastic flow of homeomorphisms[8], [9]. Furthermore it is well-known
that for a unique global strong solution to exist, it sufficesthat the coefficients of the
SDE satisfy a suitable local regularity condition and a growth condition at infinity –
for example a local Lipschitz condition and a linear growth condition. Local Lipschitz
continuity guarantees local existence and uniqueness of solutions as well as continu-
ous dependence of the local flow on initial conditions while the linear growth condition
(which can in fact be weakened a bit by allowing additional logarithmic terms) allows
us to pass from local to global by a Gronwall’s lemma procedure. Both conditions are
almost necessary as the lack of a local Lipschitz condition can lead to lack of pathwise
uniqueness and the lack of linear growth can lead to explosion. SDEs which have a
global strong solution for each initial condition are said to becompleteor weakly com-
plete. It is well known that a complete SDE need not have a continuous modification
of the solution as a function of time and the initial data. This marks a departure of the
theory of stochastic flows from that of deterministic ordinary differential equations.
However there is so far only a pitifully small number of examples of complete stochas-
tic differential equations whose solutions do not admit a continuous modification as a
function of time and initial data. Not a single such example has coefficients which are
locally Lipschitz and of linear growth (in spite of a remark in [6] stating the contrary).
The basic example is the following:

dxt = (y2
t − x2

t ) dB1
t − 2xtyt dB2

t

dyt = −2xtyt dB1
t + (x2

t − y2
t ) dB2

t ,

whereB1, B2 are independent standard Brownian motions. It was first given by Elwor-
thy [5] (see also [3], [10] for further discussion). This SDEis equivalent to dxt = dWt

on R
2\{0} for some 2-dimensional Wiener processW through the transformation

z 7→ 1
z in the complex plane representation. It is clear thatx+Wt does not explode in

R
2\{0} for each individualx, as a Brownian motion does not see single points. The

unique maximal flow is given by{x +Wt(ω), x ∈ R
2\{0}} (up to explosion) and it

explodes for any givenω.
Our aim here is to construct stochastic differential equations which are complete

but notstrongly complete, i.e. which do not admit a continuous modification. In the
examples, the lack of strong completeness is achieved by rapidly oscillating vector
fields. The example which we will present in the next section shows that even under
the additional constraint that the equation has no drift andthe diffusion coefficient
is bounded andC∞, there may not exist a global solution flow. Even more, in our
example the SDE is driven by a single one-dimensional Brownian motion. Note that
such examples are clearly impossible for scalar equations,so the dimension of the state
space of the SDE has to be at least 2. Our examples are inR

2.
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2 Negative Results

Below, we will construct an example of an SDE in the plane of the form

dX(t) = σ(X(t), Y (t)) dW (t)

dY (t) = 0,
(2.2)

which isnotstrongly complete and whereσ : R2 → (0,∞) is bounded, bounded away
from 0 andC∞.

Before going into details, let us explain the idea of the construction. From (2.2) it
is clear that in our example trajectories move on straight lines parallel to the first coor-
dinate axis. If the equation was driven by a family of Brownian motions (rather than
a single one) which are indexed byy ∈ R and are independent for different values of
y, then clearly the supremum over all solutions at time 1 (say)with initial conditions
of the form(0, y), 0 ≤ y ≤ 1 would be infinite. Such a modification would of course
contradict our assumptions but we can (and will) try to approximate this behavior us-
ing an equation of type (2.2) with carefully chosenσ (satisfying all properties stated
above). Ourσ will exhibit increasingly heavy oscillations whenx→ ∞ with different
frequencies for different values ofy. Thus we can make sure that for different values
of y, the solutions behave (for largex) almost as if they were driven by independent
Brownian motions – in spite of the fact that they are all driven by the same Brownian
motion. If we manage to constructσ such that approximate independence sets in suf-
ficiently quickly, then we can hope to observe exploding solutions, i.e. lack of strong
completeness. In fact it will turn out that in our example, solutions for different values
of y will not be asymptotically independent but that solutions can be asymptotically
written as a sum of two Brownian motions: one which is the samefor all y and another
one which is independent for differenty. This property suffices to show that strong
completeness does not hold.

2.1 Preliminaries

The following lemma which is proved in [9], Theorem 4.7.1 ensures the existence of a
maximal (continuous) flow generated by the SDE (1.1).

Lemma and Definition 2.1 (Maximal Flow). Suppose that the vector fieldsσi are
locally Lipschitz continuous. Then there exist a functionτ : R

d × Ω → (0,∞] and a
mapφ : {(t, x, ω) : x ∈ R

d, ω ∈ Ω, t ∈ [0, τ(x, ω))} → R
d such that the following

holds:

1. For eachx ∈ R
d, φt(x, .) solves (1.1) with initial conditionx on [0, τ(x, ω)),

2. φt(x, ω) : {(t, x) : t < τ(x, ω)} → R
d is a continuous function of(t, x);

3. for eachx, lim supt→τ(x,ω) |φt(x, ω)| = ∞ on{ω : τ(x, ω) <∞}.

The mapφ is called amaximal flow. (φ, τ) are unique up to a null set. If, for eachx ∈
R

d, we haveτ(x, ω) = ∞ almost surely, then we call the SDE (or the maximal flow)
completeor weakly complete. If, moreover, there exists a setΩ0 such thatτ(x, ω) = ∞
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for all x ∈ R
d and allω ∈ Ω0, then the SDE or the maximal flow are calledstrongly

complete.

Usually, flows are assumed to have two time parameters (an additional one for the
starting time) and to satisfy a corresponding composition property, but in this paper we
will not dwell on this.

We review briefly some positive results for strong completeness of the SDE (1.1) in
terms of growth conditions on the coefficients of the SDE. Forsimplicity assume that
the vector fields areC2 and consider the derivative equation:

dvt =
∑

i

Dσi(xt)(vt) dBi
t +Dσ0(xt)(vt) dt. (2.3)

If Txφt(v) is the solution to the derivative equation with initial value v, the SDE is
strongly complete if it does not explode starting from one starting point and if for
somep > n − 2, supx∈K E sups≤t |Ttφs|p1s<τ(x) is finite for every compact setK
[10]. Forn = 2, it is sufficient to takep = 1. In terms of the vector fieldsσi there
is the following theorem summarized from Theorem 5.1, whichis valid for SDEs on
manifolds, and Lemma 6.1 in [10].

Theorem 2.2.LetL be the generator of the SDE(1.1)andσL its symbol soσL(dg, dg) =
1
2L(g2) − gLg. If g is a Lyapunov function in the sense thatLg + 1

2σ
L(dg, dg) ≤ c

and limx→∞ g(x) = ∞ then the SDE is strongly complete if the solution from some
initial point exists globally and if|Dσi(x)|2 ≤ g(x) and2〈Dσ0(x)(v), v〉 ≤ g(x)|v|2
for all v ∈ R

d .

Examples of such Lyapunov functions includeg(x) = 1+ ln(1+ |x|2) andg(x) =
xε. For a recent result on strong completeness, see [6]. For earlier works, see also [1]
and [4]. For results on strong completeness for stochastic delay differential equations,
the reader is referred to [12].

Let us explain the completeness and strong completeness concepts using stopping
times. First note the following observation. LetU1 ⊂ U2 ⊂ U3 ⊂ ... be an exhausting
sequence of bounded open subsets ofR

d. Let τn(x) be the first exit time of the solu-
tion, starting from a pointx from Un. If there exists a non-increasing sequence ofδn
such that

∑
δn = ∞ andP{τn(x) ≤ t} ≤ ct2 for any t ≤ δn andx ∈ Un−1, then

an application of the Borel-Cantelli Lemma shows that weak completeness holds [11].
We state the corresponding elementary lemma for strong completeness with converse
whose essence will be used in the proof for the claim in the example we will construct.

Lemma 2.3. Takeφt(x, ω) to be the maximal flow and letK be a compact set and
τK
n := inf{t > 0 : φt(K) * Un}. DefineτK = infx∈K τ(x). If for two sequences
{an} and{bn} with

∑
n an = ∞ and

∑
bn <∞,

P{τK
n − τK

n−1 ≤ an, τ
K
n−1 <∞} ≤ bn,

thenτK is infinite and if this property holds for every compact setK, then we have
strong completeness.

Conversely, let{an} and{bn} be two summable sequences. LetTj be finite random
times such thatτK ≤

∑
j Tj , thenτK <∞ almost surely if

P{Tn ≥ an} ≤ bn.
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2.2 A Bunch of Lemmas

Lemma 2.5 below is the key to the construction of our example.While known results in
homogenization theory state convergence in law of the solutions of a sequence of SDEs
like (2.4) to a Brownian motion (with a certaineffectivediffusion constant) we are not
aware that the asymptotics of the joint laws of the solutionshas been investigated in
the literature. The proof of Lemma 2.5 will use the followinglemma.

Lemma 2.4. Let Xε =
(
Xε

1 , X
ε
2 , ...

)
, ε > 0 be a family of continuous local mar-

tingales starting at 0. LetB1, B2, ... be independent standard Brownian motions,
αij ∈ R, i, j ∈ N such that

∑
j α

2
ij < ∞ for all i ∈ N, Vi :=

∑∞
j=1 αijBj , i ∈

N, andV = (V1, V2, ...). If the quadratic variation[Xε
k, X

ε
l ]t converges in law to

[Vk, Vl]t = t
∑∞

j=1 αkjαkl for all k, l ∈ N, t ≥ 0, thenXε converges toV weakly as
ε→ 0.

Proof. This follows from Theorem VIII.2.17 in [7] (the theorem is formulated for a
family of R

n-valuedXε rather than sequences but the statement for sequences is an
immediate corollary). See also Revuz-Yor [13]. �

Lemma 2.5. LetHi : R → [0,∞), i = 1, 2 be Lipschitz continuous with period 1 and
assume thatH1 is non-constant andH1(x) + H2(x) > 0 for all x. LetWi, i = 1, 2
be independent standard one-dimensional Brownian motionsandε > 0. Consider the
SDE

dXε(t) = H1

(1

ε
Xε(t)

)
dW1(t) +H2

(1

ε
Xε(t)

)
dW2(t)

Xε(0) = x.
(2.4)

There exist̂α, β̂ > 0 (not depending on the initial conditionx) such that the following
holds: if (εn) is a sequence of positive reals satisfyingεn+1/εn → 0 asn → ∞,
then(Xεn − x,Xεn+1 − x, ...) converges weakly to(α̂B0 + β̂B1, α̂B0 + β̂B2, ...) as
n→ ∞, whereB0, B1, . . . are independent standard Brownian motions.

Proof. By the previous lemma, it suffices to show that there existα̂, β̂ > 0 such that
[Xε − x]t and[Xε − x,X ε̃ − x]t converge to(α̂2 + β̂2)t respectivelŷα2t in law for
eacht ≥ 0 asε → 0 and ε̃ → 0 such that̃ε/ε → 0. Setzε(t) = 1

εX
ε(tε2) and let

W ε
i (t) = 1

εWi(tε
2), i = 1, 2, be the rescaled Brownian motions. Thenzε(t) satisfies:

dzε(t) = H1 (zε(t)) dW ε
1 (t) +H2 (zε(t)) dW ε

2 (t).

The projection to[0, 1] is an ergodic Markov process with invariant measureµ:

µ( dy) =
1

v

dy
H2

1 (y) +H2
2 (y)

for v =
∫ 1

0
1

H2
1
(y)+H2

2
(y)

dy the normalising constant. Iff is a continuous periodic

function with period 1, denote bȳf its average:

f̄ =

∫ 1

0

f(x) dµ(x).
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Then by the law of large numbers forzε, for each fixedt ≥ 0,

lim
ε→0

∫ t

0

f
(1

ε
Xε(s)

)
ds = lim

ε→0

∫ t

0

f
(
zε

( s
ε2

))
ds

= lim
ε→0

ε2
∫ t

ε2

0

f
(
zε(r)

)
dr = tf̄ .

(2.5)

The convergence is inLp for everyp > 0. This applies in particular toH1 andH2.
The zero mean martingale diffusion processXε(·) − x has quadratic variation

[Xε − x]t =

∫ t

0

[
H1(

1

ε
Xε(s))]2 ds+

∫ t

0

[H2(
1

ε
Xε(s))

]2
ds

which – due to (2.5) – converges inL1 to β2
1t, where

β1 :=

√(∫ 1

0

(H2
1 (x) +H2

2 (x)) dµ(x)

)
= v−1/2.

Next, we show that

[Xε − x,X ε̃ − x]t → α̂2t for α̂ := (H̄2
1 + H̄2

2 )1/2 asε, ε̃/ε→ 0. (2.6)

We have

[Xε−x,Xeε−x]t =

∫ t

0

H1(
1

ε
Xε(s))H1(

1

ε̃
Xeε(s)) ds+

∫ t

0

H2(
1

ε
Xε(s))H2(

1

ε̃
Xeε(s)) ds.

Let f : R → R be continuous and periodic with period 1 andg(s) := f(s) − f̄ . Then

∫ t

0

f
(1

ε
Xε(s)

)
f
(1

ε̃
Xeε(s)

)
ds =

∫ t

0

g
(1

ε
Xε(s)

)
g
(1

ε̃
Xeε(s)

)
ds

+ f̄2t+ f̄

∫ t

0

g
(1

ε
Xε(s)

)
ds+ f̄

∫ t

0

g
(1

ε̃
Xeε(s)

)
ds.

The sum of the last three terms converges tof̄2t by (2.5), so in order to prove (2.6), it
suffices to show that the first term converges to zero in probability. Let N := ⌈1/(εε̃)⌉,
bi := it/N, i = 0, 1, ..., N , andC := supx∈[0,1] |g(x)|. Then
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∣∣∣
∫ t

0

g
(1

ε
Xε(s)

)
g
(1

ε̃
Xeε(s)

)
ds

∣∣∣ =
∣∣∣

N−1∑

i=0

∫ bi+1

bi

g(zε(s/ε2))g(zeε(s/ε̃2)) ds
∣∣∣

= ε̃2
∣∣∣

N−1∑

i=0

∫ bi+1/eε2

bi/eε2

g(zε(sε̃2/ε2))g(zeε(s)) ds
∣∣∣

≤ ε̃2
N−1∑

i=0

∣∣∣g
(
zε

( bi
ε2

))∣∣∣
∣∣∣
∫ bi+1/eε2

bi/eε2

g(zeε(s)) ds
∣∣∣

+ ε̃2
N−1∑

i=0

∫ bi+1/eε2

bi/eε2

∣∣∣g
(
zε

( ε̃2s
ε2

))
− g

(
zε

( bi
ε2

))∣∣∣
∣∣∣g(zeε(s))

∣∣∣ ds

≤ ε̃2C

N−1∑

i=0

∣∣∣
∫ bi+1/eε2

bi/eε2

g(zeε(s)) ds
∣∣∣ + ε̃2C

N−1∑

i=0

∫ bi+1/eε2

bi/eε2

∣∣∣g
(
zε

( ε̃2s
ε2

))
− g

(
zε

( bi
ε2

))∣∣∣ ds.

The expected value of the first term converges to 0 asε → 0 by the ergodic theorem
sinceε̃/ε→ 0 andE

∣∣g
(
zε

(
eε2s
ε2

))
− g

(
zε

(
bi

ε2

))∣∣ converges to zero asε→ 0 uniformly
for all i, s ∈ [biε̃

−2, bi+1ε̃
−2] sincezε has uniformly bounded volatility. This proves

(2.6).
All that remains to show is that̂β :=

√
β2

1 − α̂2 > 0 but this is true (by Jensen’s
inequality) since

∫
H2

2 (x) dµ(x) ≥ H̄2
2 and

∫
H2

1 (x) dµ(x) > H̄2
1 sinceH1 is non-

constant. Therefore the proof of the lemma is complete. �

We will need the following elementary lemmas.

Lemma 2.6. Let W,B1, B2, ... be independent standard Brownian motions and let
α̂, β̂, a, δ, S, T > 0. Then

lim
n→∞

P

(
∪n

i=1

({
sup

0≤t≤S
(β̂Bi

t + α̂Wt) ≥ a
}
∩

{
inf

0≤t≤T
(β̂Bi

t + α̂Wt) ≥ −δ
}))

= 1.

Proof. For i ∈ N, let

Ai := {ω : sup
0≤t≤S

(β̂Bi
t + α̂Wt) ≥ a, inf

0≤t≤T
(β̂Bi

t + α̂Wt) ≥ −δ}.

Birkhoff’s ergodic theorem implies that

lim
n→∞

1

n

n∑

i=1

1Ai
= P

(
A1|σ(W )

)
a.s.,

which is strictly positive almost surely, so the assertion of the lemma follows. �

The following is a quantitative version of the Borel Cantelli lemma, which provides
an upper bound, and as a corollary a lower bound, forM events out ofN events to
happen simultaneously. The lemma was proposed by Martin Hairer who also supplied
an intuitive proof which our proof is based on.
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Lemma 2.7(Hairer’s Borel-Cantelli lemma). Let(Ω,F ,P) be a probability space and
{Ai}, 1 ≤ i ≤ N events withP(Ai) = pi. Then

• the probability that at leastM of the events happen simultaneously is smaller or
equal to

∑N
i=1 pi/M ;

• the probability that at leastM of the events{Ai} happen simultaneously is at

least
P

N

i=1
pi−M+1

N−M+1 .

Proof. Let QM,N be the set ofω which belong to at leastM of theN events from
{Ai}.

P(QM,N ) = P{ω : #{1 ≤ i ≤ N : ω ∈ Ai} ≥M}

= P{ω :
N∑

i=1

1Ai
(ω) ≥M} ≤ 1

M
E

N∑

i=1

1Ai
=

1

M

N∑

i=1

pi.

For the corresponding lower bound denote byBi the complement ofAi andqi :=
P(Bi) = 1 − pi. Let Qc

M,N be the complement ofBM,N , which is the event that
at mostM − 1 of the eventsAi happen or – equivalently – the set on which at least
N −M + 1 events from the{Bi : 1 ≤ i ≤ N} happen. It follows from the previous
lemma that

P(Qc
M,N ) ≤

∑N
i=1 qi

N −M + 1
=
N − ∑N

i=1 pi

N −M + 1
,

so that

P(QM,N ) ≥ 1 − N − ∑N
i=1 pi

N −M + 1
=

∑N
i=1 pi −M + 1

N −M + 1
,

as required. �

Corollary 2.8. Let 0 < α ≤ β. Then, for everyT > 0, ε > 0, there exists aδ > 0,
such that for eachm ∈ N, there exists someN ∈ N such that the following holds: for
every sequenceM1,M2, . . . of martingales with continuous paths on the same space
(Ω,F ,P), starting at zero such thatα ≤ d

dt 〈Mi〉t ≤ β for all i and t, the stopping
time

τ := inf
{
t > 0 : Mi(t) ≥ δ for at leastm differenti ∈ {1, ..., N}

}

satisfies
P{τ ≤ T } ≥ 1 − ε.

Proof. For δ > 0, let λδ
i := µ{0 ≤ t ≤ T : Mi(t) ≥ δ}, whereµ denotes normalized

Lebesgue measure on[0, T ]. We claim that there existδ > 0 andu > 0 such that for
all i ∈ N, we have

P
{
λδ

i ≥ u
}
≥ 1 − ε

2
. (2.7)

Assume that this has been shown. Fork ≥ 2, let

Ωk := {λδ
i ≥ u for at leastk differenti ∈ {1, ..., 2(k − 1)}}.

8



Then, by Lemma 2.7,

P
(
Ωk

)
≥ 2(k − 1)(1 − ε

2 ) − k + 1

2(k − 1) − k + 1
= 1 − ε.

Invoking Lemma 2.7 once more, we see that onΩk, there exists somet ∈ [0, T ] such
thatMi(t) ≥ δ for at leastm differenti ∈ {1, ..., 2k − 2} provided that the numerator
uk −m + 1 in the formula in Corollary 2.7 is strictly positive. Letting k := ⌈m

u ⌉ and
N := 2k − 2, the assertion of the corollary follows at once.

It remains to prove (2.7). Letδ > 0 (we will fix the precise values later). For ease
of notation, we drop the indexi (observe that all estimates below are uniform ini).
The martingaleM can be represented as a time-changed Brownian motion:M(t) =
W ([M ]t). Since d

dt [M ]t ∈ [α, β], we obtain fora, t > 0

P( sup
s∈[0,t]

M(s) ≥ a) = P( sup
0≤s≤t

W ([M ]s) ≥ a)

≥ P( sup
0≤s≤αt

W (s) ≥ a)

= 2P(W (αt) ≥ a) =
2√
2π

∫ ∞

a/
√

αt

e−
x
2

2 dx =: p0(a, t),

and, analogously,

P( inf
s∈[0,t]

M(s) ≥ −a) ≥ P( sup
0≤s≤t

W (βs) ≤ a) =
2√
2π

∫ a/
√

βt

0

e−
x
2

2 dx =: q0(a, t).

Let τ̃ be the first time thatM(t) ≥ 2δ. Using the fact thatM(τ̃ ∧ c+ t) −M(τ̃ ∧ c)
also satisfies the assumptions of the corollary for eachc ≥ 0, we get foru ∈ (0, 1

2 ]

P{λδ(ω) ≥ u}

≥ P

(
inf

τ̃≤t≤τ̃+uT
M(t) ≥ δ

∣∣∣ τ̃ ≤ T

2

)
P

(
τ̃ ≤ T

2

)

≥ q0(δ, uT ) p0(2δ,
T

2
).

Choosing firstδ > 0 so small that the second factor is close to1 and then choosing
u > 0 small enough, we can ensure that the product is at least1 − ε/2 proving (2.7),
so the proof of the corollary is complete. �

2.3 The Examples

Example 2.9. Consider the SDE (2.2). We will start by defining the coefficient σ
restricted toR × [0, 1]. Fix a smooth non-constant, strictly positive functionH of
period one. To construct the example, we subdivide the square [n, n+ 1] × [0, 1] into
Mn horizontal strips of width1/Mn each, withMn increasing sufficiently quickly and
let σ be equal toH sped up by a factor depending on the particular strip. Thus, the
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probability that one of the solutions starting from(n, y), y ∈ [0, 1] will reach the next
level (n + 1, y) within a very short time will increase withn allowing us to conclude
that strong completeness fails. We now state the precise assumptions.

LetH : R → [ 12 , 1] be an infinitely differentiable non-constant function withpe-
riod1. Assume that all its derivatives vanish at 0. Fix a sequence of positive integersai,
i = 0, 1, ... such thata0 = 1 andlimi→∞ ai+1/ai = ∞. Assume thatN0, N1, N2, ...
are positive even integers whose values we will fix later. LetMn :=

∏n
i=0Ni, n ∈ N0

and define

σ(x, y) = H(aix) if i ∈ {0, 1, ..., Nn

2
− 1}, x ∈ [n, n+ 1], (2.8)

y ∈
[
kNn + 2i

Mn
,
kNn + 2i+ 1

Mn

]
, k = 0, ...,Mn−1 − 1.

Further, letσ(x, y) = H(x) for x ≤ 0, y ∈ [0, 1]. On the set whereσ has been defined,
it is clearly bounded, strictly positive, andC∞ (since we assumed that all derivatives
of H to vanish at zero). It is also clear thatσ can be extended to aC∞ function
taking values in[1/2, 1] on all ofR2. We claim that the associated flow is not strongly
complete in case the integersN0, N1, ... are chosen to increase sufficiently quickly.

Let ψst denote thex-component of the maximal flowφ of the SDE started at time
s (s ≤ t). We define a sequence of stopping timesτn, n ∈ N0 and intervalsIn ⊆ [0, 1]
as follows: τ0 := 0, I0 := [0, 1], τn+1 := inf{t > τn : supy∈In

ψτnt(n, y) =

n + 1} and letIn+1 ⊆ In be some interval of the form
[

2k
Mn

, 2k+1
Mn

]
on which the

supremum in the definition ofτn+1 is attained (note that the supremum is attained for
everypoint in such an interval if it is attained forsomepoint in the interval). Define
τ := inf{t ≥ 0 : supy∈[0,1] ψ0t(0, y) = ∞}. Thenτ ≤ limn→∞ τn and it suffices
show thatP{τn+1 − τn ≥ 2−n} is summable overn to deduce thatP{τ < ∞} > 0
(a straightforward argument then shows that evenτ <∞ almost surely).

Fix n ∈ N. We will show that we can chooseNn ∈ N in such a way that

P{τn+1 − τn ≥ 2−n|Fτn
} ≤ 2−n.

Let ŷ ∈ In and letMn
j solve the following SDE:

dMn
j (t) = ξn

j (Mn
j (t)) dW (t),

Mn
j (0) = n,

where

ξn
j (z) :=

{
σ(z, ŷ) if z ≤ n
H(aj z) if z ≥ n.

Observe thatξn
j does not depend on the particular choice ofŷ ∈ In and that (up to a

shift of the Wiener processW ) Mn
j (t), j = 0, .., Nn

2 − 1 are the solutions of our SDE

after τn and untilτn+1 on the intervals
[

lNn+2j
Mn

, lNn+2j+1
Mn

]
, wherel is chosen such

that(lNn + 1)/Mn ∈ In. We need to ensure that forNn large enough, one of theMn
j

will reach the next leveln+ 1 within time2−n with probability at least1 − 2−n. Un-
fortunately, we cannot apply the homogenization lemma 2.5 directly to theMn

j , since

10



they all have the same diffusion coefficient forz ≤ n. Therefore, we will wait at most
time Tn = 1

22−n and show that forNn large, it is very likely, that many of theMn
j

have reached at least leveln+ δn for some (possibly very small)δn > 0. We will then
apply the homogenization lemma only to theseMn

j . Of course, this is possible only
if the solution does not go back to leveln before timeτn+1. Lemma 2.6 ensures, that
with high probability, we can find at least one of the remainingMn

j for which this is
true. We now provide the details of the argument.

Step 1: We apply Corollary 2.8 to the martingalesMn
j − n, j = 0, 1, 2, ... with

Tn = 1
22−n, εn = 1

42−n, α = 1/4, β = 1 and obtain a numberδn > 0 which
satisfies (2.7) in the proof of Corollary 2.8. We can assume thatδn < 1.

Step 2:Now, we defineM̃n
j , j ∈ N0 as the solution of the SDE

dM̃n
j (t) = H(aj M̃

n
j (t)) dW (t),

M̃n
j (0) = n+ δn.

Applying Lemma 2.5 toM̃n
0 , M̃

n
1 , ... with x = n+ δn,H1 = H ,H2 = 0, we see that

(M̃n
k −x, M̃n

k+1−x, ...) converges in law to(α̂B0 + β̂B1, α̂B0 + β̂B2, ...) ask → ∞,

whereα̂, β̂ > 0 andB0, B1, ... are independent standard Wiener processes.

Step 3:Next, Lemma 2.6 says that there exists somemn ∈ N such that

P

( mn⋃

i=1

({
sup

0≤t≤ 1
2
2−n

(α̂B0(t)+β̂Bi(t)) ≥ 1
}
∩
{

inf
0≤t≤2−n

(α̂B0(t)+β̂Bi(t)) ≥ −δn
2

}))
≥ 1−εn.

Step 4:Let Ñn be the number in the conclusion of Corollary 2.8 associated to δn, εn, Tn,
andmn. Thanks to the convergence stated in Step 2, we can find somekn ∈ N such
that for any subsetJ ⊆ {kn, kn + 1, ..., kn + Ñn − 1} of cardinalitymn, we have

P

( ⋃

i∈J

({
sup

0≤t≤ 1
2
2−n

M̃n
i ≥ n+ 1

}
∩

{
inf

0≤t≤2−n

M̃n
i ≥ −δn

}))
≥ 1 − εn.

Step 5: DefineNn := kn + Ñn. Using the strong Markov property and the fact that
ψ is order preserving (and hence a solution starting atn+ δn can never pass a solution
starting at a larger value at the same time), we obtain for ourchoice ofNn that

P
{
τn+1 − τn ≥ 2−n

∣∣Fτn

}
≤ 3εn < 2−n

as desired, so the proof is complete. �

Note that if the SDE in the above example is changed into Stratonovich the SDE
is strongly complete. To produces an example in Stratonovitch form, we use two inde-
pendent Brownian motions.
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Example 2.10. Consider the SDE

dX(t) = σ1(X(t), Y (t)) dW1(t) + σ2(X(t), Y (t)) dW2(t)

dY (t) = 0,
(2.9)

whereW1, W2 are two independent standard one-dimensional Brownian motions. We
will construct bounded andC∞ functionsσ1 andσ2 such thatσ2

1(x, y)+σ2
2(x, y) = 1

for all x, y such that the associated flow is not strongly complete. Note that due to
the conditionσ2

1(x, y) + σ2
2(x, y) = 1, it does not matter if we interpret the stochastic

differentials in the Itô or Stratonovich sense.
The construction of the example resembles that of the previous one closely, the

only difference being that this time, we consider two non-constantC∞ functionsH1,
H2 taking values in[1/2, 1] such thatH2

1 (z) +H2
2 (z) = 1 and apply Lemma 2.5 with

these functionsH1, H2 rather than with a single functionH as before. �

We essentially showed that we could trace back to and construct a random initial
pointx0(ω) which goes out fast enough to explode. This is true in general: Suppose
that there is a maximal flow{φt(x, ω), t < τ(x, ω)} to the SDE. It is strongly complete
if and only if for all measurable random pointsx(ω) on the state space,φt(x(ω), ω)
exists almost surely for allt.

Remark 2.11. It remains an open question whether an SDE with globally Lipschitz
diffusion coefficients and a drift which is locally Lipschitz and of linear growth admits
a global solution flow.
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