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Abstract. Data Assimilation (DA) is an uncertainty quantification technique used to incorporate observed data into a prediction
model in order to improve numerical forecasted results. The forecasting model used for producing oceanographic prediction into
the Caspian Sea is the Regional Ocean Modeling System (ROMS). Here we propose the computational issues we are facing in a DA
software we are developing (we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimilation
model for assimilating sea surface temperature (SST) values collected into the Caspian Sea with observations provided by the
Group of High resolution sea surface temperature (GHRSST). We present the algorithmic strategies we employ and the numerical
issues on data collected in two of the months which present the most significant variability in water temperature: August and March.
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INTRODUCTION

Data Assimilation (DA) is an uncertainty quantification technique used to incorporate observed data into a prediction
model in order to improve numerical forecasted results. Improvement in Caspian sea temperatures prediction is a
crucial point for different climate phenomena simulation. An example is the study on the sea-ice coverage [1] or the
prediction of the cyclonicity in winter and anticyclonicity in spring and summer as the water temperature influences
the closed atmosphere [2]. This variability may be of interest in the long-term as it may act as an early indicator of
large-scale climate change, as well as being an area of interest to industries and vulnerable species.
A suitable DA model must be identified taking into account both the users/applications requirements and the
mathematical-numerical-algorithmic approaches. Following a problem-to-solve approach, the attention is devoted to:

1. the physical and mathematical assumptions concerning the definition/localization of the data (forecasting data
and available observations);

2. the algorithmic strategies;
3. the computing environment in which the software is implemented.

The forecasting data which represent sea surface temperature (SST) values into the Caspian Sea produce are produced
by using the Regional Ocean Modeling System (ROMS) [3]. The SST variabilities in the Caspian Sea have different
characteristics in the different regions [4]. Caused their diversities, sometimes the studies focus on the North Caspian
or South Caspian separately. This peculiarity suggests that a DA model able to opportunely assimilate data on different
part of the domain indipendently could be recommended. The observations are satellite data provided by the Group
of High resolution sea surface temperature (GHRSST) [5].
Due to the scale of the forecasting area used to describe the Caspian sea, DA is a large size problems then it is
mandatory to develope a DA software in High Performance Computing (HPC) environment [6, 7]. Concerning the
design of the algorithm to adapt to the evolutions of the node architectures foreseen at exascale, this paper looks
at different algorithmic strategies, which can tackle issues related to available data (forecasted and observed data)
produced by using supercomputers. As claimed in [8], problem partitioning (decomposability: to break the problem



into small enough independent less complex subproblems) is a universal source of scalable parallelism; the approach
we use here meets the following demand: parallelization should be considered from the beginning [9, 10]. In this
work, we employ the algorithm in [11] which splits the DA problem (let us say, the global problem) into several DA
problems which reproduce the DA problem at smaller dimensions (let us say, the local problems). Finally, the testbed
we consider is a distributed computing environment.

THE S3DVAR COMPUTATIONAL KERNEL

Hereafter we provide a synthetic formalization of the DD-DA model we implemented in Algorithm 1 for assimilating
the data collected into the Caspian sea, which is based on a Problem Decomposition approach [10, 9]
Let tk, k = 0, 1, . . . , n be a sequence of observation times and, for each k, let be

xMk ≡ x(tk) ∈ <N (1)

the vector denoting the state of a sea system. At time tk it is xk =M (xk−1) withM : <N 7→ <N forecasting model.
At each time step tk, let be

yk = Hk(xk) ∈ <p (2)

the observations vector where Hk : <N 7→ <p is a non-linear interpolation operator collecting the observations at
time tk.
The aim of DA problem is to find an optimal tradeoff between the current estimate of the system state (background)
defined in (1) and the available observations yk defined in (2).
Let (3) be an overlapping decomposition of the physical domain Ω such that Ωi ∩ Ω j = Ωi j , 0 if Ωi and Ω j are
adjacent and Ωi j is called overlapping region.

Ω =

Nsub⋃
i=1

Ωi (3)

For a fixed time tk = t0, according to this decomposition, the DD-DA computational model is a system of Nsub
non-linear least square problems described in (4)-(5) where Ji in (5) is called cost-function.
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with λi and µi regularization parameters [12].
xDA

0 in (4) is the analysis (i.e. the estimation of the vector xDA
0i

at time t0). The variables x0i and yki are the same vectors
x0 and yk in (1) and (2) defined on the subdomain Ωi, Ri and Bi are the covariance matrices whose elements provide
the estimate of the errors on yki and on xM0i

respectively, and Bi j is the background error covariance matrix defined on
Ωi j.
The minimum of the cost function Ji in (5) is computed by the LBFGS method [13]. Due to the background error
covariance matrix, the Hessian matrix is ill conditioned, so a preconditioning methods must be used for improving
conditioning of Bi [14].
Let dK = [yk −Hk(xk)] be the misfit, by using the linearization ofHk such thatHk(x) = Hk(x + δx) + Hk δx, where Hk
is the matrix obtained by the first order approximation of the Jacobian ofHk and, by setting vi = VT

i δxi, with Vi such
that Bi = ViVT

i , the preconditioned cost function is:

Ji(vi) =
1
2

vT
i vi + λi

1
2

(HiVivi − di)T R−1
i (HiVivi − di) + µi

1
2

(Vi jv+
i − Vi jv−i )T (Vi jv+
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where Vi j is such that Bi j = Vi jVT
i j and v+

i = vi on Ωi j and v−j = v j on Ωi j.



Algorithm 1 the S3DVAR algorithm on each subdomain Ωi

1: Input: yi and xM0i
2: Define Hi
3: Compute di ← yi − HixM0i

% compute the misfit
4: Define Ri starting from the observed data yi
5: Define Vi starting from a temporal sequence of hystorical data {xMki

}k=0,...,M
6: Setting of λi % It balances the weigth of the observations with respect the background data
7: Setting of µi to join up the solutions on the boundaries
8: Define the initial value of δxDA

i
9: Compute vi ← VT

i δxDA
i

10: repeat % start of the L-BFGS steps
11: Send and Receive the boundary conditions from the adjacent domains
12: Compute Ji ← Ji(vi)
13: Compute gradJi ← ∇Ji(vi)
14: Compute new values for vi
15: until (Convergence on vi is obtained) % end of the L-BFGS steps
16: Compute xDA

i ← xM0i
+ Vivi

end

DISCUSSION

The SST variabilities in the Caspian Sea have different characteristics in the different regions. In the Southern Caspian,
the SST reaches a high of 25 − 29◦C in the summer months and has a low of 7 − 10◦C in the winter. The Northern
Caspian experiences a more drastic change in SST throughout the year, with a high of 25− 26◦C in the summer and a
below freezing point in the winter. Here we focus on the North Caspian and South Caspian separately by considering
two different subdomains

ΩNORT H = {(64◦ < lat < 126◦, 253◦ < lon < 275◦)}

and
ΩS OUT H = {(18◦ < lat < 61◦, 86◦ < lon < 124◦)}

Here we focus on the main computational issues we faced by implementing the Algorithm 1. The architecture we
use for developing is a Multiple-Instruction, Multiple-Data (MIMD) architecture made of 8 nodes which consist of
distributed memory DELL M600 blades connected by a 10 Gigabit Ethernet technology. Each blade consists of 2
Intel Xeon@2.33GHz quadcore processors sharing the same local 16 GB RAM memory for a total of 8 cores per
blade and of 64 total cores. Here we do not provide scalability results as the computational model we are using is
been already proved to be fully scalable [11].
All the routines we refer are implemented by using the Linear Algebra PACKage (LAPACK) library which provides
a documentation and description of all the parameters [15].
The background data (defined in (1)) we consider are provided by the software ROMS [3]. The satellite observations
(defined in (2)) provided by the GHRSST give us information about the SST every day of the selected months at
12:00am according with the data provided by ROMS. The computed values of the misfits (see Step 3 of Algorithm 1)
present an order of magnitude of the errors of O(10−2).
We computed the background error deviance matrix Vi (see Step 5 of Algorithm 1) of the covariance matrix from data
collected into the selected subdomains in two peculiar months: August 2008 and March 2008 [4]. The preconditioning
approach for Vi we used is the EOFs method [16] which is based on a Truncated Singular Value Decomposition
(TSVD) of the matrix. We studied the spectrum of the matrix Vi, then we fixed 20 EOFs.
The chosen starting point for assimilating data is been fixed as the first of August and the first of March respectively
for both subdomains.
As the DA problem is an inverse ill posed problem [17, 18, 19], a very important topic is the choice of the
regularization parameters in (5) then in (6) (see Step 6 and Step 7 of Algorithm 6). Results we carried out show
as the solution of the S3DVAR software depends on these parameters in terms of both accuracy (e.g. values of the



misfits) and efficiency (e.g. number of L-BFGS steps). The computed values of the misfits after the DA present an
improvement into the order of magnitude of the errors which is O(10−3). The results show that the number of LBFGS
steps decrease as the values of the regularization parameters decrease. For example, the number of LBFGS steps is
niter = 5 for values of 1 < λ < 0.5 and it decreases for values of λ < 0.125 and µ = 0 which imply no interaction
among the subdomains. Actually we are working on the optimal parametes tuning which balance accuracy and
efficiency results.
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