
MNRAS 000, 000–000 (0000) Preprint 27th September 2017 Compiled using MNRAS LATEX style file v3.0

STACCATO: A Novel Solution to Supernova Photometric
Classification with Biased Training sets

Esben A. Revsbech1, R. Trotta2,3,4? and David A. van Dyk1,3,4
1Statistics Section, Mathematics Department, Huxley Building, South Kensington Campus, Imperial College London, London SW7 2AZ
2Astrophysics Group, Physics Department, Imperial College London, Prince Consort Rd, London SW7 2AZ
3Imperial Centre for Inference and Cosmology, Astrophysics Group, Blackett Laboratory, Prince Consort Rd, London SW7 2AZ
4Data Science Institute, William Penney Laboratory, Imperial College London, London SW7 2AZ

27th September 2017

ABSTRACT
We present a new solution to the problem of classifying Type Ia supernovae from their
light curves alone given a spectroscopically confirmed but biased training set, circum-
venting the need to obtain an observationally expensive unbiased training set. We use
Gaussian processes (GPs) to model the supernovae’s (SN) light curves, and demon-
strate that the choice of covariance function has only a small influence on the GPs
ability to accurately classify SNe. We extend and improve the approach of Richards
et al. (2012) — a diffusion map combined with a random forest classifier — to deal
specifically with the case of biassed training sets. We propose a novel method, called
STACCATO (‘Synthetically Augmented Light Curve C lassification’) that synthetic-
ally augments a biased training set by generating additional training data from the
fitted GPs. Key to the success of the method is the partitioning of the observations
into subgroups based on their propensity score of being included in the training set.
Using simulated light curve data, we show that STACCATO increases performance,
as measured by the area under the Receiver Operating Characteristic curve (AUC),
from 0.93 to 0.96, close to the AUC of 0.977 obtained using the ‘gold standard’ of an
unbiased training set and significantly improving on the previous best result of 0.88.
STACCATO also increases the true positive rate for SNIa classification by up to a
factor of 50 for high-redshift/low brightness SNe.

Key words: Supernovae Type Ia, Bayesian statistics, cosmological parameters, clas-
sification

1 INTRODUCTION

Supernovae Type Ia (SNIa) have been crucial in establish-
ing the accelerated expansion of the Universe (Perlmutter
et al. 1999; Riess et al. 1998). They are expected to remain
important distance indicators in the next few years, as the
worldwide sample of SNIa is set to increase many fold thanks
to ongoing and upcoming observational programmes. The
Dark Energy Survey (DES) is expected to observe ∼ 3, 000
SNIa over 5 years, while the Large Synoptic Survery Tele-
scope (LSST) is expected to observe of the order of ∼ 105

SNIa each year (LSST Science Collaboration et al. 2009).
One of the major bottlenecks for the cosmological ana-

lysis of such a large and rich data set is the classification of
SNIa candidates. Traditionally, SNIa candidates have been
confirmed by spectroscopic follow-up, as SNIa are character-
ized by the lack of H in their spectrum and the presence of

? Corresponding author: r.trotta@imperial.ac.uk

strong SiII lines. However, spectroscopic follow up of thou-
sands of candidates is simply not observationally feasible.
Thus it is becoming crucial to reliably classify SNIa on the
basis of photometric information alone (Kessler et al. 2010a).
In parallel, methods are being developed to fit cosmological
models to a SN sample contaminated by non-type Ia (Kunz
et al. 2007; Hlozek et al. 2012; Knights et al. 2013; Kessler &
Scolnic 2017), which generally require as input the probabil-
ity for a given object to be of type Ia (based on photometry
alone).

To address this problem, Kessler et al. (2010a) set up
a “Supernova photometric classification challenge”, inviting
teams to develop methods for SNIa classification from a suite
of numerical simulations designed to mock data from DES.
The simulations contain SN Type Ia, Ib, Ic and II light
curves (LCs) with realistic noise and selection effects and
are divided into a training set and a testing set. SN types
are known in the training set so that it can be used to tune
the classifier. During the challenge, SN types for the test set

c© 0000 The Authors

2 Revsbech, Trotta & van Dyk

were not revealed until completion of the challenge so that
this set could be used to evaluate the performance of the
proposed classifiers. Teams were evaluated on a Figure of
Merit (FoM) that combines both the efficiency and the pur-
ity of the classification of the test set. There were 13 entries
from 10 teams, using a variety of strategies. The broad con-
clusions from the original challenge are that none of the
methods adopted was clearly superior, and that an over-
all major difficulty is the fact that the realistic training set
was not representative of the test set. This is a consequence
of the fact that the observer-frame magnitude cut used to
define the training set map onto different brightness levels
as a function of redshift for SNIa and core collapse SNe (as
their rest-frame spectrum is different). As a consequence,
the ratio of SNIa to non-Ia SNe is different for the training
and the test set, as they have different magnitude cuts, with
the proportion of non-Ia SNe being generally underrepres-
ented at high redshift/low apparent brightness. Moreover,
there are very few high redshift or low apparent magnitude
SNe of any type in the training set. Unfortunately, tuning
a classifier with such an unrepresentative training set leads
to poor results, especially for high redshift and/or dim SNe.
Newling et al. (2011); Varughese et al. (2015); Lochner et al.
(2016) found considerable decreases in performance if the
training set is biased. Richards et al. (2012) suggested and
evaluated several strategies for choosing additional SNIa for
spectroscopic follow-up. Lochner et al. (2016) carried out
a comparison of five different methods and found that the
classification of all of them degraded significantly when us-
ing a biased training set (of the kind that is likely to be
available in practice) as opposed to a representative sample.
They concluded that a representative training set is “essen-
tial” for good classification when using these methods.

Accurate classification based on a biased training set is
generally problematic. In this work we build on the meth-
ods of Richards et al. (2012) and Lochner et al. (2016), and
suggest a novel approach to SNIa photometric classification
that only uses a biased training set. We name this classi-
fication approach, ‘Synthetically Augmented Light Curve
C lassification’ (STACCATO)1. In our approach, the effects
of the bias are mitigated by dividing the training set into
a number of groups based on the propensity score, i.e. the
probability of belonging to the training set given a number
of covariates (here, redshift and apparent brightness). Be-
cause some of these groups have very small training sets, we
propose to augment the training set by sampling new syn-
thetic LCs from Gaussian Processes (GPs) fit to the original
training set LCs. We show that this strategy improves the
classification accuracy considerably, to a level that compares
favourably with the performance obtained from a unbiased
training set. In the current implementation the choice of de-
gree of augmentation of the training sets by synthetic LCs
involves an optimization step that requires knowledge of the
SNe types in a subset of the test set. We leave to future
work designing and demonstrating a procedure that does
not require such data, which would of course not be avail-
able in a real situation. At the end of this paper, however,

1 An R code implementing STACCATO and allowing the user
to reproduce all the results and figures in this paper is available
from: https://github.com/rtrotta/STACCATO.

we are able to demonstrate that even without the optimiz-
ation step, our augmentation strategy performs better than
using the original training set without augmentation.

Our overall strategy is to use GPs to build probabilistic
models for the individual LCs. We then carry out a classi-
fication step in which a diffusion map and a random forest
classifier are applied. Here we draw on the work of Richards
et al. (2012), but we use a different specification of the LCs
metric, and compute the diffusion map separately for each
filter and only on the relevant training data. In the final, en-
tirely novel step, we apply a propensity score to the training
set, which we then augment with synthetic LCs generated
probabilistically from the fitted GPs. We demonstrate that
this approach circumvents the need to design an observa-
tionally expensive unbiased training set, and that the per-
formance of the classifier (as measured by the Area under
the ROC Curve, AUC) is improved from 0.92 to 0.96 (as
compared to 0.977 for an unbiased training set), with most
of the improvement coming from the highest redshift SN
group (with the fewest SNe in its training set). This com-
pares favourably with the best methods in Lochner et al.
(2016), which delivered about 0.88 for the biased training
set.

The structure of this paper is as follows. In Section 2
we describe our Gaussian Process fit to the LC data; in
Section 3 we describe a normalization and time-alignment
procedure for the LCs; in Section 4 we explain how we clas-
sify SN with a diffusion map coupled with a random forest
classifier; in Section 5 we present the classification results
and contrast the case of a biased and an unbiased train-
ing set; in Section 6 we present the STACCATO approach
and discuss the improvements it brings to the classification
result; finally, we conclude in Section 7.

2 GAUSSIAN PROCESS LIGHT CURVE FIT

2.1 Light Curves Data and Training Sets

We use the dataset that was originally released by Kessler
et al. (2010a) as part of their “Supernova photometric clas-
sification challenge”. Since the release of that dataset, an up-
dated version has been made available (Kessler et al. 2010b),
with various improvements and a few bug fixes. In order to
compare our results with the outcome of the original chal-
lenge, we used exactly the same dataset that was available
to the teams that entered the challenge. More recent works
have used the updated dataset, and we will apply our meth-
odology to this newer and more realistic dataset in a future
paper.

The dataset from Kessler et al. (2010a) contains pho-
tometric LCs from 18,321 simulated SNe. For each SN, LCs
are given in four colour bands, C = (g, r, i, z), measured at
unevenly spaced points in time. The observations are subject
to measurement error and estimated standard deviations are
given as part of the dataset. The number of observations
times for the LCs ranges from 0 to 41 with a mean of 19.1
and a median of 21. We only use SNe with at least three ob-
servations in each band, thus reducing the dataset to 17,330
SNe. The challenge included both a set with host galaxy
photometric redshift, and one without it. In this paper, we
only analyze the data set with host galaxy redshift. Lochner

MNRAS 000, 000–000 (0000)

STACCATO 3

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

56220 56260 56300 56340

−
15

−
5

5
15

g−band

Time (days)

F
lu

x

●

●

●
●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

56220 56260 56300 56340

0
10

30
50

r−band

Time (days)

F
lu

x

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
● ● ●

56220 56260 56300 56340

0
20

40
60

i−band

Time (days)

F
lu

x

●

● ●

●

●●

●
●

●

●
●
●

●
●

●
● ●

●
●

●
●

●
●

56220 56260 56300 56340

0
20

40
60

z−band

Time (days)

F
lu

x

Figure 1. An example of LC data in four bands for (the randomly
selected) SN194156 at z = 0.54. Vertical 1σ error bars are also
plotted.

et al. (2016) found that removing redshift information did
not significantly degrade the classification performance. We
will explore this aspect in future work.

Figure 1 displays the four LCs of a randomly chosen
SN (at redshift 0.54) and illustrates both the very noisy
behaviour (in the g band) that some SNe exhibit in one or
more bands and the more ‘well behaved’ peak structure that
is typically associated with SNIa explosions.

The simulated dataset from Kessler et al. (2010a) is di-
vided into a training set, Btrain, of 1,217 SNe with known
types and a test set, Btest, of 16,113 simulated SNe with un-
known types. Btrain is obtained by simulating the spectro-
scopic follow-up efficiency from a 4m class telescope with a
limiting r-band magnitude of 21.5, and an 8m class telescope
with a limiting i-band magnitude of 23.5. SNIa LCs are sim-
ulated from a mix of SALT-II and MLCS models, while non-
SNIa are simulated from a set of 41 templates derived from
spectroscopically confirmed non-SNIa (Kessler et al. 2010b).
The goal is to use Btest to classify the SN in Btest. Due to
observational selection effects, the spectroscopic training set
is biased in terms of SN types, redshift, and brightness. This
bias is mimicked in the dataset of Kessler et al. (2010a) so
that there are proportionally more bright, low redshift SNIa
in Btrain than in Btest.

We also construct an unbiased training set, Utrain, by
random sampling 1,200 SNe from the entire dataset. Here
we exploit the fact that the classes of the entire dataset
was released post challenge. The remaining data is assigned
to a corresponding test set, Utest, used for evaluating the
performance of the classifier. For consistency, the sizes of
Utrain and Btrain are similar. We refer to the Utrain as ‘the
gold standard’, as it is a ‘best case scenario’ to compare any
classification algorithm against. Although, such an unbiased
training set is not feasible in practice, we want to assess the
reduction in the classifier performance that can be attrib-
uted to the bias in Btrain. The composition of both training
and test sets is summarized in Table 1.

2.2 Modelling Light Curves with Gaussian
Processes

Let X(t) be a stochastic process with continuous time in-
dex, t, in some time interval, T . We say X(t) follows a
Gaussian Process (GP) (e.g., Adler 1990), if the finite di-
mensional distribution, p(X(t1), . . . , X(tk)), is (multivari-
ate) Gaussian for any positive integer, k, and any set of
time points t1, . . . , tk in T . Two key theoretical results are
the existence and uniqueness of the Gaussian process. Spe-
cifically, a GP is uniquely determined by its mean function,

µ(t) = E[X(t)] (1)

and its covariance function,

K(t, s) = E
[
{X(t)− µ(t)}T {X(s)− µ(s)}

]
, (2)

where t and s are any two time points in T . Conversely
for any given mean and covariance functions, there exists a
GP with these mean and covariance functions. (For previous
applications of GP regression to SN LC fitting, see Kim
et al. (2013).)

The key result that allows us to use GPs to model time
series such as LCs stems from the conditioning rule for mul-
tivariate Gaussian distributions (e.g., Rasmussen & Willi-
ams 2006). Suppose, for example, thatX follows a multivari-
ate Gaussian distribution with mean vector m and variance
matrix Σ, i.e., X ∼ N(m,Σ), and partition

X =
{
X1
X2

}
, m =

{
m1
m2

}
, and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

The conditional distribution of X2 given X1 is also a (mul-
tivariate) Gaussian, specifically X2 | X1 ∼ N(m∗,Σ∗) with

m∗ = E[X2|X1] = m2 + Σ21Σ−1
11 (X1 −m1)

Σ∗ = Var(X2|X1) = Σ22 − Σ21Σ−1
11 Σ12.

(3)

Turning to the modeling of LCs, let f(t) denote an un-
observed SN LC continuous in time. Suppose that

f ∼ GP (µ,K), (4)

where GP (µ,K) denotes a GP with mean and covariance
functions µ and K. (Here and elsewhere we suppress the
dependence of f , µ, and K on time.) In practice, we must
specify the functional forms of µ andK, typically in terms of
several unknown parameters. For the moment, we assume µ
and K are given, putting off discussion of their specification
until Section 2.3.

Because the distribution of f(t) at any finite set of time
points is multivariate Gaussian, given a series of observa-
tions we can simply apply the formulas in (3) to obtain the
conditional distribution of f(t) at any other finite set of
time points given the observed values. In this way, we can
interpolate f(t) between the observed values. Specifically,
if we measure at n points in time a vector of observations
fobs = (f(t1), . . . , f(tn)), we can obtain the conditional dis-
tribution of f(t) at another set of k time points, namely
f̃ = (f(t̃1), . . . , f(t̃k)), by conditioning on the observations,

f̃ | fobs =

f(t̃1)
...

f(t̃k)

∣∣∣∣∣∣∣
f(t1)

...
f(tn)

 ∼ Nk (m∗,Σ∗) , (5)

MNRAS 000, 000–000 (0000)

4 Revsbech, Trotta & van Dyk

Type Ia Type II Type Ibc Total

Btrain 851 (69.9%) 257 (21.2%) 109 (9.0%) 1,217
Utrain 292 (24.3%) 749 (62.4%) 159 (13.2%) 1,200
Btest 3,592 (22.3%) 10,481 (65.0%) 2,040 (12.6%) 16,113
Utest 4,151 (25.7%) 9,989 (61.9%) 1,990 (12.3%) 16,130

Table 1. Composition of training and testing datasets. Btest is a realistic biased training set, while Utrain is the ‘gold standard’ unbiased
training set. We compare the performance of our algorithm using both test sets to assess the effect of the biased training set on the
classification quality.

where m∗ and Σ∗ are in (3) with m1 = (µ(t1), . . . , µ(tn))T ,
m2 =

(
µ(t̃1), . . . , µ(t̃k)

)T , Σ11 = K(t, t), Σ12 = K(t, t̃),
Σ21 = ΣT12, and Σ22 = K(t̃, t̃), where K(t, t̃) is a matrix
with element (i, j) equal to K(ti, t̃j). In Bayesian terms (4)
is the prior distribution for f and (5) is the posterior distri-
bution of f(t) evaluated at a set of unobserved times. Thus,
we refer to (4) as the prior GP, to (5) as the posterior GP,
and to the vector m∗ as the posterior mean function. We
use the posterior mean functions as the fitted LCs in our
classification of SNe.

Although the derivation of the posterior distribution in
(5) does not account for measurement errors, they can easily
be included in an elegant manner. This is a prime motivation
for the use of GPs to model LCs. Assuming uncorrelated
Gaussian errors, let yi and σi denote the observed flux and
standard error at time ti, for i = 1, . . . , n. The data can be
modeled as

yi = f(ti) + σiεi, (6)

where f ∼ GP (µ,K) and εi is iid N(0, 1) for i = 1, . . . , n.
Thus, the posterior distribution of f at a given set of k time
points t̃1, . . . , t̃k is simply

f̃ |y ∼ Nk(m∗,Σ∗), (7)

where f̃ = f(t̃) and m∗ and Σ∗ are as in (5) except that
the noise vector σ2 = (σ2

1 , . . . , σ
2
n)T is added as a diagonal

matrix to Σ11 so Σ11 = K(t, t) + diag(σ2).

2.3 Mean and Covariance Functions

The choice of µ and K can have a large influence on the
quality of the LC interpolation in (5). The covariance func-
tion, for example, controls the possible LC ‘shapes’ that can
be generated under the prior GP and hence depending on
the amount and quality of data may influence the posterior
GP used for interpolation, namely the multivariate Gaussian
distribution in (5).

In regions with abundant data the posterior GP is dom-
inated by the observations, and the mean function has little
influence. Therefore, the main focus of the literature is the
covariance function, and the mean function is often simply
taken to be a constant equal to zero, µ(t) = 0. We adopt
this choice and although the LC data often include sparse
regions, we observe only limited problems with the posterior
GP drifting towards the prior mean function, i.e., zero.

There is a wide range of standard choices for covari-
ance functions, each designed to model specific features of
the data. These can be summed or multiplied (Rasmussen
& Williams 2006) to obtain a large and flexible strategy

for specifying covariance structure (see e.g., Gelman et al.
2013). Because data for the individual SN LCs are limited,
such refined models are not appropriate. Instead we con-
sider two relatively simple and flexible covariance functions,
namely the squared exponential and the Gibbs kernels.

2.3.1 Squared Exponential Kernel

The squared exponential (SE) kernel is a popular choice
(Roberts et al. 2012) and has been used before in fitting
SN LCs (Lochner et al. 2016; Kim et al. 2013). It is given
by

Kse(t, s) = τ2 exp
(
−1

2
(t− s)2

l2

)
, (8)

where τ2 and l are free parameters. The parameter l is the
length scale parameter and controls the speed with which
the covariance decreases over time, i.e., how quickly the GP
‘forgets’ previous observations and thus how rapidly it can
fluctuate. The parameter τ2 is the variance parameter and
controls the scale of the covariance function and hence the
‘amplitude’ of the process. Notice that Kse(t, s) depends on
(t, s) only through the difference |t − s|, and hence corres-
ponds to a stationary process. The kernel is continuous and
infinitely differentiable with respect to r = t−s. This means
that the prior GP is smooth in the mean square sense, and
we can expect the posterior GP and mean function to be
smooth as well.

2.3.2 Gibbs Kernel

The Gibbs kernel can be viewed as a generalization of the
SE kernel in which the length scale parameter, l, is allowed
to vary over time. This means that the timescale over which
the GP remembers past observations and thus the timescale
for variability can change. The added flexibility might be
useful in accommodating different degrees of smoothing in
different parts of the time domain, e.g., due to different levels
of sparsity in the data. Specifically, the Gibbs (1997) kernel
is given by,

KGibbs(t, s) =

τ2
(

2l(t; θ)l(s; θ)
l2(t; θ) + l2(s; θ)

)1/2

exp
(
− (t− s)2

l2(t; θ) + l2(s; θ)

)
,

(9)

where l(t; θ) is a positive length scale function depending on
time and a multivariate parameter θ. We set

l(t; θ) = λ
(
1− pϕ(tmax,η)(t)

)
, (10)

MNRAS 000, 000–000 (0000)

STACCATO 5

−100 −50 0 50 100

0.
0

0.
4

0.
8

Time (days)

l(t
;θ

)

−100 −50 0 50 100

−
3

−
1

0
1

2
3

Gibbs kernel

Time (days)

F
lu

x

−100 −50 0 50 100

−
3

−
1

0
1

2
3

SE kernel

Time (days)

F
lu

x

Figure 2. Left: The length scale function for the Gibbs kernel
with λ = 1, p = 20, tmax = 0 and η = 10. Middle: Three functions
drawn from the GP prior, GP(0,KGibbs), with the Gibbs kernel
and length scale function in the left plot and with λ = 20 (green),
λ = 30 (red), and λ = 40 (blue). Right: Three functions drawn
from GP(0,Kse) with τ = 1 and l = 20 (green), l = 30 (red), and
l = 40 (blue).

where λ, p, tmax, and η are tuning parameters and
ϕ(tmax,η)(t) is a Gaussian density with mean tmax and stand-
ard deviation η. With p = 0 the Gibbs kernel reverts to the
SE kernel. For t = s, KGibbs(t, t) = τ2 and thus τ2 is a
scaling parameter that controls the variance of the GP.

An example of l(t; θ) with λ = 1, p = 20, tmax = 0 and
η = 10 is plotted in the left panel of Figure 2. Three func-
tions drawn from GP(0,KGibbs) are plotted in the middle
panel (using the l(t; θ) as plotted in the left panel) and three
drawn from GP(0,Kse) are plotted in the right panel of Fig-
ure 2. Clearly, the Gibbs kernel allows more rapid fluctu-
ations around t = 0. The functions plotted in the two right
panels of Figure 2 can be viewed as draws form a prior GP.
As always, with sufficient data the influence of the choice
of kernel on the posterior GP is expect to vanish. A further
comparison of the GP LC models fitted with the two kernels
appears in Section 2.4.3.

2.4 Fitting the Gaussian Processes

The GPs defined by the kernels in (8) and (9) have free para-
meters that need to be fit from the LC data. A natural way
to handle the parameters of the covariance functions is to
assign them hyperprior distributions. Letting θ denote the
collection of parameters of the kernel, the posterior distri-
bution of θ is

p(θ|y, t) ∝ p(y|θ, t)p(θ|t), (11)

where p(θ|t) is the prior distribution for θ and p(y|θ, t) is
the marginal likelihood,

p(y|t, θ) =
∫
p(y, f |t, θ)df =

∫
p(y|f, t, θ)p(f |t, θ)df, (12)

where the integration marginalizes out the dependence of
y on the latent functions, f . We refer to the distribution
in (11) as simply ‘the posterior’, which should not to be
confused with the “posterior GP” given in (7).

2.4.1 MAP Estimation

We aim to use the posterior in (11) to estimate the mean
function of the LCs in order to classify the SNe. For this
purpose a single reasonable estimator of the mean function
is sufficient, that is, it is not necessary to carefully quantify
uncertainty in the estimate. We use a strategy common in

●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●●

●●●

●

●
●

●

●

●

●

●

●

● ●

56150 56200 56250 56300 56350

0
5

10
15

20

Time (days)

F
lu

x

●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●●

●●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●

56250 56300 56350

0
5

10
20

30

Time (days)

F
lu

x

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●

Figure 3. Examples of fitted LCs (i.e. the posterior mean func-
tion in (7)) showing pathological MAP estimates under the SE
kernel and a flat prior on the kernel’s parameters. The fitted LCs
are plotted in blue. The left panel is an examples of a very large
fitted value of l (r-band of SN 84341 at z = 0.95, with l = 247.2
and, σ = 18.4). The right panel is an example of a very small
fitted value of l (r-band of SN 92200 at z = 0.41, l = 0.1, and
σ = 15.1.

machine learning that uses the maximum a posteriori prob-
ability (MAP) estimate, which is the value of θ that max-
imizes the posterior distribution in (11).

To compute the MAP estimate of θ, we first need to
derive an expression for the marginal likelihood in (12). This
can be accomplished analytically, because the integrand in
(12) can be written as the product of two Gaussian densities,
specifically, y|f, t, θ ∼ N(f,diag(σ2)) and, given the discrete
set of time points, t, we have, f |t, θ ∼ N{µ(t), K(t, t)}.
Letting t = (t1, . . . , tn)T , K = K(t, t), µ = µ(t) and Σ =
diag(σ2), we thus obtain the marginal likelihood,

log p(y|t, θ) = −1
2(y − µ)T (K + Σ)−1(y − µ)

−1
2 log |K + Σ| − n

2 log 2π.
(13)

Only the first term in (13) involves the data. The second is a
penalty for the complexity of the fit. Under the SE kernel, for
example, a less complex approximately linear fit has a higher
value of l causing the exponential term in (8) to be nearly
constant regardless of the distance (t − s). In this case the
determinant in the second term of (13) is dominated by the
diagonal matrix, Σ, because K is nearly linearly dependent.
The final term in (13) is a normalizing constant that depends
on the data only through n.

To obtain the log of the posterior in (11) the log-prior
can simply be added to (13). Because (13) only depends on
θ through K, its derivatives are easily obtained, numerical
optimization of (11) is efficient, and it can be easily imple-
mented using gradient-based numerical methods.2

2.4.2 Prior Distributions and Fits Under the SE Kernel

Lochner et al. (2016) fitted LCs using a flat prior distribu-
tion on the parameters of the covariance function in (11)

2 We use the constrained gradient based optimizer developed by
Byrd et al. (1995) and implemented in R through the optim()
function. This optimizer is based on the quasi-Newton method
and only requires the Jacobian (or in our case the gradient), but
not the Hessian to be calculated. Instead the Hessian is approx-
imated (Givens & Hoeting 2012, sec. 2.2.2.3).

MNRAS 000, 000–000 (0000)

6 Revsbech, Trotta & van Dyk

log10(l)

F
re

qu
en

cy

−1 0 1 2 3 4 5

0
50

0
10

00
15

00

Figure 4. Distribution of the fitted l parameters (MAP estim-
ates) of the r-band fitted with the uniform (improper) prior on l.
Notice the extreme values on the log-scale.

(Seikel et al. 2012). This is a common choice in the GP
literature (e.g. Rasmussen & Williams (2006), sec. 5.4.1).
Although there is in no general guarantee that the posterior
is proper with an improper prior, this causes us no difficulty
in principle because we only use the MAP estimate and the
marginal likelihood is finite.

Unfortunately, using a flat prior gives rise to patholo-
gical fits with the data we used. Two examples are plotted
in Figure 3. The left plot is an example of a large fitted
value for l, causing an almost linear fit. The right plot is an
extreme example of problems that occur when the posterior
process drifts towards the prior mean, in this case caused
by a very small fitted value of l. The histogram in Figure 4
gives the distribution of the fitted (i.e., MAP) values of l
in the r-band across the 17,730 SNe (on the log-scale). Ex-
treme values of l in this distribution lead to poor fits like
those illustrated in Figure 3. The other bands suffer from
similar problems.

The flat prior distribution on τ , on the other hand, does
not cause problems. To see this, we rescaled the data by di-
viding each LC by its largest value, adjusted each σi accord-
ingly, and plotted GPs with extreme values in the distribu-
tion of the fitted values of τ . No systematic patterns were
observed.

To avoid pathological cases like those in Figure 3 re-
quires a proper prior distribution on l. The empirical distri-
bution in Figure 4 obtained using a flat prior inspired the
adoption of a log-normal prior distribution,

p(l|ν, ρ) = 1
ρ
√

2π
1
l

exp
(
− (log l − ν)2

2ρ2

)
. (14)

The distribution has support on the positive real line is right
skewed and has, depending on the scale parameter, ν, very
low probability for small values. We set the hyper paramet-
ers to ν = 3.1 and ρ = 0.4, yielding a mean of ≈ 24 and
median of ≈ 22, close to the mean and median of the fitted
parameters in all bands obtained using a flat prior on l. Us-
ing this prior avoid the pathological fits without interfering
too much with the GP fits where the flat prior works well.
The flat prior on τ is maintained.

The distributions of the fitted values of l across the
17,730 SNe under the log-normal prior distribution are given
in Figure 5, for each of the four bands. These histograms are
not plotted on the log scale as in Figure 4 and illustrate that
this choice of prior avoids the extreme fitted values of l and
their associated pathological fitted LCs. The distributions
of the MAP estimates of l are quite similar to the prior dis-
tribution superimposed on the histograms. This is not a his-
togram of the posterior distribution of l for a single LC, but
the distribution of the l across the LCs. Thus, the similar-
ity between the histograms and the priors does not indicate
an overly influential prior distribuiton, but rather that the
prior distribution is a relatively good representation of the
population distribution of l across SNe (as we would expect,
for example, in a hierarchical model). The one exception is
the g-band, where the peak in the histogram near the prior
mode can be explained by the fact that at higher redshift
the g-band maps deeper into the UV, where the SNIa flux
drops, leading to fainter emission. This produces more noisy
data in this band for many SNe, similar to the SN plotted
in Figure 1. With higher noise, the prior dominates the like-
lihood and hence the posterior distribution peaks near the
prior mode.

2.4.3 Prior Distributions and Fits Under Gibbs Kernel

The Gibbs kernel and its length scale function given in (9) –
(10) have five free parameters. Initial investigations showed
that with the Gibbs kernel the log marginal likelihood in
(13) often contains many local maxima. To regularize the
fits, we restrict the parameter values, either deterministic-
ally or through prior distributions. Some local modes, for
example, correspond to the the position parameter, tmax,
being in regions with noisy data that are away from the
peak brightness. This results in over fitting of the noisy re-
gions of the LCs. To avoid this, we restrict tmax to be equal
to the value of t that maximizes the fitted LCs under the SE
kernel. This restriction does not imply that the Gibbs and
SE kernel fits necessarily exhibit a maximum at the same
time value, but such values are likely to be similar. We also
fix the variance parameter at η = 10 as in the leftmost panel
of Figure 2, restrict p to the interval [0, 20], and restrict λ
and τ to be positive. The restriction on p ensures that length
scale function, l(t; θ), is positive.

Since the SE kernel is a special case of the Gibbs kernel
(with p = 0), the considerations regarding the choice of prior
for l discussed in Section 2.4.2 also apply to the scale length,
λ, under the Gibbs kernel. Hence we adopt the same log
normal prior distribution used for l under the SE kernel for
λ. Finally, we use uniform prior distributions for p and τ2.
Because numerical optimizers can easily converge to one of
the local maxima, for a number of LCs we obtain a lower
value for the log posterior MAP estimate than we did with
the SE kernel. In these cases, the SE fits are used instead.
(I.e., we set p = 0, λ = l, and τGibbs = τse.) The log posterior
of the MAP estimates increases when using the Gibbs kernel
(as compared with the SE kernel) for 68%, 75%, 57% and
51% of the LCs in the g, r, i and z bands, respectively.

MNRAS 000, 000–000 (0000)

STACCATO 7

g−band

l

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
10

0.
20

r−band

l
D

en
si

ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

i−band

l

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

z−band

l

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Figure 5. Histograms of fitted l parameters of the SE kernel using the log-normal prior on l, for the entire data set. Superimposed in
blue is the log-normal prior distribution.

2.4.4 Comparing the Fits

Figure 6 depicts four representative LCs and their fits un-
der both kernels. The two panels in the first row are good
examples of cases that motivate the Gibbs kernel. In both
cases, the SE kernel is unable to simultaneously fit the rapid
increase followed by a rapid decrease in brightness at the
peak and the relatively smooth tails. The result is a relat-
ively small fitted value of l and thus too little smoothing
in the tails. The Gibbs kernel in contrast benefits from the
flexible length scale function and is able to fit both the peak
and the tails well. The LC at the bottom left is an example
where both kernels yield very similar fits (although the fitted
value of p is not near 0 under the Gibbs kernel). The bottom
right LC is an example where the increased flexibility of the
Gibbs kernel results in overfitting of relatively noisy data.

Histograms of the difference between the maximum log
posterior obtained using the Gibbs kernel and that obtained
under the SE kernel appear in Figure 7. (In cases where the
log posterior obtained with the Gibbs kernel is less than
that obtained with the SE kernel, a zero is recorded in these
histograms.) In most cases, the increase in the maximum log
posterior value achieved under the Gibbs kernel is small (and
thus may be included in the leftmost bins of the histograms
in Figure 7.)

Cases of overfitting under the Gibbs kernel, like the one
depicted in the bottom right panel of Figure 6, are typically
associated with noisy data. In such cases the fits under the
two kernels appear quite different while their maximum log
posterior values are quite similar. In principle a formal model
selection technique (e.g., a Bayes Factor or likelihood ratio
test) could be employed to select between the SE and Gibbs
kernel but this would require substantial computational ef-
fort. Since we do not believe either kernel is “correct” and
simply aim for reasonable interpolation of the LCs, we pro-
pose a simple method to choose between the kernels. Spe-
cifically, to avoid the occasional overfitting associated with
the Gibbs kernel, we use this kernel only if it improves the
value of the log posterior MAP by at least 2% and using the
SE kernal otherwise. In this way we aim to use the Gibbs
kernel when it is advantageous (e.g., the cases in the first
row of Figure 6), but not when it overfits (e.g, the case in
the lower right panel of Figure 6). This strategy results in
the Gibbs kernel being used for 17%, 28%, 12% and 8% of
the LCs, in the g, r, i and z bands, respectively. In our nu-

merical studies in Section 5 we compare this strategy with
(i) using the SE kernel for all SNe and (ii) using the Gibbs
kernel for all SNe.

3 NORMALISING THE LIGHT CURVES

The fitted LCs must be aligned in time and normalized in
brightness before they are classified. We describe both of
these tasks in this section.

3.1 Time Alignment

To align the LCs in time we define time zero to be the time
when the fitted LC in the (observer’s) i-band achieves its
maximum.3 We choose the i-band because it is the band
where most of the fitted LCs (under the SE kernel) have
a maximum within the time interval of the observations,
namely 90.4% of the SNe LCs peaked in the i-band.

3.1.1 Estimating Time Zero for LCs with a Peak

We evaluate the fitted LCs on a one-day spaced grid of time
points, starting at the time of the first observation in the
i-band. Given that the fitted LCs do not fluctuate much
on a daily basis and the computational costs involved with
a finer grid, we believe this choice of grid resolution offers
a reasonable compromise between computational cost and
accuracy. Let f̂a(tj) denote the fitted LC of SN a at time
tj in the i-band. (The i-band is suppressed in this nota-
tion.) Letting ta,f and ta,l be the times of the first and
last observations of SN a in the i-band, respectively, and
Ta = {k ∈ N | 0 < k 6 ta,l − ta,f}, we define time zero as

ta,0 = ta,f + arg max
k∈Ta

f̂a(ta,f + k). (15)

3 This differs from the more standard practice of defining time
zero as the time of peak brightness in the rest-frame b-band. Be-
cause the b-band is not available in the current data, converting
the LCs to the SN rest-frame would require complex K-corrections
and accounting for uncertainty in the redshift. Thus, using the
observer’s frame and the i-band significantly simplifies our pro-
cedure.

MNRAS 000, 000–000 (0000)

8 Revsbech, Trotta & van Dyk

●
●
●

●

●
●

●●●

●

●

●

●
●

●

●

●
● ● ●●

56250 56300 56350

0
50

10
0

15
0

20
0

Time (days)

F
lu

x

●
●
●

●

●
●

●●●

●

●

●

●
●

●

●

●
● ● ●●

z = 0.35, g−band
log posterior, SE: −107.81
log posterior, Gibbs: −87.11

●

●

●

●

●

●

●

●

●
●

●
●
●
●●

●
●●
●

●●●●●● ●
●

● ●
●
●

56200 56250 56300

0
50

10
0

15
0

Time (days)

F
lu

x

●

●

●

●

●

●

●

●

●
●

●
●
●
●●

●
●●
●

●●●●●● ●
●

● ●
●
●

z = 0.38, r−band
log posterior, SE: −121
log posterior, Gibbs: −100.31

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

56200 56250 56300 56350

0
10

20
30

Time (days)

F
lu

x

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

z = 0.85, i−band
log posterior, SE: −99.07
log posterior, Gibbs: −98.83

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

56200 56250 56300

0
20

40
60

Time (days)

F
lu

x

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

z = 0.37, z−band
log posterior, SE: −81.51
log posterior, Gibbs: −81.4

Figure 6. Top row: Two examples of LCs (g-band of SN 17125
and r-band of SN 78789, respectively) for which the Gibbs kernel
(orange) provides a better fit than does the SE kernel (blue). In
both cases the Gibbs kernel is able to fit the peak well without
over fitting away from the peak, whereas the SE kernel results in
a small length scale and over fits. In both cases the log posterior
improved substantially with the Gibbs kernel. Lower left: A LC
(i-band of SN 113107) where the two fits are quite similar. As
expected, the log posterior is similar under the two kernels. Lower
right: A LC (z-band of SN 147174) where the log posterior of
the two fits are almost identical, but the fit under the Gibbs
kernel arguably overfits the noisy data. Fitted Parameters: Upper
left (g-band of SN 17125), SE fit with l = 7.24 and τ = 58.76,
Gibbs fit with λ = 35.21, τ = 75.65, and p = 20; Upper right
(r-band of SN 78789), SE fit with l = 7.6 and τ = 34.75, Gibbs
fit with λ = 36.46, τ = 50.48, and p = 20; Lower left (i-band
of SN 113107), SE fit with l = 23.63 and τ = 6.23, Gibbs fit
with λ = 30.91, τ = 6.5, and p = 9.66; Lower right (z-band of
SN 147174), SE fit with l = 34.35 and τ = 17.64, Gibbs fit with
λ = 22.11, τ = 20.62, and p = 8.73.

3.1.2 Estimating Time Zero for LCs without a Peak

The LCs of some of the data were generated with explosion
times well before or well after the survey time window, lead-
ing to several LCs with missing pre- or post-peak data. Of
our 17,330 SNe, after evaluating the fitted LCs on one-day
spaced grids (Section 3.1.1) 1,721 do not have a peak in the
i-band. For these, time zero is estimated via pairwise com-
parisons with the peaked LCs. Consider, for example, a pair
of SNe, where one has a peak in the i-band and one does
not. The LC without a peak is repeatedly shifted according
to the one-day spaced grid and its time zero is estimated

based on the shift that minimises the mean squared dis-
tance between the two LCs. For each LC without a peak,
an estimate of this sort is obtained using each of the 15,609
LCs with a peak and the estimates are combined using a
weighted average to obtain the final estimate.

We start by considering LCs for which we have data
recorded only after the peak. Let a be the index of one such
SN and let b be the index of one of the SN with a peak in
the i-band. To compare the two LCs, we normalize SN a to
its fitted value at the time of its first observation, f̂a(ta,f),
and normalize SN b to its fitted value k days past its peak,
f̂b(tb,0 + k). (Recall that we aim to estimate the number
of days between the unobserved peak for SN a and its first
observation.) We then compute the mean square error of the
rescaled LCs with a time shift of k days,

cab(k) := 1
na

na−1∑
r=0

(
f̂a(ta,f + r)
f̂a(ta,f)

− f̂b(tb,0 + k + r)
f̂b(tb,0 + k)

)2

,

(16)

where na = bta,l − ta,fc is the number of grid points for SN
a. The estimate of ta,0 based on the LC of SN b is the shift
(in days) that minimizes the mean square error,

t̂shift
a,b = arg min

k∈{0,1,...,nab}
cab(k), (17)

where nab = nb − na is the difference between the number
of grid points. The range of values of k in (17) ensures that
f̂a is evaluated only where it exists in (16). If nab < 0, t̂shift

a,b

is set to 0.
Our estimate of time zero for SN a is a weighted average

of t̂shift
a,b across all b for which SN b is observed with peak in

the i-band; let P be the collection of indexes, b, of such
SNe. In order to favour peaked SNe that (after a shift) align
better with SN a, the weights are chosen to be inversely
proportional to the mean square error

cab =
{

min
k∈{0,1,...,nab}

cab(k)
}−1

, (18)

and our final estimate of time zero is

ta,0 = ta,f −
1∑

b∈P cab

∑
b∈P

cab t̂
shift
a,b . (19)

(Again, if nab < 0, cab is set to 0.)
A similar method is used to estimate time zero for the

LCs observed only before their peaks in the i-band. The
only difference is that the LCs in (16) are scaled to have
a common right end point, the summation in (16) is from
r = −na + 1 to 0 and the minima in (17) and (18) are taken
over {−nab,−nab + 1, . . . , 0}. This situation happens only
for 5.4% of the SNe.

Our method is inspired by and extends that adopted by
Richards et al. (2012), who used the shift that minimised the
cross correlation between the two LCs rather than (16) and
(17), and adopted a simple average rather than a weighted
average.

3.1.3 Standardising the Time Domains

We use our estimate for time zero to re-center the time scale
for each SN (in all colour bands) at the point of its maximum

MNRAS 000, 000–000 (0000)

STACCATO 9

g−band

increase in log−likelihood

F
re

qu
en

cy

0 5 10 15 20 25

0
40

00
80

00
14

00
0 r−band

increase in log−likelihood

F
re

qu
en

cy

0 5 10 15 20 25

0
40

00
80

00
12

00
0 i−band

increase in log−likelihood

F
re

qu
en

cy

0 5 10 15 20 25

0
50

00
10

00
0

15
00

0 z−band

increase in log−likelihood

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

00
10

00
0

15
00

0

Figure 7. Histograms of the difference between the maximum log posterior obtained using the Gibbs kernel and that obtained using
the SE kernel. Values greater than zero indicate an improved fit under the Gibbs kernel. (In cases where the log posterior obtained with
the Gibbs kernel is less than that obtained with the SE kernel, a zero is recorded in these histograms.)

−150 −100 −50 0 50

0
50

10
0

15
0

S
ta

nd
ar

di
ze

d
tim

e
 o

f l
as

t o
bs

er
va

tio
n

(d
ay

s)

Standardized time
of first observation (days)

log10(sa)

F
re

qu
en

cy

1 2 3 4

0
10

00
20

00
30

00
40

00

Figure 8. Left: Scatterplot illustrating the observed time inter-
vals of the i-band LCs in standardised times, t̃. The plot is col-
our coded according to whether the i-band peak occurs within
the observed LC: blue indicates data is only recorded before the
peak, green indicates that data is recorded only after the peak,
and red indicates that the peak is observed. Right: Histogram of
the SNe apparent brightnesses, sa (arbitrary units), on log-scale
(calibrated fluxes are obtained by converting from apparent mag-
nitudes using Eq. (1) in Kessler et al. (2010a)). Both plots are
based on the SE kernel.

i-band brightness. Specifically, for each SN, with index a,
define a standardized, integer sequence of times in units of
days, (t̃ca,1, . . . , t̃ca,nc

a
), where

t̃ca,1 =
⌈
tca,f − ta,0

⌉
and t̃ca,nc

a
=
⌊
tca,l − ta,0

⌋
where nca = t̃ca,nc

a
− t̃ca,1 + 1 and the superscript, c, indexes

the colour bands, c ∈ C = {g, r, i, z}.
In left panel of Figure 8 we plot the standardized times

of the first and last observation in the i-band to illustrate
the time intervals of the observed LCs. The plot is obtained
using the SE kernel.

3.2 Standardising the Fluxes

Renormalizing the LCs onto a common brightness scale
accentuates certain features that aide classification. (We
identify these features using diffusion maps as discussed in
Section 4.1.) Following Richards et al. (2012), we divide the
LCs of each SN by the sum of the maxima in all of its bands.
Specifically, the normalised LC of SN a at time tj in band c

is

f̃ca(tj) = f̂ca(tj)
sa

, with sa =
∑

c∈C={g,r,i,z}

max
k

f̂ca(t̃ca,k+ta,0),

(20)

where the maximum is over k ∈
{
t̃ca,1, . . . , t̃

c
a,nc

a

}
. Thus sa

is the sum of the maxima of the LCs in the four bands.
Since the maxima occur at slightly different times for dif-
ferent bands, this quantity does not exactly represent the
peak apparent brightness, but acts as a rough proxy for it.
A log-scale histogram of the sa is shown in the right panel
of Figure 8 and illustrates the distribution of overall appar-
ent brightnesses among the SNe. (We refer to the sa as the
“brightnesses”.) The histogram is based on the fit of the SE
kernel.

We denote the set of normalised LCs for SN a by

Ya =
{(
t̃ca,j , f̃

c
a,j

)
|c ∈ {g, r, i, z}, j = 1, . . . , nca

}
, (21)

where f̃ca,j = f̃ca(t̃ca,j + ta,0)).

4 CLASSIFICATION METHODOLOGY

4.1 Diffusion Maps

The observed SNe are divided into a training and a test set,
where the SN types are known in the training set and we
aim to identify the types in the test set by comparing SN
LCs. Although our GP fits to the LCs allow extrapolation to
a common time interval, the degree of variability among the
observation intervals (see left panel of Figure 8) means that
expanding to a common interval would require substantial
extrapolation.

To avoid this, we follow Richards et al. (2012) and apply
a diffusion map. This allows us to compute a vector of length
m for each LC in such a way that the Euclidean distance
between these vectors is a measure of similarity between the
LCs. (Formally the distance approximates the so-called dif-
fusion distances between two LCs, as defined in Section A1.)
This allows classification of the SNe to be accomplished by
applying any “off-the-shelf” classification algorithm to the
m dimensional vectors, which thus act as predictor variables
for the classification. As discussed in Section 4.2, we use a
random forest classifier.

MNRAS 000, 000–000 (0000)

10 Revsbech, Trotta & van Dyk

The key advantage of this strategy is that it only re-
quires pairwise comparison of the LCs. Thus, the time in-
tervals on which the LCs are compared can be different for
each pair; we choose the intersection of the observations in-
tervals for each pair. Although the intersection may be short
(or even empty), a further advantage is that the diffusion
distance between two LCs is based on the average difference
in distances between the two and all other LCs. That is, the
diffusion distance between LC a and LC b is a function of
the difference in distances a ↔ h and b ↔ h averaged over
all LCs h. Thus, as long as the observation intervals are not
completely separable over the entire dataset, each pair of
LCs can be compared in the diffusion space.

In contrast to Richards et al. (2012), we apply the dif-
fusion map to each colour band separately. Thus, for each
SN, we obtain four vectors of predictor variables (one for
each band). The lengths of these vectors may vary among
the bands, and thus we denote the lengths by mc, for
c ∈ C = {g, r, i, z}. The advantage of this approach is that
the explanatory power of the LCs in the different bands are
not blurred with each other. Thus two similar SNe with one
or more bands disrupted by noise can still be judged sim-
ilar by using the unaffected bands. An overview of diffusion
maps and the details of our choice of the diffusion distance
are given in Appendix A.

4.2 Random Forest Classification

Random forest is a classification algorithm that is based on
“growing” replicate classification trees using bootstrapped
samples of the data. Each classification tree is grown by
recursively splitting the data into binary regions based on
one of the predictor variables. (Recall the predictor variables
are generated by the diffusion map in our case.) In each
split, the variable and split point is chosen such that the
sum of the gini indexes4 in the two new regions is decreased
as much as possible. In each split only a randomly selected
subset of mtry of the predictor variables are considered. The
trees are grown to their maximum size, which means that
the recursive partitioning of the predictor variables into sub-
regions is stopped only when one class (of SNe) is present
in each region, e.g. because there is only one SN left in the
region. Once all of the trees are grown, the classification of
SN from the test set is based on ‘voting’ of the trees. Since
we have only two classes, SNIa and not SNIa, we can use a
simple threshold, γIa, where we classify a SN as SNIa if the
proportion of trees so voting is greater than γIa.

Random forests are relatively robust to noisy predictor
variables as long as there is a reasonable number of relevant
variables (Friedman et al. 2009). Therefore, all the predictor
variables from the four optimised diffusion maps (i.e., up to
100) are combined into a vector and passed to the random
forest without further selection.

4 With two classes, the gini index of a region is defined as
2pIa(1 − pIa), where pIa is fraction of SN that are SNIa in the
region. Thus, the gini index will be minimised if nearly all or
nearly none of the SNe in the region are SNIa.

4.3 Tuning the Diffusion Maps and Random
Forest Classifier

To implement the diffusion map and random forest, we must
set their tuning parameters, (εg, εr, εi, εz), mtry, and γIa.
(See (A1) in Appendix A for a definition of εc; there is a
separate value of εc for each colour band, c ∈ C.) We aim
to set these parameters in such a way as to optimise clas-
sification, while recognizing that classifying a SN as a SNIa
when it is not (i.e. a false positive) is worse than neglecting
to identify a SN as a SNIa (i.e., a false negative), at least
in the typical application of using SNIa as standard candles.
For this reason, Kessler et al. (2010a) proposed the following
criterion:

ζIa(W) = NTrue
Ia

NTotal
Ia

× NTrue
Ia

NTrue
Ia +WNFalse

Ia
, (22)

where NTotal
Ia is the total number of SNIa, NTrue

Ia is the num-
ber of correctly classified SNIa (true positives), and NFalse

Ia is
the number of SNe incorrectly classified as a SNIa (false pos-
itives). The first term on the right hand side of (22) is also
known as the efficiency, eIa, of the classifier, i.e., the propor-
tion of the SNIa that are correctly identified. For W = 1,
the second term of (22) is known as the purity, pIa, i.e.,
the proportion of true positives among the overall number
of positives. In the classification challenge W was set to 3
(Kessler et al. 2010a, Section 5) meaning that false positives
incur a heavier penalty than false negatives. For simplicity,
we fix ζIa = ζIa(3).

We set the tuning parameters in two steps. First we
set each of the (εg, εr, εi, εz) separately, using only its cor-
responding diffusion map and predictor variables. Starting
with one of the bands, call it band c, we optimise ζIa over a
grid of values of εc. Then, for each value of εc in the grid, ζIa
is further optimized over a grid of proportions, γIa. These op-
timisations are conducted using random forests of 500 trees
and with the default value of mtry = b√mcc, where mc is
the number of predictor variables corresponding to the cur-
rent band. To reduce over fitting, only the out of bag (OOB)
predictions from the training set are used when computing
(22). The OOB prediction of each SN (in the training set)
is based only on the trees that were fit without that SN, i.e.,
trees for which that SN was not included in the bootstrap
sample. In this way the OOB prediction is similar to a “leave
one out” cross validation procedure.

In the second step, we fix (εg, εr, εi, εz) at the values
derived above and compute the final optimal values of γIa
and mtry. In this step we use the combined predictor vari-
ables from all four bands. Again we optimise ζIa computed
using OOB predictions from the training set, this time over
a grid of values of mtry and γIa.

5 CLASSIFICATION RESULTS

We now describe the classification results obtained using the
two GP kernels described in Section 2.3. We compare three
GP kernel fits, given in Table 2: the first exclusively uses the
SE kernel; the second exclusively uses the Gibbs kernel; and
the third uses the Gibbs kernel whenever it improves the log
posterior of the MAP estimate by more than 2% over the SE
kernel and uses the SE kernel otherwise. For each choice we
train separately on the two training sets described in Section

MNRAS 000, 000–000 (0000)

STACCATO 11

2.1, namely the biased training set, Btrain, and the unbiased
training set, Utrain. In each case the results are evaluated on
the appropriate test sets. We call the combined choice of GP
kernel and training set a “model”.

5.1 Tuning the Diffusion Map and Classifier

Proceeding as described in Section 4.3, the optimal para-
meters for the diffusion maps and random forest classifier
under each model appear in Table 3. In the table, we also
show the relative weight of each band, quantified by

Îc =
∑

v∈Vc
Îv∑

v∈V Îv
, for c ∈ {g, r, i, z}, (23)

where V is the complete set of predictor variables generated
by all four diffusion maps, Vc is the subset of V correspond-
ing to the variables generated by the diffusion map for colour
band c, and Îv is the “importance” associated with variable
v. The importance of each variable is determined as the trees
of the random forest grow. Specifically, the decrease in gini
index associated with each split is recorded alongside the
variable that was divided into two regions in each partition
step and the variable importance, Îv, is computed by sep-
arately summing the decreases in gini index associated with
each variable (Friedman et al. 2009, p 593).

The diffusion coordinates of the two most important
variables as judged by the random forests are plotted and
colour coded according to SN type for both the training
and test sets under models B1 and U1 in Figure 9. (The
other models are qualitatively similar.) While we plot only
the two most important diffusion coordinates, we use up to
25 coordinates (in each band) in the classification, see Ap-
pendix A for details. The separation between the three SN
types is relatively good in Btrain but less so in Btest. Although
Utrain shows a higher degree of superposition between differ-
ent types than does Btrain, the separation that does exist for
Utrain does not degrade in Utest. We emphaise that the ran-
dom forests are only trained to distinguish SNIa from non-
SNIa and hence do not distinguish between sub-categories
of non-SNIa (i.e., the green and blue dots in Figure 9).

5.2 Classification Results

Classification results appear in Table 5. The first three
columns summarise results for the training sets, where the
optimality criterion, ζIa, the purity, pIa, and the efficiency,
eIa, are estimated from the OOB samples. The last four
columns summarize results for the corresponding test sets.
The last column reports the area under the ROC (Receiver
Operating Characteristic) curve, which is defined and dis-
cussed below. Where appropriate, our results are compared
with previous results in the literature in Table 4.

Models B1–B3 obtain high purity and efficiency val-
ues for Btrain, with all of the purity values and two of the
three efficiency values being above 95%. The small differ-
ences among the models are likely due to the values of the
threshold γIa. In particular, Models B2 and B3 have higher
values of γIa and higher purity, but lower efficiency. Unfortu-
nately, for all three models performance degrades substan-
tially on Btest, with purities ranging from 0.57 for model
B1 to 0.65 for model B3 and efficiencies between of 0.80 and

0.88. Because poor purity is penalised harshly, ζIa drops from
> 0.86 in Btrain to < 0.31 in Btest.

All of the models using Utrain preform worse than their
counterparts which use Btrain in terms of both purity and
efficiency on their respective training sets. This is not un-
expected given the smaller separation of the SNIa and non-
SNIa in Utrain relative to Btrain. (Compare the first and third
panels of Figure 9.) Unlike Models B1–B3, however, perform-
ance does not degrade substantially when Models U1–U3 are
applied to their test set. If a classifier is tuned too precisely
to the training set, its performance tends to degrade sub-
stantially in the test set. Using OOB samples aims to avoid
this and appears to work quite well, at least with an un-
biased training set.

The degradation of the models B1–B3 when applied to
Btest illustrates a challenge that arises when the test set is
not representative of the larger population. (This has been
noted by others in this context, see Richards et al. (2012);
Varughese et al. (2015); Lochner et al. (2016)) The good
performance on the test set when the classifiers are trained
on Utrain, however, highlights the potential of our classifica-
tion scheme. This gives us a guiding principle for developing
an improved method: the bias in the training set must be
addressed; this is the topic of Section 6.

Table 5 compares the performance of each model using
a single classification threshold, γIa, for each. To better ex-
plore the trade-off between purity and efficiency, we can plot
efficiency against the false positive rate (the number of false
positives relative to the total number of negatives, i.e. non-
Ia) of the predictions using a fine grid of γIa values between
0 and 1. Such plots are known as Receiver Operator Char-
acteristic (ROC) curves and appear in Figure 10. A perfect
classifier would have an efficiency of one and a false positive
rate of zero and would appear in the upper left corner of
the panels in Figure 10. The ROC curve of a random clas-
sifier, on the other hand, would appear as a 45 degree line,
as shown as a dotted black line in Figure 10. The area un-
der the ROC curve (AUC) is a simple summary of overall
performance. A perfect classifier would have an AUC of 1,
while a random classifier would have an AUC of 0.5.

As expected, the ROC curves for Utest are above those
for Btest, indicating better performance. Likewise the AUC
values in Table 5 indicate better performance with Utest.
Comparing both the ROC curves and the AUC values for
the three different GP kernels, however, shows no substantial
difference between the GP models. Thus, the differences in
the kernel LC fits (e.g., in Figure 6) somewhat surprisingly
do not translate to differences in classification performance.

Figure 11 plots the performance of the models as a func-
tion of redshift (left panels) and as a function of the log
brightnesses, log(sa) (right panels). (Recall that log(sa) is
a measure of apparent brightness for SN a, see (20).) The
classifiers trained on Btrain perform equally well on Btest at
all redshifts up to z . 0.9, but efficiency and purity drop for
larger z (top left panel). For classifiers trained in Utrain, per-
formance on Utest increases to z ≈ 0.9, mainly due to increas-
ing efficiency, and then performance drops at the highest
redshift values (bottom left panel). The efficiency is gener-
ally lower than purity with U , and vice-versa with B. This
can be attributed to the different classification thresholds,
γIa, which in turn is due to the biased composition of Btrain.

As a function of brightness the classifiers trained on

MNRAS 000, 000–000 (0000)

12 Revsbech, Trotta & van Dyk

Designation Kernel Note

1 SE Applied to all LCs
2 Gibbs Applied to all LCs
3 Gibbs / SE Gibbs where log posterior increased by more than 2%

Table 2. GP kernels compared in Sections 5 and 6.

Model (εg , εr, εi, εz) mtry γIa Îg Îr Îi Îz

B1 (10, 2, 10, 20)× 10−6 10 0.57 0.32 0.38 0.14 0.16
B2 (10, 2, 10, 10)× 10−6 9 0.67 0.28 0.40 0.17 0.15
B3 (10, 2, 20, 20)× 10−6 10 0.61 0.27 0.42 0.16 0.14

U1 (2, 2, 2, 6)× 10−4 9 0.43 0.20 0.30 0.27 0.23
U2 (5, 5, 2, 8)× 10−4 9 0.44 0.20 0.26 0.29 0.25
U3 (3, 2, 2, 2)× 10−4 12 0.45 0.19 0.27 0.27 0.28

Table 3. Optimized tuning parameters for the diffusion maps and random forests (i.e., εc and mtry), classification threshold, γIa, and
relative importance of the different bands, (Îc, defined in Eq. (23)), in the final combined random forests, for c ∈ {g, r, i, z}. The model
subscripts refer to the designations in Table 2.

0 2 4 6 8 10 12

−
1

0
1

2
3

4
5

6

Diffusion Coordinate

D
iff

us
io

n
C

oo
rd

in
at

e

●

●

●

Ia
II
Ib, Ic, Ib/c

Btrain

0 2 4 6 8 10 12

−
1

0
1

2
3

4
5

6

Diffusion Coordinate

D
iff

us
io

n
C

oo
rd

in
at

e

Btest

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Diffusion Coordinate

D
iff

us
io

n
C

oo
rd

in
at

e

Utrain

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
Diffusion Coordinate

D
iff

us
io

n
C

oo
rd

in
at

e

Utest

Figure 9. The two most important diffusion coordinates for models B1 and U1. Left Two Panels: Diffusion coordinates for the test and
training sets used with B1. Right Two Panels: Diffusion coordinates for the test and training sets used with U1. For the two test sets,
the diffusion coordinates are computed after applying the Nyström extension of Eq. (A8). The separation between SNIa and non-SNIa
in Utrain is much better maintained in Utest than the separation in Btrain is maintained in Btest.

ζIa AUC

Dataset Biased Unbiased Biased Unbiased

STACCATO Original 0.53 0.59 0.96 0.98
Kessler et al. (2010b)† Original 0.3− 0.45 – – –
Newling et al. (2011) Original 0.39 – – –
Newling et al. (2011) Updated 0.15 0.45 – –
Richards et al. (2012) Updated 0.13 0.31? – –
Varughese et al. (2015) Original 0.49 0.55 – –
Lochner et al. (2016) Updated – – ∼ 0.88 0.98
†Summary of the performance achieved by the “most stable” (as a function of
redshift) classifiers entered in the original challenge.
?Richards et al. (2012) used a resampling strategy that does not produce a truly
unbiased training set.

Table 4. Best results for various SNe classification methods. Although none of the entries are strictly comparable and comparisons should
only be taken as a rough guide, STACCATO results are superior to those obtained with previously published methods, as evidenced by
its higher optimality criteria and AUC values.

MNRAS 000, 000–000 (0000)

STACCATO 13

Training set Test set

Model γIa ζ̃Ia p̃Ia ẽIa ζ∗Ia p∗Ia e∗Ia AUC*

B1 0.57 0.88 0.97 0.97 0.27 0.57 0.88 0.93
B2 0.67 0.88 0.98 0.93 0.31 0.65 0.80 0.93
B3 0.61 0.87 0.97 0.95 0.28 0.59 0.85 0.93

U1 0.43 0.60 0.88 0.86 0.59 0.87 0.86 0.98
U2 0.44 0.56 0.88 0.80 0.59 0.88 0.83 0.98
U3 0.45 0.58 0.88 0.84 0.58 0.87 0.84 0.98

˜denotes OOB estimates from the training set.
∗ based on predictions of the test set.

Table 5. Results of classifying SNIa using different models. Here
ζIa is the training criterion (22) with W = 3, pIa is the purity, eIa
the efficiency, and AUC is the area under the ROC curve. The best
results on ζIa in the training sets and test sets are highlighted in
bold. The classification threshold, γIa, from Table 3 is also shown,
to illustrate its influence on the three classification measures.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

E
ffi

ci
en

cy

B1: Training
B1: Test
U1: Training
U1: Test

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

E
ffi

ci
en

cy

B1: Test
B2: Test
B3: Test
U1: Test
U2: Test
U3: Test

Figure 10. Left: ROC curves for models B1 and U1 on both
training and test sets. Right: ROC curves for all models on test
data only.

0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

2
0.

6
1.

0

Redshift

Efficiency
Purity
ζIa

1.5 2.0 2.5 3.0

−
0.

2
0.

2
0.

6
1.

0

log10(sa)

Model B1
Model B2
Model B3

0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

2
0.

6
1.

0

Redshift

Efficiency
Purity
ζIa

1.5 2.0 2.5 3.0

−
0.

2
0.

2
0.

6
1.

0

log10(sa)

Model U1
Model U2
Model U3

Figure 11. Top row: Performance of models trained on Btrain
when used to classify Btest, as a function of redshift and as a of
function of sa, the log brightnesses. Bottom row: Same but for
models trained on Utrain and tested on Utest.

Btrain perform well on the brighter SNe (larger values of
log sa). For SNe with log sa > 5, both the purity and ef-
ficiency for the best model are above 90%. However, with
fainter SNe the performance is much poorer with very low
purity levels. For the models trained on Utrain the same qual-
itative description holds, although efficiency is higher for
fainter SNe.

Finally, we check whether the number of observation
times in the LCs influences the performance of the classifi-
ers. Surprisingly classification is equally good with SNe with
many observations and with those with only few.

The overall picture emerging from this analysis is that
the classifiers struggle with dimmer, higher-redshift SNe,
more so when trained with Btrain. To improve performance,
we must account for the bias in the training set and im-
prove training for high redshift/low brightness SNe. This is
the guiding idea behind our STACCATO method, which we
introduce in the next section.

6 IMPROVING THE CLASSIFIER WITH
STACCATO

The SN classification challenge of Kessler et al. (2010a)
provided a biased training set because this is what is ex-
pected in a real sample of spectroscopically confirmed SNe.
Dealing with the issue of selection bias is a common problem
in astronomy, and it was recognized in the early 20th cen-
tury. Today, astronomers often refer to Malmquist (1925)
bias to indicate truncation in magnitude-limited samples;
and to Eddington (1913) bias to indicate the effect of meas-
urement error near the sensitivity limit of a survey, when
the underlying sources have a steep distribution of the lat-
ent property one is trying to measure. The usual way to
address selection bias is by “correcting” for it via simula-
tion (in cosmological SN analysis, see e.g. Kessler & Scolnic
(2017)), although arguably better Bayesian solutions exist
(e.g., Budavari (2009); Rubin et al. (2015); Kelly (2007);
Gelman et al. (2013)). Here, we are interested in the specific
issue of how to overcome the effect of selection bias in the
training sample, which thus become non-representative of
the full (test) sample. In other contexts, data augmentation
schemes have been proposed to address this problem (e.g.,
Hoyle et al. (2015)). In this section, we present a new method
that aims to improve the performance of classifiers that use
only a biased training set, Btrain. In particular, in Section
6.1 we use propensity scores to partition Btrain and then sug-
gest a novel approach in Section 6.2 that uses the partition
to improve classification. We call our approach “Synthetic-
ally Augmented Light Curve Classification” or STACCATO.
Given the similarities between classifiers based on the GP
kernels considered in Section 5.2, STACCATO is implemen-
ted only with the SE kernel and only with Btrain. It could,
however, be applied to any set of GP fitted LCs using any
similarly biased training set.

6.1 Grouping SNe by Propensity Scores

Figure 12 illustrates the excess of bright SNe in Btrain, es-
pecially at high redshift. The left panel shows a scatter plot
of redshift and brightness (in terms of log sa, from Eq. 20)
for a random sample of Btest; the right panel plots the same

MNRAS 000, 000–000 (0000)

14 Revsbech, Trotta & van Dyk

*

**

*

*
*
*

**
*

*

*

*

*

*

** * *
*

*
*

* **

* *

*
*

*

*

*

*

* **

*
*

*

*

*
*

*

* **
** *

*

*

* **

*

*
*

*

*

**

*

*

*

* *
*

*

*

*

**
*

*

*

*

**
* ** *

*

*

*
**
*
*

*

*

** *

*

*

*

*

* *

*
*

*

*

*

*

*

**

*
**

*

*
*

*

*
*

*

*
*

* * *

*

*
*

*

*
* *
*

*

*

*

**
*

*

*

*

*

*
* ** *

*

*

* *
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*
*

*

*

*

* *

*

*

*

*

*

* *
*

* * * ***

*

*

*

*

*
*

*

*

*

* *
*
*

*
*

* *
* ***

* *

*

* *
*

**
*

*

**

*
**

*

*

*
*

*

*
*

*

*

*

*
* *

*

*

*

*

**
*

*
*

*

*

**

* *

*

*

* *
*

** *

*
*

*

*
*

*
*

* **

*
*

*
**

*
** *

*

* ** *
*
*

*

*

*
*

* *

*

*
*

*

*
** *

*
*

*

*
*

*
**

*
*

*

*

**

**

*

*

*

*
*

**

*

*

*

* *
*

*
*

*

*

*

*

*
*

*

*
*

*

**

*

*

*

* *

**

*
**

*

*

**
*

*

* *
**
*

* *
*

*
*

*
*

* *

*
*

*
*

*

*

*
*

*
*

*
*

* **
*

*

*

*

*

**

*

*
*

*

*

**

*
*

*

*

*

* *

*

*
*

*

*

*

*

*
* *

*

*
*

* *

*
*

*

*

**
*

*
*

*

*

*

*
*

*

*

*** *

*

**

*

*
*

*

*

*
*

*

*
*

**

*

*
*
*

*
* *

*

*
*

*

*

*

*

*
*
**

*
**

*

*

**

*
* *

*
*

*
*
**

*
*

*
* *

* **

*
* * *

*

*
* **

*

*
*

*

*

*

*
**

*
**

*
**

*

*
*

*

* *

*

*

*

*
**

* ** *

*

* *** *

*

*

*

* *

* *
*

*

*
** *

*

*

* *

*

*
*

* **

**

*

*
*

*

**

**
*

*
*

*

*

*

*
*

*

*
**

*

*
*

* *
*

*
*

*
*

*

*

*

*

* *

*
*

*
*

*

*

*

**
** *
*

**

*

*

* *

* **

*

*

* *
**

* *
*

* *
*

*
* *

**
*

* **

*
**

*

* *
* **

*
*

* *

*

*

*
*
*

*

*

*

*
*

*

*

* *

*

* *

*

*
**

*
*

*

*
*

*
*

*

*
*

*
*

* *

*
*

*
*

*

*

*
*

*
**

* *

*

*

*

*
*

* *

*

*
**

*
*

**
*
*

*
*

*
*

*
**

*

*

*

*
*

* *

*

*

* *
*

*

*
*

*
**

*
*

*

*

*
* *

* **

*

**
*

*
* *

*
*

*
*

*

*

*

*

*

**
**

*

* **

* *
* *

*
* *

*

*

*
** *

* **
*

*
**

*

*
*

*

* *

*

*

*

*
*
*

* * **

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*
*
*

*

*
*

*
*

*

**
*

* *
*

*
*

*

**

*

*
**

*
*

*

*
*
*

*

** **

*
*

*
*

*

*

**

* *
*

*

*

*
**

**
*

*

*

*

* *

*

* *
*

*

*

* *

**

**

*

*
*

*
*

*

*
*
*

* *

*

*

*

* *
*

*

*
*

* *
*

**

*

*
**

*

**

*

**

*

* *

*

**
*

**
** *

*

* *
**

*

*

*

* *
*

*

*
*

*

0.0 0.4 0.8 1.2

1
2

3
4

Redshift

lo
g 1

0(
s a

)

●

●

Btest

SNIa
non−SNIa

0.0 0.4 0.8 1.2

1
2

3
4

Redshift
lo

g 1
0(

s a
)

*
*

*
*

**

*

** *** *
*

*

*

*
**

*
*

* *
*

*

*

**

*

*

*
**
*

*

* *

*

*
*

*

*
*

*
*

*

*
*

*
*

*

*

* *

*
**

*
*

*
* *

*
*

*

*

*

**

*
*

*
*

*
*

* **
**

* *
*

*

*
**

**
*

*
*

**

*
*

**
*

*

*

*
*

*

**
*

*

*

*
*

** *
** **

*

*

*

*

*

*

*

*
* * *

* *
*

*

*
*

*

**
**

*
*

*
**

*
*

*
*

*

*

*
*

*

*
** *

*
* *

* *

*
* *

* *
*

**
*

*

*

*
*

*

*
*

*

*

*
*

*
* *

* *
**

*

** **

*

*

*

*

*
**

**
**

*
*

*

*

*
*

**
*

*
*

* *

*
*

*
** *

*
**

* **
*

*
**

**

*

*

**
*

* *
** ** *

*
*

*
*

**

*
*
*

*
*

*

*
*

*
*

*

*

*
*

**
*

*

* *

*

*

*

* *
*

* **
*

*
*

* *
*
*

**

*
*

**
*
* *

*
*

*

*
*

*
*

**

*

*
*

*

**
*

*

* *

*

* *
*

*
**
** *** *

*
*

*
** *

*

*
**

*
*

*

*

*
* *
*

*

*
*

*
*

*

* *

*
*

*
*

*
**

*

*
*

*
**

*
**

*
*

* * *

*
*

*

**

*

*

*

*

*
*

*

*
*

**
*

*
*

*
**

*
**

* *
**

**
*
* **

*
**

*

*

*
*

*
**

**
*

**
*

*

*
**

**
*

**

**
*

* *
*

*

* *

*

*
*

*
*

** * *

*

*
*

*
*

*
*

*

*

**
*

* ***

*
*

*

*

** *
*

**

* *

*
*

* *
*

* * ***
*

*

*

* *

*
*

*
*

*

*
* ***
*

*
*

*

*

*

*

*

*
**

*
*

*

* ***

*

*

*
*

* ** *

*

** **
* ** *

*

* * *
*

*

*

*
*

*
*

**
* *

* **
* *

*

**
*
*

*
*
**

*
*

*

**
*

*
*

*

*

*

*
**

*

* *

*
* *

*
*

*

** **
*

*

**

*

*
*

*

*

* **
*

*

*
**

*

**

*

**
* **

*
*

*
**

*

*
* *
*

*

**

*
*

**

*

*

** *

*

*
*

* *
*

*
**
*

*

*
*

* *

*

*

*

**
*

*

*
**

*
*

* **
*

*
*

*
*

*

* *
*

**
*

*
* ** **

*** **
*

*

**

**

* *

*
*

**

*
** *

*

*
*

** * **

*

*

*

*
*

**

*

**

*
*
*

*

* * *

*

*
*

**
*

*
* **

*
**

*

*

* *

**
*

*
* *

*

*

*
*

*

*

*

*

*

**

*
*

*
* *

**
*

*
*

**
*

**
*

*

**

*

* ** *
**

**
* *

*

*
*

*
* *

*
*

*
*
**

* *
*

*

*
**

*

*

*

*
*

* *
* *

*

*
**

*

*
*

**

*
*
*

*
*

**** *
**

*

*
*

* ** *
*

**
*

*

*
*

*

*
* *

*

*

**

*

*

* *
**

* *
**

* *
*

*

**

*

*

*

*

*
*

*

*

* *

**
**

*

**

*
**

**
*

*
*

*

*
*

*

*

*
* ****

*

*
*

**

*

* *

*
**

*

*

*
*

*

*

*

*
*

*

*
*
*

*

*
*

*

*

**
*

*
*
**

*

*

*

* * **

*

*

* **
*

*
**

**

* *
*

*
*

* ** *
*

** *

*

* *
*

* *
** *

*
* **

*

* *
*

*

*

*
*

*

**

**
**

*

*
*

**

*

* **
**

** * **

*

*

*
*

**
*

* *

*

* *
**

*

* *
*

*
*

**

*
*

* *
*

*
*

*
**
*

*

*

*

*

*

*
*

*

** *

**
*

*

*

*

*

*
*

*

* *
*

* *
* ***

*
*

*

*

*

*
*

**

*
*

*
*
*

**

**

*
*

*
*

*
* *

*

**
*

*

*

*

*
*
*

*

*

*
*

*
*

*

*
*

*
*

*
*

*

*
*

*

*

*
*

*

**
* ** ** *

*
*

*

*

*
*

**

●

●

Btrain

SNIa
non−SNIa

● Btest

Figure 12. Left: Scatterplot of log sa against redshift for a ran-
dom subset of 1,000 SNe from Btest. Right: Same plot for SNe
in Btrain. Both panels are colour coded by SN type. In the right
panel the grey dots represent the test data for better comparison
of the domains.

0.0 0.4 0.8 1.2

1
2

3
4

Redshift

lo
g 1

0(
s a

)

●

●

●

●

●

Btrain + Btest

Grp. 1
Grp. 2
Grp. 3
Grp. 4
Grp. 5

*

*
* *

*
*

*
**

*

*

*

* **
*

*
**

*
*** **

*
*

*
*

** **
*

*
*

*

*
*
* ***

*
* *

*
*

** *

*

*

*
**

*
*
*

*

*
*

**
*

* *
*

*

** *

*

*

**
*** *

* *
*

*

*
*

* *

*

*
*

*

**

*

*

*
*

*
* *

*

*

* ** *
**

* *

*

*
*

*
*

* *

*

*

*
**

*

*

*
*

*

*

***** ** *

*

**
*

** ***
*

*

*

*

* *

*

*
**

*

*

*

*

*
**

*

*
*

*
*
** **
*

**

*
*

**
*

*

*

**
*

*
* * **

*
*

*

* *

**
*

* *

*
*

**
*

* *
*

*
*

*

*

**

*
* **

*

**

*

** *
*** ** *

*
*

*
*

*
**

*
*

* *

* **
**

* *
** *

**
* *** **

*
*

*

*

*
*

*

*
*

*

*
* *

*
*
*** * *

*

*
*
*

*

*

*

*
*

*
*

* *
*
*

**
* *

**
**

**
*

* *

*

*
*** **

*
*

*

*

*

*
*

*
*

*
* **

*
*

**

*
**

*
*
*

**
* *

*

*

*

*
*

*
*** *

*

*

** *
* **
**

**

*
*

*

*
*

*

*

*

*

*

*

*

* **

*

*
* ****

*

*
* **

*
*

*

*

*
*

**** *
*

* * *
**

**
*
**

**

*
*

*
*

*
**

*
*

*
*

*
* *

**
*
*

*

*

*
*

*
*

*

*

*
*

*
*

*
* *

*

*
**

* ****

**

*
*

*** *

*
**** *

*

*

**

*

*
** ***

*** **
**

*

**

*
* *
*

*

*

* *
*

* * *
** *

*
*

*
*

**
*

*

*
*

*
*

*

**
* **** *

*
*
*** **

*
**

*

**
*
*

**

*

*
*

*

**
*

*
*

**

**

*
*
* *

*

*

**

*

*
*

*

*

*

*
** *

*
*

* * *** *

**
** *

*

**
*

**
*

*
* *

*

*

** *

*
*

* *
**

* **

*
* *

** *** ***

*
*

*
*
*

* *

*
** *
*

*

*
*

**

*

* *

*

**

*
** *

**

*

** ***
*

*
**

*

*

*

*
*

**** *
*

*
* *

*
*

*
* * **

*
*

*
*

*

*

* *
**

*

*

*
* *

*
*

*

*
* ** *

*

*** **
* * *

*
*

*
*

*
*

*

**

*
*

*

*
**

*

*
* *

*

*

*

** *
* **

**
**

*

*

*
* * **

*

*
* *

**

*

*

*

*

** ***

*

**
** *

*
*

*

*
* ** *

**
*

*

*

*

*

*
*

*
* *

**

*

**
*

**
* *

** *
*

*

*

* *

*

*

**
*

** ** **
*

**
* **

*

*

*

* *

*
* *

**

*
** * *

*
**

*

*

*

** *

*
**

*
**

**

*
*

*

*

**
*

** *

*

*

*

*

*

* *

*

*
** *

*
* *

*
*
*

**

*
**** *

**

*
*

*

*
*

*
** *
*

*
*

*

*
*

*** **

*

*
**** *
*

*
*

*
*
*

*

* *
* *

*

*

*** *
*

*

** *
*

*

** ***
* *

*

*

*
**

* *

*

* *** **
**

*
*

**
* ** *

* *

*

*
* ** **
*

*
*
*

*

*

*

**

*

*

*

*

*
**

*

*

*
* ***

*

*

* *
*

*
**

* *
*

* * *
**
*

*
*** **

**
**

*
*

*
*

** *

*** *

*
*

** **

*

* *
* *

**
*

*
** *** **
*

*

**
*

*
*

**

*

*

*

*
* *

*

*
**

*

*

*** *
*

*

*

*

*
*

* *
*

*
*

*
**

*
* **

* **
** *

*
*

*

* *
*

*
* *

**
*

**

*

** *

* *
*

*

*

* *

*

*
**

*
*

*

*
*

* ***

*

*
*

*
*

*

*

*

*

*
* *

** **
* *

**
*

*

*

*
*

*

*

*

*
* **

*
*

*

* *

*

*
*
*
* **

**
*

* * **

*
* ***
* *

*
**

** *

*** *
*

** *
* ** *

*
*

**

*

**
** *

*

** *

*
*
* *

*

*
**

*
**

**
** **

**

*

*

*

*

* *
*
*

*
*

** *

*
*

**
*

**

*
* **

*

*

*

*
*

*
*

* *
*

*
*

*
*

*

*
**

*
**

*

*

*

*

*

*

*

*
*

*
**

*

**
* ***

* *
*** *

** *
*

*
* *

** *

*
*

*
* **

*

*
**

* *
**

*
**

*
*

*
*

*

*
*

*
** **
*

*

*

*

* **

*
**

*

** ** **
**

*

* *

*

*
* *

*
*

*
*

*

* *

*

**

*

*
* ***
* **

*

*

* * *
* *

*
**

*

*

*

*

* *

*

*

*

*

*
*

*

* *
*

*
**

**
*

*

*
*

*
*

*
*

*

*
* *

*

*
*

*

**

*
**

* **

*

*

*

*
*

* *

* *
* *

**
*

*
*

* * *
*

*
*

*
*
*

*

* *

*

*

*
*

*

** *
*

*

*

*
*

*

*

*
*

** ** ** *
*

*

*
* *

*

*
*

*

*

**
**

*

*
**

*

*

*

*
*

*

*
** *

*
*

*

*
**

*

**
*

*
**

* **

*
**** * * *

*

*

*

* *
*

*
* *

* * *** *

*

*

**
*

*
*

*

*

*
* *** *

*
**

*

*
*

*

**
*

*
*

*

** *
*

*

**

*
*

*

*
*

*
*

*

* *
* *

*
*

*
*
** ** * *

*

*

0.0 0.4 0.8 1.2

1
2

3
4

Redshift

lo
g 1

0(
s a

)

*
*

*
**

*
* **

**
* *
**

*
*

*

* * **

*
*

*** * ****
**

* ***
**

*
*

***** ** *
* *

*
*
* **** * ** ***

* ***** * ** **
*

*** **
** ** ** *

** *
*

*
** ** ** *** * *
*** ** *

**
** * *** **
* ** *** ** * **

*
**

**
*

**** * *

** *

*
* * ***

*
** *

* ** * *
**** ** *

* ** ** *
*

*
** *** *** ***

*
* * *

* **
*

*

*
* **

* *

* **** **
* **

* ***
*

** * *
**** *

*
**

*
** **

** *
*

** **
**

*
*** **** *** ****

** *
*

*
*

**
*

* **
*

*

*
*

*
* *** ** ** ***

*
*

* * ** **
*

* *
* *** *** *** *

*
**

*
* *

*

* * * *** * ** **** ** *
** ** *

*
** ** *** * **** ** * ** * *

* * *
*

*
*

* * ***** ** *** *
* ***

*

** * *
* *
*

**** *** *** **
**

** **
* ** * ** ** ** *

**
**** ** **** * *

* * **** * *
*

* **
*

**
* ** ** * * * **

*
**

* ****
** * ***** * * *** *** * **

* * ***
*

** ***
* **

*
* *

* ****
* **

* *
*

** * * *

* ** * * ** *
*

*

*
* **

** * ***
*** ***
* **

** * *
*

**
** * ** *** * * **
*** ** **

**
**

** ** *** **** *
*

** *
*

**
*

*
*

** *** * * ** **

*
*

*
**** *** ** **

* **
** *

*
*

* * *
* * *** ** * ** **** *

*
* *** ***

●

●

●

●

●

Btrain

Grp. 1
Grp. 2
Grp. 3
Grp. 4
Grp. 5

Figure 13. Propensity Score Groups. Left: Scatterplot of log10 sa
against redshift for the entire dataset (Btrain+ Btest), colour-
coded according to the five groups in Table 7, obtained by parti-
tioning on the fitted propensity score. Right: The same, but show-
ing only the data from Btrain. One can clearly see the paucity of
training data in groups 3–5.

variables for Btrain. Clearly, Btrain over-represents brighter
SNe and completely lacks the fainter SNe found in Btest,
especially at high redshift.

Propensity scores are used in observational studies to
quantify the probability that a unit is in the treatment group
rather than the control group (Rosenbaum & Rubin 1984).
Here we define the propensity score as the probability that
a particular SN belongs to Btrain, as function of a set of ob-
served covariates. We can partition the data based on their
propensity scores into a number of groups, such that within
these groups the bias between the training and test set is
substantially reduced. Rosenbaum & Rubin (1984) argue
that (under certain assumptions) five groups are sufficient
to remove approximately 90% of the bias. Propensity scores
can naturally be modelled using a logistic regression with
the response variable being membership in Btrain. Ideally all
covariates that exhibit bias (i.e., a different distribution in
Btrain and Btest) should be included in the regression so as
to balance their distributions in the groups. For illustration
we include redshift and brightness in the logistic regression
and define the propensity score to be the conditional prob-
ability of a randomly selected SN being a member of Btrain
given its brightness and redshift. Table 6 reports the fitted
(maximum likelihood) coefficients for the logistic regression.

Predictor variable Estimate p-value

(Intercept) −10.6790± 0.3348 < 10−4

Redshift 1.3412± 0.2009 < 10−4

Brightness 1.4751± 0.0466 < 10−4

Table 6. Logistic regression applied to the entire dataset
(n=17,330). The response variable identifies which SNe are in
Btrain (= 1) and which are in Btest (= 0). (Apparent) Brightness
is described by log(sa) from Eq. (20). We also show the p-value for
including each predictor variable in the model, given the others.

Number Number Proportion
Group Set of SNe of SNIa of SNIa

1 Training 947 652 0.69
Test 2519 1242 0.49

2 Training 245 181 0.74
Test 3221 1147 0.36

3 Training 17 12 0.71
Test 3449 754 0.22

4 Training 6 6 1
Test 3460 342 0.10

5 Training 2 0 0
Test 3464 107 0.03

Table 7. Composition of the five groups obtained by partitioning
the data based on the fitted propensity scores.

Following Rosenbaum & Rubin (1984), we use the quin-
tiles of the estimated propensity scores (i.e., the fitted val-
ues from the logistic regression) to split the entire data set
into five equally-sized groups. The resulting partition into
groups is plotted in Figure 13 and summarised numerically
in Table 7. Due to the severe bias in brightness, Groups 3–5
contain very few SNe from the training set, Btrain: specific-
ally, they contain just 17, 6, and 2 of the 1,217 SNe in Btrain.
Notice that even though the SNe types are not used in the
linear regression, the type imbalances between the test and
training sets are greatly reduced in Groups 1–2 compared to
the imbalance in the test and training sets as a whole (cf.
Table 1).

In Figure 14 ROC curves for models B1 (left) and U1
(right) are plotted for the five propensity score groups from
Table 7, where the grouping is only used for partitioning
the test set; the random forest classifier is fit and tuned us-
ing the combined data. Under model B1, the ROC curves
become coarser with increasing group number because of
the smaller numbers of SNIa in the Groups 3–5. The per-
formance in Groups 1–2, where a large proportion of Btrain
resides, is very good with almost perfect classification. Per-
formance degrades in Groups 3–5, however, to the degree
that classification in Group 5 is not much better than a ran-
dom classifier.

When using an unbiased training set (right panel of Fig-
ure 14) classification is nearly equally good in all five groups,
with only slightly worse classification in Group 5. This re-
calls previous results that conclude that an unbiased training

MNRAS 000, 000–000 (0000)

STACCATO 15

Term Meaning

Groups The entire dataset is split into five
equal sized groups based on the
propensity scores.

Test (Training)
Groups

SNe in the test (training) set
are partitioned according to their
group membership.

Augmented
Training Groups

The training groups are augmented
with other training groups and/or
synthetic LCs before being used to
train the group-specific classifiers.

Validation and
Generalization Groups

Each test group is randomly di-
vided into a validation and gener-
alization group, such that each val-
idation groups contains 1500 SNe.

Table 8. Terminology used for group-specific analyses.

set is necessary to obtain good performance with standard
classification methods (Lochner et al. 2016; Varughese et al.
2015). In the next section we show how propensity scores
can be used to obtain good classification even with a biased
training set.

6.2 STACCATO: Synthetically Augmented Light
Curve Classification

6.2.1 STACCATO methods

Our approach to mitigate bias and improve LC classific-
ation is to train the classifier separately within the five
groups defined by the propensity scores. Thus we divide
both the test and training set into five groups according to
the propensity scores to obtain the five test groups and five
training groups, respectively (See Table 8 for group termino-
logy.) An immediate difficulty with obtaining group-specific
classifiers is the lack of data in Training Groups 3–5, and in
particular the lack of SNIa. In situations with imbalanced
data in one or both categories, a popular strategy is to over-
sample the underrepresented observations and/or to down
sample the over-represented observations (Japkowicz et al.
2000). Rather than resampling the sparse training groups
(corresponding to Groups 3–5), we create augmented train-
ing groups by synthesizing observations in the LC space, a
procedure inspired by Ha & Bunke (1997); Chawla et al.
(2002) – an approach we call ‘STACCATO’.

We thus exploit the probabilistic nature of the GPs to
over-sample the LCs by sampling ‘synthetic’ curves from
the fitted GPs. More precisely, we augment the small train-
ing groups by generating K synthetic LCs for each SN in
that group, where the augmentation factor, K, may vary
between training groups and where each synthetic LC is
drawn band-by-band from the fitted GP for that SN. Com-
pared with simply resampling Training Groups 3–5, our aug-
mented training groups have two advantages. First, the pos-
terior mean vectors of the GPs that we use as the input
for the diffusion maps are only estimates and may differ ap-
preciably from the true LCs, at least with noisy data. By
sampling LCs from the GPs, the augmented training group
takes these uncertainties into account. Second, sampling ad-

ditional LCs creates a richer sample in the regions of diffu-
sion space most relevant for classification.

The key innovation of STACCATO is to construct an
augmented training group for each of the five test groups.
The augmented training group for each test group may be
constructed using more than one of the original training
groups, and each may be supplemented with synthetic LCs
using different augmentation factors. As there are many
ways to augment the training groups, choosing the aug-
mentation scheme may benefit from an optimization step.
The rows of Table 9 give the augmented training groups
configurations considered for each of the five test groups.
Here, a ‘+’ indicates that the SNe of a given training group
(columns) are included in the augmented training set for
that test group (rows); a ‘–’ indicates that they are not
included; a ‘+/–’ indicates that both possibilities are con-
sidered; and the numbers in parentheses are the considered
augmentation factors, i.e., the number of synthetic LCs that
are sampled for each SN of the original training group. While
this is not an exhaustive search of the possible configura-
tions, it is meant to span a wide range of choices. We then
select the optimal configuration as the one that gives the
highest AUC within each test group, as described below.

The sampled synthetic LCs are standardized in exactly
the same manner as the original data. For each possible con-
figuration of the augmented training groups, the diffusion
maps are constructed using only the LCs in that config-
uration. For simplicity we set ε = 2 × 10−5 in all diffusion
maps andmtry = b

√∑
c∈C mcc in all random forests, where

C = {g, r, i, z}. (I.e., the diffusion maps and random forests
are not optimized over ε and mtry as described in Section
4.3.) For each of the five groups, we want to select the con-
figuration that gives the highest AUC within that group. In
order to accomplish this, we follow Friedman et al. (2009,
ch. 7) and partition the test group into a validation and
a generalisation group, with 1500 LCs in each validation
group. The validation groups are used to compute the AUC
for each configuration, and the configuration that leads to
the highest AUC is chosen. The generalization groups are
used to measure the performance of the best configuration.
In practice, the SN types in the test groups are not known so
the training groups or subsets of the training groups should
instead be used to compare the AUC for each configura-
tion. This, however, may be infeasible in practice when the
training groups are very small (e.g., Training Groups 3–5).
Alternatively, the optimal configuration choice can be de-
termined using a simulation study, such as that used in the
SN photometric classification challenge.

6.2.2 STACCATO summary

In summary, STACCATO proceeds by

(i) Fitting the LCs using a GP implemented with a
squared exponential kernel as described in Section 2.2;
(ii) Forming the training groups by grouping the training

set according to a fitted propensity score model as described
in Section 6.1;
(iii) Augmenting each of the training groups with ob-

served LCs from other training groups and/or synthetic LCs
sampled under the GP fits of observed SNe, as described in
Section 6.2.1;

MNRAS 000, 000–000 (0000)

16 Revsbech, Trotta & van Dyk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

E
ffi

ci
en

cy

Btest

Grp 1: AUC = 0.990
Grp 2: AUC = 0.987
Grp 3: AUC = 0.929
Grp 4: AUC = 0.795
Grp 5: AUC = 0.628
All: AUC = 0.929

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

E
ffi

ci
en

cy

Utest

Grp 1: AUC = 0.981
Grp 2: AUC = 0.992
Grp 3: AUC = 0.987
Grp 4: AUC = 0.978
Grp 5: AUC = 0.966
All: AUC = 0.977

Figure 14. ROC curves for the five test groups in Table 7, computed using a classifier trained with the biased training set (right) and
with the unbiased training set (left). In both cases the grouping is only used for partitioning the test set. The random forest classifier is
fit and tuned using the combined data.

Test Training Groups
Group 1 2 3 4 5

1 + (0) +/– (0-2) – – –
2 +/– (0) + (0-2) – – –
3 – +/– (0) + (0-10) + (0-10) + (0-10)
4 – +/– (0) + (0-10) + (0-10) + (0-10)
5 – +/– (0) + (0-10) + (0-10) + (0-10)

Table 9. Composition of the augmented training groups (along rows) for each test group (rows). A ‘+’ indicates that an augmented
training group included the original training group corresponding to a particular column; a ‘–’ indicates that original training group is
not used; a ‘+/–’ indicates that both combinations were tried. The numbers in parentheses give the number of LCs synthesized for each
of the LCs in the original training group, i.e. the augmentation level. Thus a ‘+ (0)’ symbol means that the original training group was
used, with no augmentation.

Test Optimal training group configuration AUC with AUC w/o AUC
Group 1 2 3 4 5 synthetic LCs synthetic LCs original

1 + (0) – – – – 0.991 0.991 0.993
2 + (0) + (2) – – – 0.989 0.990 0.988
3 – + (0) + (0) + (5) + (5) 0.968 0.958 0.926
4 – + (0) + (5) + (10) + (5) 0.919 0.887 0.791
5 – + (0) + (6) + (10) + (2) 0.842 0.709 0.636

Table 10. Optimal configuration for STACCATO classification along with their AUCs. For comparisons the AUC of the same config-
uration but without adding synthetic LCs (i.e., corresponding to setting all numbers in the parentheses to zero) and the AUC using
the original Btrain, computed without STACCATO are also given. (The original analysis is the same as summarized in Figure 14. Each
AUC is computed using only the corresponding generalization group, resulting in small variations in the last column compared with
Figure 14). Notation is the same as in Table 9.

MNRAS 000, 000–000 (0000)

STACCATO 17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

E
ffi

ci
en

cy

Grp 1: AUC = 0.991
Grp 2: AUC = 0.989
Grp 3: AUC = 0.968
Grp 4: AUC = 0.919
Grp 5: AUC = 0.842
All: AUC = 0.961

Figure 15. Classification with STACCATO. ROC curves of the
optimal configurations given in Table 10. The curves are com-
puted using the generalization groups. For comparison, ROC
curves from Figure 14 (without STACCATO) are plotted as
dashed curves.

(iv) Time-aligning and normalizing the LCs as described
in Section 3;
(v) Separately computing diffusion maps for each of the

augmented training groups, including the Nyström exten-
sion described in Appendix A2;
(vi) Classifying the SNe in each training group using a

separate random forest as described in Section 4.2.

Step (iii) requires an augmentation scheme. In our cur-
rent implementation each scheme is determined via recursive
optimization over a validation group. Other schemes that do
not require validation groups are possible and are the sub-
ject of ongoing research.

6.2.3 STACCATO results

Table 10 lists the optimal configurations (determined by op-
timizing the AUC on the validation groups), along with their
AUCs, computed on the generalisation groups. For compar-
ison we also give the AUCs of the same configuration but
without adding the synthetic LCs to the augmented train-
ing groups. (The training groups are still augmented in that
they may combine more than one of the original training
groups.) We also report the AUCs using each of the gener-
alization groups without any augmentation. (Although this
analysis follows the same steps as that illustrated in Fig-
ure 14, the AUC values are slightly different than those re-
ported in Figure 14 because the original analysis used the
entire test set rather than just the generalization groups.)
STACCATO delivers significantly larger AUC across all test
groups, particularly when synthetic LCs are included in the
augmented training groups.

Figure 15 compares the ROC curves for the optimal

configurations given in Table 10 (i.e., using the augmen-
ted training groups with synthetic LCs) with those given in
Figure 14. The substantial classification improvements ap-
parent for Groups 3–5 are largely driven by the addition of
synthetic LCs. The optimal training group for Group 5, the
group that benefits the most from augmentation, includes
436 LCs, of which≈ 38% are synthetic. In contrast, Groups 1
and 2 show no improvement when synthetic LCs are intro-
duced. Combining classification among all five groups, the
AUC increases from 0.919 in the original model to 0.961
with STACCATO. Compared with the AUC of 0.977 ob-
tained when using the unbiased training set, STACCATO
performs almost as well as this gold standard.

Ultimately, we propose to use STACCATO to compute
the probability that any particular photometrically observed
SN is a SNIa. These probabilities can be used as weights
or priors in secondary analyses and and their computation
does not require artificial hard thresholding. For compar-
ison with existing methods, however, we propose a dynamic
threshold that increases with the propensity group num-
ber and thus accounts for the fact that there are more
SNIa among the bright SNe (low numbered groups). Spe-
cifically, setting arbitrary classification thresholds of γIa =
0.50, 0.60, 0.70, 0.80, 0.90 for Groups 1–5, we obtain an ef-
ficiency of eIa = 0.846, a purity of pIa = 0.834 and an
optimality criterion of ζIa = 0.529 on the generalisation
groups. Even without any optimization of the classification
thresholds, we achieve a better optimality criterion than any
of the previous results on the same data set (see Table 4). We
therefore simply adopt our arbitrary choice for the classific-
ation thresholds, without any form of optimization on the
threshold, to further compare STACCATO results, obtained
both with Utrain and Btrain, with other published methods
in Table 4.

The comparison is complicated by the fact that differ-
ent authors used different version of the SN classification
challenge simulations. Richards et al. (2012) and Lochner
et al. (2016) adopted an updated version of the simulated
data with a number of corrections and bug fixes that was
released after the challenge (Kessler et al. 2010b). Newling
et al. (2011) report that classification using the updated sim-
ulation is more difficult. This might be in part due to the
fact that two bugs where discovered in the original simula-
tion (the one used in this paper), which made classification
easier: some SNIa were too bright, while all non-SNIa were
too dim by a factor (1 + z) (Kessler et al. 2010b) (We will
apply STACCATO to the newer, more difficult simulation in
a future paper.) Further, the results of the original challenge
are presented as a function of redshift, with no combined res-
ult reported, and only Btrain was considered. Kessler et al.
(2010b, p. 8) note that the “most stable” classifiers obtained
ζIa ∈ [0.3, 0.45] at all redshifts. (Some classifiers achieved
ζIa = 0.6 at some redshift, but with large downwards vari-
ations of a factor of 2 at other redshift values, suggesting an
overall poorer performance once averaged over redshift.) Al-
though none of the entries in Table 5 are exactly comparable,
results obtained with STACCATO appear to be superior to
all previously published methods, as evidenced by the its
higher optimality criterion and AUC values.

MNRAS 000, 000–000 (0000)

18 Revsbech, Trotta & van Dyk

7 DISCUSSION AND CONCLUSIONS

Augmenting a biased training set with synthetic LCs sim-
ulated from fitted GPs can dramatically improve SN clas-
sification, without needing to observationally obtain an ex-
pensive unbiased training set. To our knowledge, this is the
first demonstration of this technique. Although the quality
of the GP LC models vary when judged by eye, we find that
classification results are nonetheless insensitive to the choice
of GP covariance function.

We achieve increased performance levels in AUC, from
0.93 using the biased training set to 0.96 using STACCATO.
This compares well with the best result in the literature,
an AUC of 0.88, obtained by Lochner et al. (2016) with a
biased training set. STACCATO also compares favourably
with the gold standard of 0.98 obtained using our method
with an unbiased training set, which itself matches the per-
formance of previous methods applied with representative
training sets (Lochner et al. 2016). We also obtain signific-
antly higher purity values than previous studies with the
same simulated data (0.59, compared to the previous best
result of 0.55 obtained by Varughese et al. (2015)).

Although Möller et al. (2016) obtain an AUC of 0.98
by applying random forests and boosted decision trees to
a simulated SNLS3 SN sample, this simulation is explicitly
designed to include a larger number of fainter objects than
the standard training set. This effectively creates a repres-
entative training set. Indeed they find that a set of specially
designed selection cuts is “essential” for good classification.
Our approach demonstrates that such cuts can be avoided.

Dai et al. (2017) also report an AUC of 0.98 on a set
of LSST-like SN simulations using a random forest classi-
fier. However, this result requires a representative training
set that is 30% the size of the test set. As Dai et al. (2017)
acknowledge, this is impossible to obtain in practice, hence
they suggest using a simulation to generate a large repres-
entative training set. Again, STACCATO achieves compar-
able performance without needing such a large representat-
ive training set.

Another advantage of STACCATO is that the
propensity scores groups can be used to assess the classifica-
tion quality. In propensity scores groups with a small train-
ing set, accurate classification may not be possible, while it
can be very accurate in groups with a large training set. Fur-
thermore, STACCATO enables the identification of a subset
of SNe for spectroscopic follow up with a high probability of
containing a sizable proportion of SNIa. For example, among
the 20 SNe in Group 5 that are most likely to be SNIa (as
judged by random forest votes) five are actually SNIa, a pro-
portion of 25%. Given that only 2.7% of the SNe in Group 5
are SNIa, this is a considerable improvement in the pro-
portion of SNIa among those identified for follow-up. For
comparison, when using the biased training set, only one
SNIa is found among the 200 most likely SNe in the same
group, a fraction of 0.5%. Thus STACCATO leads to a 50
fold improvement in the probability that a SN identified for
spectroscopic follow-up at high redshift is a SNIa (i.e., the
true positive rate).

The propensity score groups have differing proportions
of SNIa even after controlling for redshift and brightness,
which suggests that there are other variables that could be
informative in modeling the inclusion of SNe in the training

0 2 4 6 8 10

0
5

10
15

Augmentation Factor

%
 In

cr
ea

se
 in

 A
U

C

Grp. 3
Grp. 4
Grp. 5

Figure 16. Percent increase in AUC as a function of the aug-
mentation factor. All groups are trained on the combined ob-
served training sets from Groups 2–5 using a common augment-
ation factor in Groups 3–5, as plotted on horizontal axis. Zero
corresponds to no augmentation and is the baseline against which
increasing degrees of augmentation are compared.

set (e.g., via logistic regression). It would be interesting to
include additional variables (such as the signal to noice ra-
tio, data quality cuts, etc) that bias spectroscopic follow-up
in favour of SNIa. This would enable the propensity scores
to identify groups where the training set better represents
the test set in terms of the distributions of the additional
variables in the training and test sets.

The current implementation of STACCATO requires
the SN types for the validation groups in order to optim-
ize the configuration of the augmented training groups. In
a real application, the SN types for the test groups are un-
known, and therefore the validation groups are not available.
Simulation studies, however, could be used to optimize the
configuration of the training sets before being rolled out on
the actual test set. However, even in the absence of a defin-
itive scheme for optimizing the augmentation scheme, Fig-
ure 16 demonstrates that augmenting small training groups
is almost always beneficial. The figure depicts the effect of
augmentation on AUC in Groups 3–5. All three groups are
trained using (the original) Training Groups 2–5 and using
the same augmentation factor (from 0 to 10) in Groups 3–
5. Group 3 is relatively insensitive to augmentation; this is
also indicated in Table 10. Groups 4 and 5 both benefit from
increasing levels of augmentation. In particular, the trend of
the AUC as the augmentation factor increases is either pos-
itive or flat, with only local minor decrements. Thus, an
augmentation factor of up to ten seems to be a safe choice
for small training groups, even without optimizing the aug-
mentation scheme using a validation group.

We leave further investigation of both the tuning of
STACCATO in the absence of a validation group and ac-
counting for errors in or unavailable redshift measurements
to future work.

Acknowledgements: We thank David Stenning for help-
ful suggestions on the statistical methods developed in this
paper and Bruce Bassett, Michelle Lochner and Rick Kessler
for useful comments on a draft. This work was supported
by Grant ST/N000838/1 from the Science and Technology
Facilities Council (UK). RT was partially supported by an
EPSRC “Pathways to Impact” grant. RT and DvD were sup-
ported by a Marie-Skodowska-Curie RISE (H2020-MSCA-

MNRAS 000, 000–000 (0000)

STACCATO 19

RISE-2015-691164) Grant provided by the European Com-
mission.

References

Adler R. J., 1990, An introduction to continuity, extrema, and
related topics for general Gaussian processes. Hayward, CA.
Institute of Mathematical Statistics

Budavari T., 2009, Astrophys. J., 695, 747
Byrd R. H., Lu P., Nocedal J., Zhu C., 1995, SIAM Journal on

Scientific Computing, 16, 1190
Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P., 2002,

Journal of artificial intelligence research, 16, 321
Coifman R. R., Lafon S., 2006, Applied and computational har-

monic analysis, 21, 5
Dai M., Kuhlmann S., Wang Y., Kovacs E., 2017
Eddington A. S., 1913, MNRAS, 73, 359
Freeman P., Newman J., Lee A., Richards J., Schafer C., 2009,

Monthly Notices of the Royal Astronomical Society, 398, 2012
Friedman J., Hastie T., Tibshirani R., 2009, The elements of stat-

istical learning, 2 edn. Springer series in statistics Springer,
Berlin

Gelman A., Carlin J. B., Stern H. S., Rubin D. B., 2013, Bayesian
data analysis, third edn. Taylor & Francis

Gibbs M. N., 1997, PhD thesis, University of Cambridge
Givens G. H., Hoeting J. A., 2012, Computational statistics. John

Wiley & Sons
Ha T. M., Bunke H., 1997, IEEE Transactions on Pattern Ana-

lysis and Machine Intelligence, 19, 535
Hlozek R., et al., 2012, Astrophys. J., 752, 79
Hoyle B., Rau M. M., Bonnett C., Seitz S., Weller J., 2015, Mon.

Not. Roy. Astron. Soc., 450, 305
Japkowicz N., et al., 2000, in AAAI workshop on learning from

imbalanced data sets. pp 10–15
Kelly B. C., 2007, Astrophys. J., 665, 1489
Kessler R., Scolnic D., 2017, Astrophys. J., 836, 56
Kessler R., Conley A., Jha S., Kuhlmann S., 2010a, arXiv preprint

arXiv:1001.5210
Kessler R., et al., 2010b, Publications of the Astronomical Society

of the Pacific, 122, 1415
Kim A. G., et al., 2013, Astrophys. J., 766, 84
Knights M., Bassett B. A., Varughese M., Hlozek R., Kunz M.,

Smith M., Newling J., 2013, JCAP, 1301, 039
Kunz M., Bassett B. A., Hlozek R., 2007, Phys. Rev., D75, 103508
LSST Science Collaboration et al., 2009, preprint,

(arXiv:0912.0201)
Lafon S., Lee A. B., 2006, IEEE transactions on pattern analysis

and machine intelligence, 28, 1393
Lochner M., McEwen J. D., Peiris H. V., Lahav O., Winter M. K.,

2016
Malmquist K. G., 1925, Meddelanden fran Lunds Astronomiska

Observatorium Serie I, 106, 1
Möller A., et al., 2016, JCAP, 1612, 008
Newling J., et al., 2011, 414, 1987
Perlmutter S., et al., 1999, The Astrophysical Journal, 517, 565
Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for

Machine Learning. The MIT Press
Richards J. W., Homrighausen D., Freeman P. E., Schafer C. M.,

Poznanski D., 2012, Monthly Notices of the Royal Astronom-
ical Society, 419, 1121

Riess A. G., et al., 1998, The Astronomical Journal, 116, 1009
Roberts S., Osborne M., Ebden M., Reece S., Gibson N., Aigrain

S., 2012, Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences,
371

Rosenbaum P. R., Rubin D. B., 1984, Journal of the American
statistical Association, 79, 516

Rubin D., et al., 2015, Astrophys. J., 813, 137
Seikel M., Clarkson C., Smith M., 2012, Journal of Cosmology

and Astroparticle Physics, 2012, 036
Varughese M. M., von Sachs R., Stephanou M., Bassett B. A.,

2015, MNRAS, 453, 2848

MNRAS 000, 000–000 (0000)

http://dx.doi.org/10.1088/0004-637X/695/1/747
http://dx.doi.org/10.1093/mnras/73.5.359
http://adsabs.harvard.edu/abs/1913MNRAS..73..359E
http://dx.doi.org/10.1088/0004-637X/752/2/79
http://dx.doi.org/10.1093/mnras/stv599
http://dx.doi.org/10.1093/mnras/stv599
http://dx.doi.org/10.1086/519947
http://dx.doi.org/10.3847/1538-4357/836/1/56
http://dx.doi.org/10.1088/0004-637X/766/2/84
http://dx.doi.org/10.1088/1475-7516/2013/01/039
http://dx.doi.org/10.1103/PhysRevD.75.103508
http://arxiv.org/abs/0912.0201
http://adsabs.harvard.edu/abs/1925MeLuF.106....1M
http://dx.doi.org/10.1088/1475-7516/2016/12/008
http://dx.doi.org/10.1088/0004-637X/813/2/137
http://dx.doi.org/10.1093/mnras/stv1816
http://adsabs.harvard.edu/abs/2015MNRAS.453.2848V

20 Revsbech, Trotta & van Dyk

MNRAS 000, 000–000 (0000)

STACCATO 21

APPENDIX A: DIFFUSION MAPS

A1 Construction of the Diffusion Maps

Let Yc = {Yi, . . . , YN} denote the normalised LC data in
colour band c and define a metric dc : Yc × Yc 7→ [0,∞).
The specific choice of dc is introduced in Section A3. The
metric is used to construct a Markov chain. The LCs form
the state space and the probabilities of the Markov chain
jumping from one LC to another are determined by the dis-
tance between the LCs under the metric, dc. Similar LCs
are given high transition probabilities. The pairwise dis-
tances are transformed with a Gaussian kernel and norm-
alised so that the transition probabilities sum to one. Define
the ‘weight’ function, wc : Yc × Yc 7→ (0, 1], and the trans-
ition probabilities pc(x, y) as

wc(x, y) = exp
(
−dc(x, y)2

εc

)
(A1)

pc(x, y) = wc(x, y)∑
z
wc(x, z)

, (A2)

where εc > 0 is a tuning parameter. Note that by applying
(A1) a distortion favouring ‘local jumps’ in the Markov chain
is introduced due to the exponential decay in (A1). As a
result, for many LC pairs wc is small. For computational
efficiency a sparsity parameter δ is introduced, such that if
wc(·, ·) < δ then it is set to zero; we use δ = 10−5. With
these definitions we can compute a sparse N ×N transition
matrix Pc giving the probabilities of jumping between all
pairs of c-band LC.

Define the diffusion distance between two LCs from the
transition probabilities as

Dc(x, y)2 =
∑
z∈Yc

[pc(x, z)− pc(y, z)]2

φ0c(z)
, (A3)

(notice that z here is a dummy index, not redshift) where
φ0c(z) is the stationary distribution of the Markov chain,

φ0c(x) =
∑

z
wc(x, z)∑

y

∑
z
wc(y, z)

. (A4)

Assuming that the Markov chain is irreducible, it follows
from the construction of the chain that the stationary dis-
tribution exists and is unique (Coifman & Lafon 2006). The
diffusion distance in (A3) measures the similarity between
two LCs as the squared difference in probabilities of trans-
itioning from x to z versus y to z in a weighted sum over all
z ∈ Yc.

The diffusion distances can be calculated from the right
eigenvalues and eigenvectors of the transition matrix Pc, spe-
cifically,

Dc(x, y)2 =
N−1∑
j=1

λ2
j (ψj(x)− ψj(y))2 (A5)

≈
m∑
j=1

λ2
j (ψj(x)− ψj(y))2 , (A6)

where |λ0| > |λ1| > · · · > |λN−1| are the eigenvalues
sorted in descending order and ψj are the correspond-
ing eigenvectors normalised according to φ0c, such that∑

x
ψ2
j (x)φ0c(x) = 1, with ψj(x) equal to entry x of ei-

genvector j. (To simplify notation we suppress the subscript

c indicating the colour band for ψ and λ.) The first eigen-
vector and eigenvalue has been left out of the sum in (A5).
This is because ψ0 can be shown to be constant in its entries.
Because the eigenvalues are in decreasing order, most of the
diffusion distance can be explained by the first m � N
terms in the sum, hence the approximation in (A6). In our
numerical results, we set m to be the smallest value such
that λm < 0.05λ1 (in (A6)), with a maximum cap of 25.

Using (A6) the diffusion map, Ψc : Yc 7→ Rm, is defined

Ψc : x 7→ [λ1ψ1(x), λ2ψ2(x), . . . , λmψm(x)] . (A7)

From this mapping the approximate diffusion distances (A6)
can be calculated as the Euclidean distance between the
representation of the LCs in the diffusion space. For further
details on diffusion maps, see e.g. Lafon & Lee (2006) and
Coifman & Lafon (2006).

A2 The Nyström Extension

Richards et al. (2012) apply the diffusion map to the en-
tire dataset, including training and test sets. This approach
results in what is called a ‘semi-supervised’ classification al-
gorithm, in that the unlabelled LCs are used to construct the
representation of the LCs in Rm. In contrast, we use only the
training data to construct the diffusion map. This has two
benefits. First, computing and storing the distance matrix
Pc requires considerable computational resources and scales
as O(N2) where N is the number of LCs. Hence computing
the diffusion map on only about 7% of the data is advant-
ageous from a practical perspective. Second, in Section 6
we show that computing the diffusion map on the train-
ing data only increases classification performance. However,
this approach requires a method to map new LCs (i.e. the
curves that need to be classified and were not included in
the training set) into the diffusion space. The Nyström ex-
tension gives a simple method to do this.

The following outline of the Nyström extension is based
on Freeman et al. (2009). Suppose there are n c-band LCs
in the training set, and k unlabelled c-band LCs in the test
set. The first step of the Nyström extension is to compute a
k×nmatrixWc with entries equal to the normalized wc(x, y)
with x representing a LC in the test set and y a LC in the
training set. Using the same εc parameter, the rows of Wc

are normalised, as with Pc, following (A2).
The eigenvectors used to construct the diffusion map

in (A7) can be arranged in a n×m matrix Ψc. The corres-
ponding eigenvalues are used to construct anm×m diagonal
matrix Λc with diagonal entry i equal to 1/λi. Finally, the
diffusion-space coordinates of the test set LCs are given by
the rows of the k ×m matrix built as follows:

Ψ′c = WcΨcΛc. (A8)

A3 The Light Curve Metric

The mean squared difference,

dc(x, y) = 1
t̃cu − t̃cl + 1

t̃cu∑
t=t̃c

l

(
f̃cx(t)− f̃cy(t)

)2
, x, y ∈ Y,

(A9)

MNRAS 000, 000–000 (0000)

22 Revsbech, Trotta & van Dyk

is used as the LC metric, where t̃cl = max
(
t̃cx,1, t̃

c
y,1
)
and

t̃cu = min
(
t̃cx,nc

x
, t̃cy,nc

y

)
form the lower and upper bounds of

the common time domain of the two LCs. When t̃cu < t̃cl , i.e.,
when there is no common domain for the two LCs, dc(x, y)
is set to one. (This is a large value relative to the scales of
f̃ .) Note that this does not necessary result in the two LCs
being far apart in the diffusion space following (A3).

MNRAS 000, 000–000 (0000)

	Introduction
	Gaussian Process Light Curve Fit
	Light Curves Data and Training Sets
	Modelling Light Curves with Gaussian Processes
	Mean and Covariance Functions
	Fitting the Gaussian Processes

	Normalising the Light Curves
	Time Alignment
	Standardising the Fluxes

	Classification Methodology
	Diffusion Maps
	Random Forest Classification
	Tuning the Diffusion Maps and Random Forest Classifier

	Classification Results
	Tuning the Diffusion Map and Classifier
	Classification Results

	Improving the Classifier with STACCATO
	Grouping SNe by Propensity Scores
	STACCATO: Synthetically Augmented Light Curve Classification

	Discussion and Conclusions
	Diffusion Maps
	Construction of the Diffusion Maps
	The Nyström Extension
	The Light Curve Metric

