
System-level linking of synthesised hardware and
compiled software using a higher-order type system

Shane Fleming, David Thomas, George Constantinides
Dept. of Electrical and Electronic Engineering

Imperial College London
{sf306,dt10,gac1}@ic.ac.uk

Dan R. Ghica
School of Computer Science

University of Birmingham
d.r.ghica@cs.bham.ac.uk

ABSTRACT
Devices with tightly coupled CPUs and FPGA logic allow
for the implementation of heterogeneous applications which
combine multiple components written in hardware and soft-
ware languages, including first-party source code and third-
party IP. Flexibility in component relationships is impor-
tant, so that the system designer can move components
between software and hardware as the application design
evolves. This paper presents a system-level type system and
linker, which allows functions in software and hardware com-
ponents to be directly linked at link time, without requiring
any modification or recompilation of the components. The
type system is designed to be language agnostic, and exhibits
higher-order features, to enables design patterns such as no-
tifications and callbacks to software from within hardware
functions. We demonstrate the system through a number
of case studies which link compiled software against synthe-
sised hardware in the Xilinx Zynq platform.

1. INTRODUCTION
The introduction of devices containing tightly coupled

CPUs and programmable logic within a single chip have
made it possible to physically co-locate an application’s soft-
ware, hardware, and operating system, reducing board de-
sign and interconnect complexity. HLS tools allow creation
of accelerated functions [2], and there exist reconfigurable
operating systems to manage the functions [4], but usually
the user must interface software with the accelerators. This
process is largely manual, with developers using low-level
platform-specific resources or platform independent stream
abstractions to move data to and from the accelerator when
the function is called [1]. This encourages a client-server
mentality, where the software is always in control, and hard-
ware exists to service the software.

In this paper we present a system-level linker, which makes
the process of linking together software and hardware com-
ponents as simple as linking object files together in soft-
ware. The user can move functions from software to hard-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, California, USA.
Copyright c© ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689089.

ware simply by swapping between two components, without
modifying or recompiling any of those components. Our key
contributions are:

• A minimal type system which captures functions de-
fined in both software and high-level hardware lan-
guages, along with an abstract protocol for marshalling
function calls.

• A practical system-level linker and tool flow for Zynq,
which can combine, type-check, and link heterogeneous
systems using a concrete protocol over AXI.

• Case studies demonstrating linking of C++ software
and Hardware components in a Zynq device, demon-
strating complex control flow including function call-
backs, migration of functions between hardware to soft-
ware by relinking, and inversion of control with the
“main” function in hardware and software as the accel-
erator.

The system level linker described in this paper is fully work-
ing and automated, but has significant scope for improve-
ment in terms of performance and extra functionality. We
present this work to support our manifesto that a system
design environment should have:

• Type safety - functions should be strongly typed, and
checkable during linking.

• Language independence - allow functions written in
one language to be called from many other languages.

• Implementation independence - functions do not
rely on how or where other functions are implemented.

• True peering - function calls can freely cross from
hardware to software and vice versa.

• Higher order - supports the callbacks and inversion
of control found in contemporary software languages.

• Automated - user’s only job is to specify which hard-
ware and software modules should be linked together.

The system presented here demonstrates that by choosing
a common type system, direct hardware to software linking
is possible and these goals can be achieved.

2. A TYPE SYSTEM FOR SYSTEMS
Our type system is influenced by ML and Haskell, and

is intended to be mapped to most language type systems
supporting functions. There are three primitive types:

Values (val) - Call-by-value; a fixed value passed to a
function, such as integer parameters in C.

Table 1: Mappings between type system and C.
Linker type C type

1 val int x
2 exp int f()
3 com void f()
4 val->com void f(int a)
5 exp->com void f(int (*a)())
6 com->com void f(void (*a)())
7 val->val->exp int f(int a, int b)
8 val->exp->exp int f(int a, int (*b)())
9 (val->exp)->exp int f(int (*b)(int a))

Expressions (exp) - Call-by-name; a value which may
change and cause side-effects each time it is evaluated.

Command (com) - Call-by-name; returns no value, but can
be evaluated to cause an execution with side-effects.

The three primitive types can be composed into functions
using the arrow operator A->B, to describe a function with
input type A and output type B. The input and output types
can be either primitives, or other functions:

val->(exp->exp) : A function with argument of type val ,
producing a function of type exp->exp.

(val->exp)->exp : A function with argument of (function)
type val->exp, producing a result of type exp .

The first form is a two input first-order function, while
the second is a single input higher-order function. The first
case is most common, so -> is defined to be right associative,
meaning that val->(exp->exp)≡val->exp->exp.

The type system is derived from functional programming,
but there is a direct mapping to languages such as C and
C++, as well as many other common languages. Table 1
shows the mapping between linker types and C. To save
space, we show unrefined val and exp types, which default
to 32-bit int, but in the real system they are further refined
to specify bit-width and how they should be interpreted,
such as float or uint64_t.

Lines 1–3 show the primitive types, with a val represent-
ing a scope-level constant. The C types for exp and com

show that they are call-by-name, so as functions they may
have side-effects. Lines 4 & 5 take one integer argument, but
differ in whether it is by value or name. Line 6 consumes
a function without any arguments, so argument is executed
as a callback purely for its side-effects. Lines 7 & 8 are
both binary functions returning an integer, but in line 9 the
brackets turn it into a unary function which takes another
unary function as its argument.

Bindings for other software languages are similarly de-
fined, and in all modern languages the syntax is both sim-
pler and more natural. For example, in C++11 the ap-
proach maps naturally onto std::function to define argu-
ments with function types, and lambdas/closures to define
callback functions. Native support for higher-order func-
tions is present in scripting languages such as Python and
Ruby, and modern systems languages such as Go and Rust.

The intrinsic and natural support for higher-order pro-
gramming in almost all contemporary languages has led to
software programmers adopting design patterns exploiting
it. Modern standard libraries from C++ to Python make
extensive use of functions as parameters to configure or mod-
ify the behaviour of library functions. Programmers have

becomes used to the idea of defining lambda functions to
represent tasks and callbacks, then using other functions to
co-ordinate and schedule their execution.

We make the argument that higher-order functions are
just as useful in a heterogeneous system, as they provide a
simple and flexible way to dynamically configure and man-
age system behaviour. Higher-order programming in C++11
is often syntactic sugar with little overhead compared to C,
and is directly supported by g++ in ARM. Similarly, Python
and other languages run perfectly well in Zynq, so some sys-
tem designers will eventually wish to use them.

3. ABSTRACT AND CONCRETE LINKING
At run-time we need a mechanism to allow function calls

to be instigated from either hardware or software. The ap-
proach we take is adapted from the formal semantics of , but
is essentially a simple composable synchronisation protocol
that maps well to both hardware and software.

Each primitive (com, exp, or val) is associated with three
channels: question (Q), answer (A), and data (D). The Q
and A channels carry events, while D transports values – for
exp and val types D has the width of the value, while com

produces no value, so can be elided. The Q event is written
by the consumer (or client) of a value, while the A and D
events are written by the producer (or server) of a value.

At an abstract level, the protocol only requires that: for
exp and com , a Q request event must be answered by an A
event before any any further Q request; for exp the D value
must be valid when the A event occurs; for val the D value
must be valid for the entire scope of a function call.

The exact mapping of these channels to device level con-
structs depends on where the consumer and producers are
located. When both are in software and in the same thread,
it becomes a function call: Q is a branch to a function ad-
dress, D is a value returned in a register or stack, and A is
a branch to return address. When both consumer and pro-
ducer are synthesised together into hardware, Q and A are
1-bit wires, while the D channel is a multi-bit signal which
must be valid in the same cycle as the A is signalled. This is
how the existing hardware compiler links functions, and can
be cheaply translated to the ap_ack protocol from Vivado
HLS.

To cross from hardware to software we need a concrete
protocol to send events and data, and in the current linker,
we take an approach supported by every language and com-
pute domain in the system – memory mapping. At link time
the primitives representing all function inputs and outputs
are collected, then each primitive is mapped to a fixed ad-
dress. Both producers and consumers share a known address
for a particular channel, and memory writes in one compute
domain can be eventually observed in all others.

An example of a linked system is shown in Figure 1, where
a “main” function written in is linked to two functions writ-
ten in C. The hardware reads a stream of data from stdin,
calculates the mean of the data, then prints it to stdout.
The software stream with type (exp->com)->exp, using a
callback function to push data back to the caller, rather than
requiring the caller to pull data. The stages of execution are
as follows:

1 - The main function begins execution. There are no active
user threads in software.

int stream(

 void (*data)(int v)

){

 int count=0;

 while(1){

 int c=getc();

 if(c==EOF)

 break;

 ++count;

 data(c);

 }

 return count;

}

Hardware Thread

let main = {

 new s:=0 in

 let n=stream(

 \x.{

 s:=s+x;

 } in

) in

 let m=sum/n in

 print(m);

}

int print(int x)
{
 printf(“M: %d”,x);
}

stream_Q
stream_A

stream_data_Q
stream_data_A
stream_data_D

stream_data_v_Q
stream_data_v_A
stream_data_v_D

print_x_Q

print_x_D
print_x_A

print_Q

print_D
print_A

stream_D

1

2

3

4

5

6

7

8

 AXI Address Space Programmable LogicCPU User Space (C in Linux)

Figure 1: Example of hardware function calling
functions in software

GOS

C/C++ Code Verity Code

Interface Types

GOS ParserELF Parser

Type checking + Port allocation

GCC

Objects (.o)

System link table

Create C++
proxy/stubs

Create sys.
interconnect

Create AXI
proxy/stubs

Vivado Synthesis & PARGCC Linker

Executable Bitfile

VHDL

Synthesis

C/C++ CodeC/C++ (.cpp) Verity CodeVerity (.ia)

VHDLVHDL (.vhd)Objects (.o)Objects (.o)

Netlists (.ngd)Interface Types

Runtime (.c) System (.bd) Runtime (.v)

Interface Types

Figure 2: Design flow, with generic hardware and
software toolchains at top, system linker in the mid-
dle in grey, and generic platform toolchains at the
bottom.

2 - The hardware calls stream with a lambda function (\x.{...})
as the parameter, by writing to stream_Q,

3 - The linker software run-time observes the event on stream_Q,
and runs the software stream function on a worker thread.

4 - When stream calls the data callback, the runtime passes
the argument by value by writing to stream_data_v_D, then
executes the callback by writing to stream_data_Q.

5 - The event on stream_data_Q is observed, and routed it to
the lambda function in , which updates sum as a side-effect.
Control is returned by writing to stream_data_A.

6 - Once the stream function consumes all data, it returns
the number of values read by writing to stream_D, and sig-
nals completion via stream_A.

7 - The mean is calculated, then the print function is called.

8 - The value is printed in software and control then returns
to hardware. At this point the main function is finished, and
the program halts.

Currently the linker supports software components writ-
ten in plain C or C++, and hardware components written
in , with the design flow shown in Figure 2. The source and

compilation flows at the top are pure C/C++ and design
flows – no special headers or platform need to be included
for the code to work with the linker, and it is possible to
link against third party compiled code for which the source
is not available.

The system linker is shown in grey, and takes as input the
software and hardware object files the user wishes to link.
First the type information is parsed out of the binary files,
either using the ELF information in the software binary, or ’s
equivalent meta-data. All function names and types are then
merged, performing the same checks that a software linker
would: all symbols with the same name must have the same
type, and any imported symbol must be exported by exactly
one module. Violation of these rules results in a link error,
just as in a software linker. All symbols are now resolved to
one exporter and zero or more importers, and each function
parameter and output is assigned a unique location, that
can be accessed from both hardware and software.

The final step is to generate linking code, which connects
imported symbols in one module to exported symbols in
another. Functions imported in software require a proxy
with the same name, which translates calls to the proxy to
writes on Q and reads on A addresses. Functions exported
by software require a stub, which listens for requests on the
Q channel, and routes the request to the target function.
Proxies run on the thread of the user’s code, while stubs
inherit threads injected by the system linker at program
startup. Stubs and proxies are also added on the hard-
ware side, which sit between the AXI bus and the user’s
components. Write transactions at known Q addresses are
translated to Q request events for the module, while A and
D responses from the module are routed to registers bound
to the appropriate addresses.

The final stage is to combine all the components. The
software side is linked together with the standard linker,
bringing together the user’s software and the system linker’s
proxies and stubs. For hardware, the system linker gener-
ates an IP block diagram, incorporating the processing sys-
tem (CPU), user’s hardware, and the AXI proxies and stubs.
The result is a single executable, containing both software
and hardware. When executed it will configure the hard-
ware, start any stubs for software functions, then execute
main, whether that is in hardware or software.

4. CASE STUDIES
The system linker currently supports the Zynq platform,

and can link together ELF software modules with C++ type
information against synthesised modules from . Linking
against Go and Vivado HLS is supported in a partially-
manual alpha form, but here we concentrate on examples
using the robust fully automated C++/flow, and focus on
qualitative examples of functionality and some limited quan-
titative results. The case studies used are:

stream-avg. : The example shown in Figure 1, with the
main function in hardware, making use of IO provided by
software.

exp & exp-flip : a single exp exposed from hardware to
software, or from software to hardware (flipped). This quan-
tifies the underlying cost of the linker startup overhead.

filter : hardware exports a function of type exp->(exp-

>exp)->(exp->com)->com, where the first expression is a
data source, the second is a filtering predicate, and the third

Table 2: FPGA area usage and measured execution
time in a Zynq ZedBoard running Linux.

Luts FFs Exec. Time control crossings
stream-avg 1992 3031 10.6ms 6
exp 690 849 1.29ms 1
exp-flip 1155 1188 2.06ms 1
filter 1453 2005 3.59ms 5
sort-cb 2151 519 3589ms 322k
sort 2213 3529 163.8ms 1.6k
sort-par2 3632 5388 20.5ms 1.6k

Table 3: Comparison of system linker features
against other approaches.

This RPC SWIG LEAP LegUp
Type-safe X X X X
Lang. indep. X X X X
Impl. indep. X X X X X
True-peering X X
Higher order X
Automated X X

is a data sink for data matching the predicated; overall there
are five domain crossings required during execution to get
from hardware back to software.

sort-cb : a single-threaded bubble sorter is exposed by
hardware, with the comparison function supplied by the
caller, similar to the C library function qsort. The soft-
ware requests 800 elements to be sorted, stressing the AXI
protocol due to the large number of comparisons needed.

sort : the same setup as sort, but now the hardware uses
an internal comparison function, ignoring the one supplied
by software (software remains the same).

sort-par2 : the hardware exposes the same function type
as sort, but now uses two parallel sorts then a merge.

The results in terms of area and performance are shown in
Figure 2, measured on a ZedBoard running Linux. One main
qualitative message is simply that it works – these examples
utilise large numbers of cross domain calls, and the system
is robust. Even on much larger and more complicated ex-
amples the system works, but becomes progressively slower.

Looking at the examples, exp and exp-flip give an idea of
how long it takes to setup and tear-down the linker, which is
mainly the cost of starting the stub threads. The marginal
cost per call for filter and stream-avg is lower, as the setup
cost is only needed once. The sort-cb example demonstrates
one limitation of the current system, as while it is possible
to use very fine-grain callbacks, the overhead is very high.

Overall sort and sort-par2 demonstrate our claim that re-
linking can be used to achieved an area-speed tradeoff. In-
troducing more parallelism in hardware means the function
is faster, but this is a decision the system designer can make
at link-time, without needing to modify the software.

5. RELATED WORK
The goals and features of the system linker can be broadly

compared to two types of systems: software-oriented in-
terface and Remote Procedure Call (RPC) generators for
inter-language interoperability and distributed systems; and

hardware-oriented frameworks for allowing software clients
to access hardware accelerators over PCIe and other buses.

A software oriented interface generator with similar goals
is SWIG (Simplified Wrapper and Interface Generator), which
parses C++ headers and generates wrappers to expose the
functions to languages such as Python, Tcl and Javascript [3].
SWIG focuses on in-process interfaces, but RPC systems can
connect functions on different computers via networks, us-
ing a shared interface definition file to control marshalling
of function parameters. RPC has some of the same aims as
our system linker, but requires more manual effort to con-
nect together nodes, and does not support hardware nodes.

One approach to manage hardware-software calls to pro-
vide a generic platform-independent abstraction, such as
streams of data, with a platform-specific run-time provid-
ing the concrete implementations, such as LEAP [1]. Our
approach is complementary to such systems, as while it cur-
rently uses its own AXI based transport, it can be layered
over other channels. A more vertical approach is taken in
systems such as LegUp, which takes a software application
and identifies functions to accelerate through benchmark-
ing [2]. Accelerators are compiled using HLS, and the origi-
nal function call is re-routed to the accelerator. This involves
many of the same processes as the system linker, such as the
generation of software proxies, but only allows hardware to
act as a server and is a single language approach.

6. CONCLUSION
This paper presents a system-level linker, which uses a

language independent type system and abstract protocol to
enable direct linking of hardware and software components.
Components do not need to know whether they are talking
to hardware or software, and can use higher-order functions
to support modern programming practises. We demonstrate
a fully functional and automated prototype in a Zynq plat-
form, allowing hardware components to link directly to soft-
ware components running in Linux. Future work will con-
centrate on increasing the scope of the linker in terms of
languages and the optimality of the interconnect.

7. REFERENCES
[1] M. Adler, K. Fleming, A. Parashar, M. Pellauer, and

J. S. Emer. Leap scratchpads: automatic memory and
cache management for reconfigurable logic. In Proc.
FPGA, pages 25–28, 2011.

[2] Andrew Canis et. al. Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator
systems. ACM Trans. Embed. Comput. Syst.,
13(2):24:1–24:27, Sept. 2013.

[3] D. M. Beazley. Swig: An easy to use tool for
integrating scripting languages with C and C++. In
Proc. USENIX Tcl/Tk Workshop, TCLTK’96, pages
15–15, Berkeley, CA, USA, 1996. USENIX Association.

[4] E. Lübbers and M. Platzner. Reconos: Multithreaded
programming for reconfigurable computers. ACM
Trans. Embed. Comput. Syst., 9(1):8:1–8:33, Oct. 2009.

