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Dissolution of anionic surfactant mesophases

Andreas S. Poulos,∗a Christopher S. Jones,b and João T. Cabral ∗a

Linear and circular solvent penetration experiments are used to study the dissolution of anionic
SLE3S surfactant mesophases in water. We show that a lamellar (Lα ) phase in contact with water
will transit through a series of cubic, hexagonal, and micellar phase bands with sharp interfaces
identified from their optical textures. In both linear and circular geometries, the kinetics of front
propagation and eventual dissolution are well described by diffusive penetration of water, and a
simple model applies to both geometries, with a different effective diffusion coefficient for water D f

as the only fitting parameter. Finally, we show a surprising variation of dissolution rates with initial
surfactant concentration that can be well explained by assuming that the driving force for solvent
penetration is the osmotic pressure difference between neat water and the aqueous fraction of
the mesophase that is highly concentrated in surfactant counterions.

1 Introduction
Surfactants are present in numerous formulated products such
as detergents, shampoos, fabric softener, paints, pharmaceuticals,
and foods1. At elevated concentrations, surfactant solutions self-
assemble into lyotropic mesophases2, exhibiting complex rheol-
ogy and viscoselasticity relevant to processing3,4. The equilib-
rium phase behavior of surfactant solutions has been extensively
studied for different amphiphilic molecules and solvents5,6. Non-
equilibrium processes, on the other hand, are less well under-
stood and remain a subject of fundamental and industrial inter-
est7.

In particular, understanding the dissolution of concentrated
surfactant solutions in different solvents is critically important
for their effective industrial processing, as end-product concen-
trations are generally much lower than feed concentrations (c ≥
70%). A typical dissolution pathway will lead to the sequential
formation of different mesophases that depending on their spe-
cific microstructure might have significantly varying physical (op-
tical, detergency, etc) and rheological properties.

Surfactant dissolution has mainly been studied using solvent
penetration experiments8–11 and by simulations12–14. In a sol-
vent penetration experiment, a concentrated surfactant solution
is brought into contact with its solvent. Provided that myelinic
instabilities do not form15,16, interdiffusion creates a continuous
concentration gradient perpendicular to the interface and hence
the succession of phases upon dilution can be determined by ap-
propriate analytical techniques such as polarized light optical mi-
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croscopy, small-angle X-ray scattering, and IR spectroscopy.
Solvent penetration experiments have traditionally been used

to establish approximate phase diagrams in a variety of sys-
tems10,17–23. It is well established that in such an experiment
phase transformation happens on much faster timescales than in-
terdiffusion9,24. Hence, the local surfactant concentration deter-
mines the mesophase directly, according to the equilibrium phase
diagram of the system. Recently, a similar method has also been
proposed where evaporation through PDMS is used to produce
appropriate concentration gradients in a microfluidic device25–27.

Dissolution is of course an important process for a variety of
other systems such as solid granules and polymeric particles, es-
pecially in the context of drug delivery28–31 and even gas bub-
bles32–34. As such, a plethora of experimental methods and the-
oretical approaches have been used to understand and describe
the process. However, surfactant dissolution is subtly different
in that a significant amount of solvent may penetrate into the ini-
tial phase, which can be much faster than the diffusion-controlled
advection of surfactant molecules at the dissolution boundary. In
that respect, it has more in common with the dissolution of glassy
polymers that are considerably swelled by the solvent before dis-
solving35.

In this paper, we use simple millifluidic devices to perform lin-
ear and circular solvent penetration experiments of lamellar and
hexagonal phases of the anionic sodium lauryl ether sulphate
(SLE3S) surfactant in contact with water. The paper is struc-
tured as follows. Firstly, we determine the kinetics of water pen-
etration and surfactant dissolution in linear microchannel experi-
ments and show that they can be described by a simple effective
diffusion model with one adjustable parameter. Then we estab-
lish the kinetics of dissolution of cylindrical surfactant drops and
show that the same model applies. Finally, we measure the dis-
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solution of mesophases with different initial surfactant concen-
trations. We determine the dissolution pathways and propose a
general framework to rationalise the sequential phase change and
associated kinetics.

2 Materials & Methods

2.1 Surfactant & Solvents

Fig. 1 (a) Chemical structure of sodium lauryl ether sulphate (SLE3S)
surfactant. (b) Approximate phase diagram of the SLE3S surfactant.
When dissolving, the initially lamellar (Lα ) phase transforms into a cubic
phase (V), a hexagonal phase (H), and finally an isotropic micellar
phase (L1). This and other dissolution pathways starting from the
hexagonal (H) phase are shown with red arrows. (c) Small-angle
neutron scattering pattern of the initial SLE3S/water phase with
φ (SLE3S)=0.72 confirms lamellar phase with repeat distance d = 43.9 Å.
Inset: 2D SANS pattern under partial alignment of the lamellar phase.

Sodium lauryl ether sulphate (SLE3S) surfactant solution (ref.
STEOL-CS-370) was obtained from Stepan ( IL, USA) and used as
received. The paste contains 72% volume fraction surfactant in
water. The chemical structure of the SLE3S surfactant is shown in
figure 1a. The hydrophilic head comprises three ether groups and
a charged SO3

− group at the end with a sodium counterion, and
its structure is similar to the ubiquitous sodium dodecyl sulphate
(SDS) surfactant except for the three extra ether groups. Since
we are not aware of a published phase diagram for SLE3S, an ap-
proximate diagram based on polarized light optical microscopy
textures and macroscopic sample observations was obtained and
is shown in figure 1b. The initial paste at φs = 0.72 is in the fluid
lamellar (Lα ) phase, as confirmed by small-angle neutron scat-
tering which also allows the determination of the repeat distance
d = 43.9Å from the first peak position as d = 2π

q001
(Figure 1c). The

lamellar phase persists down to φs ≈ 0.67. As the concentration
decreases further, the lamellar phase gives way to an isotropic
cubic phase (φs ≈ 0.62− 0.68), and then to a hexagonal phase
(φs ≈ 0.30−0.62). Below φ∗s ≈ 0.30, the samples become isotropic
indicating a micellar phase. The dissolution pathway from the
initial lamellar phase to the isotropic micellar phase is shown in
figure 1b with an arrow. Millipore water is used for the dissolu-
tion experiments.

2.2 Microfluidic device preparation

Devices were fabricated by single step frontal photo-
polymerization (FPP) of a thiol-ene copolymer (NOA 81,
Norland Adhesives) within standard microscope slides of 75 by
25 mm size following previously published procedures36–39. In
short, the microchannel was formed by selective UV-A exposure
with a photomask, and the unexposed monomer was removed
from the channel by repeated flushing with ethanol and acetone.
A hole was drilled with a diamond tip drill bit on the top slide,
and a nanoport (N-333 NanoPort, 10-32 Coned, IDEX Health &
Science) was attached to the top of the device with cyanoacrylate
super glue. The nanoport allows quick connection of tubing and
was used as the inlet for the microfluidic channel.

Fig. 2 Schematic of the device used in linear penetration experiments
(not to scale). The channel is sandwiched between two glass slides and
has a 1 mm width and a 0.11 mm height. The channel is filled with
SLE3S/water through a port drilled on the top glass slide. The other end
of the channel is open and allows the H2O to come into contact with the
surfactant solution.

2.3 Linear and circular penetration experiments

A schematic of the device used in the linear penetration ex-
periements is shown in 2. A straight channel of 1 mm width was
formed between the inlet and the open edge of the device. The
channel is filled with surfactant paste using a syringe connected
to the inlet. The whole device is placed in a glass container un-
der a microscope objective. The container is then filled with the
solvent up to the height of the top slide. Thus the open edge of
the channel comes into contact with the solvent which marks the
start of the linear dissolution experiment. The device is reusable
by flushing with water and then air. For the circular penetra-
tion experiments, a drop of surfactant paste is deposited between
two glass slides separated by a 0.11 mm spacer. The two slides
are clamped together and water is allowed to penetrate between
them by capillarity eventually coming into contact with the sur-
factant drop.
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2.4 Small Angle Neutron Scattering

The SANS experiments were carried out at the D22 diffractome-
ter, Institute Laue Langevin (Grenoble, France), with an incident
neutron wavelength of λ = 6 Å, collimation of 5.6 m, and two
sample-detector distances of 1.4 m and 5.6 m.

2.5 Optical microscopy

Optical birefringence texture images were obtained with an
Adimec A-1000 CCD camera at 20-25 s intervals mounted on an
BX40 Olympus transmission microscope with a 5x Olympus ob-
jective lens. The experiment usually lasted 1-2 hours resulting in
a series of 200-300 images. Analysis was performed with ImageJ
and the dissolution front identified by the large intensity differ-
ence of the birefringent hexagonal phase and the non-birefringent
micellar phase. The intensity profiles along the long axis of the
channel were generated by the ImageJ macro ’StackProfilePlot’.
The front position was then tracked by a custom macro written
for Igor Pro 6 and calibrated to distance2 vs time plots. The track-
ing of the subsidiary fronts was done manually as the intensity
difference is comparatively smaller. A similar procedure was em-
ployed for circular front tracking.

3 Results & Discussion
3.1 Shear alignment of lamellar phase

The SLE3S paste was inserted inside the channel by injection with
a syringe. In figure 3 we show that channel shear flow along the
channel aligns the lamellar phase to a great extent, which can
be seen by polarized microscopy. When the channel axis is at
45◦ with respect to the crossed polars, maximum birefringent in-
tensity is observed (Figure 3a); when the long axis is parallel to
the analyser, no birefringence is detected and the sample appears
dark except at the curved interfaces around the bubbles (Figure
3b). As the lamellar phase is uniaxial, the director thus points
perpendicularly to flow with all the bilayers aligned in a mon-
odomain parallel to the flow direction. In figure 3c the texture of
the aligned phase is shown in more detail. It has all the charac-
teristics of a lamellar phase aligned in planar orientation such as
oily streaks with striations parallel to the flow direction40.

3.2 Dissolution

Linear penetration experiments were performed to study the ki-
netics of dissolution of this highly aligned Lα phase. After injec-
tion, excess surfactant was carefully removed from the open end
of the channel so that the initial interface was flat (Figure 4a).
The lamellar phase was then quickly brought into contact with
water. Already after 300 s, the initially uniform lamellar phase
has developed a series of sharp bands perpendicular to the long
axis of the channel (Figure 4b). The interfaces separating adja-
cent bands are flat indicating that, in this geometry, the dissolu-
tion process is taking place in one dimension. Each of these bands
has its own characteristic birefringent texture and corresponds to
a specific phase in the dilution path of the SLE3S. Hence, the first
narrow band that appears after the lamellar phase corresponds to
the narrow cubic domain in the phase diagram of figure 1b. Al-
though the cubic phase is isotropic, here it appears weakly bire-

fringent with a characteristic texture similar to that of the pre-
ceding lamellar phase. This is most likely due to a trace amount
of lamellar phase still present close to the walls of the channel
where the thermodynamics and kinetics of phase transformation
are altered by the presence of a solid-liquid interface. The pres-
ence of a solid surface has been previously found to induce par-
tial short-range order and produce a surface memory effect41,42.
The next band corresponds to the hexagonal phase at interme-
diate surfactant concentrations. In contrast to the initial lamel-
lar phase, the hexagonal phase is not oriented in a monodomain
with some particular orientation with respect to the long axis of
the capillary. This is expected as it develops from the isotropic
cubic phase which has erased memory of the initial macroscopic
monodomain bilayer orientation.

Similarly, the first interface that moves most rapidly and is fur-
thest away form the open end of the channel corresponds to the
transition from the lamellar phase (Lα ) to the cubic phase (V).
The second interface corresponds to the cubic (V) to hexago-
nal (H) phase transition. The third interface corresponds to the
hexagonal (H) to micellar (L1) phase transition. After 1500 s
the position of the sharp interfaces has moved even further away
from the open end of the capillary (Figure 4c). At the same time,
the width of the cubic, hexagonal, and micellar bands has also in-
creased. Finally, after 3900 s two of the interfaces and the cubic
band have moved off the field of view of the microscope and only
the hexagonal and micellar bands are visible (Figure 4d). This
succession of phases is also shown in the bottom panel of Figure
4 as a schematic, with a red arrow indicating the progression of
the dissolution front (the interface between the hexagonal and
the micellar phase).

3.3 Diffusive propagation of fronts

Based on these series of images the position of each interface can
be tracked as the dissolution proceeds. In figure 5a, we show that
the position squared (L2) of the interface with respect to the open
end of the channel is found to be a linear function of time for all
interfaces. This scalling establishes the diffusive nature of the pro-
cess. Effective diffusion coefficients, Deff, for all fronts can be cal-
culated from the data in figure 5. The fastest interface (Lα to cu-
bic) has Deff = 27.5 10−10 m2/s; this is reduced to 19.1 10−10 m2/s
for the cubic to hexagonal interface, and 3.3 10−10 m2/s for the
hexagonal to micellar interface which sets the overall timescale
for the dissolution process, as the rate-limiting step. A conse-
quence of the diffusive propagation of all fronts is that the widths
of the cubic and hexagonal bands in figure 4 also grow diffusively
with time with an effective diffusion coefficient given by the Deff
of the two bounding interfaces:

w2 = (
√

Deff,1t−
√

Deff,1t)2 =
(

Deff,1 +Deff,2−2
√

Deff,1Deff,2

)
t

From the succession of images in figure 4, it is clear that a sig-
nificant amount of solvent penetrates into the liquid crystalline
phase. Locally this reduces the surfactant concentration and
drives the phase change quasi-instantaneously as it has been pre-
viously reported8,11. Hence, in contrast to dissolution of solids
which is mainly controlled by transport of material away from
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Fig. 3 Demonstration of lamellar phase shear alignment: Polarized light optical microscopy images of SLE3S paste inside the channel. The polarizer
and analyser are aligned vertically and horizontally respectively. (a) Capillary axis is rotated to 45o with respect to the polarizer/analyser the
birefringent intensity is maximized. (b) Capillary axis parallel to analyser: total extinction of birefringence except in the vicinity of bubbles. (c) Texture
of the SLE3S paste showing a planar alignment of the lamellar phase.

Fig. 4 Polarized light optical microscopy images of dissolving lamellar phase inside microchannel. The open end of the channel is shown with a white
dashed line. (a) Before contact with solvent (b) t = 300 s after contact with solvent (c) t = 1500 s, (d) t = 3900 s. The open edge of the channel is
marked with a white dashed line. (Bottom panel) Schematic showing the development of the different bands that correspond to the lamellar (Lα ), cubic
(V), hexagonal (H), and micellar isotropic (L1) phases. The red arrow corresponds to the progression of the dissolution front.
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Fig. 5 (a) Square of propagation distance from the open edge of the three fronts against time. The blue triangles correspond to the lamellar (Lα ) to
cubic (V) front, the red squares to the cubic (V) to hexagonal (Hex) front, and the green circles to the hexagonal (Hex) to micellar (L1) front, as
illustrated in the inset schematic. The lines are linear fits to the three sets of data to extract effective diffusion coefficients. (b) Concentration profiles
along the channel for different times after the initial contact of water with the surfactant. The data points indicate the positions of the three fronts as the
dissolution proceeds. The dashed lines are fits of equation 1 as described in the text. Inset: Effective diffusion coefficients for the lamellar-to-cubic
(green), cubic-to-hexagonal (red), and hexagonal-to-micellar (blue) fronts, normalized by the model fitting parameter D f . The continuous line shows
the predicted variation of Deff with surfactant volume fraction given by equation 2 based on the model discussed in the text.

the solid-liquid interface, here dissolution is also affected by pen-
etration of solvent into the liquid crystalline phase. The difference
in physical mechanism means that the classical models used for
predicting kinetics of dissolving solid or gas particles28,32 are not
strictly applicable, as these solve the diffusion equation outside
the dissolving substance.

Since the phase transformation is locally very fast, the fronts
track fixed values of the surfactant volume fraction φS (or equiv-
alently water φw = 1− φs) given by the equilibrium phase dia-
gram of the surfactant (figure 1b). Hence the front kinetics data
of figure 5a can be re-plotted in a concentration-distance graph
yielding the time evolution of the concentration profile inside
the channel. This is shown in figure 5b where the data points
correspond to the time evolution of the front positions. Evi-
dently, the time evolution of the concentration profile can only
be known with relative certainty at the three transition concen-
trations, φs = 0.30,0.62,0.67 (φw = 0.70,0.38,0.33) for the disso-
lution, cubic-to-hexagonal, and lamellar-to-cubic fronts respec-
tively.

The simplest model that can be used to obtain the full concen-
tration profile and its time evolution makes the strong assumption
that the dominant mechanism in the dissolution process is diffu-
sive water penetration from the open edge of the channel. Given
that the channel is much longer than the penetration depth, we
can write down the solution to the diffusion equation in a semi-
infinite 1D medium43:

φw(L, t)−φw,1

φw,0−φw,1
= erf

(
L

2
√

D f t

)
(1)

where φw(L, t) is the water volume fraction with boundary values

φw,0 = 0.28 at x = +∞ (open end) and φw,1 = 1 at x = 0. In fig-
ure 5b, the dashed lines show least-square fits of equation 1 with
D f as a fitting parameter on the front kinetics data points. It is
clear that even this simple model can fit the data with a high de-
gree of accuracy. Significantly, the fitting parameter D f extracted
from the fits is virtually identical for all seven curves that repre-
sent different times from 100s to 6400 s. Hence, equation 1 with
D f = 4.55 10−10 m2/s yields, to a very good approximation, the
spatio-temporal evolution of the concentration profile in linear
penetration experiments of the SLE3S surfactant.

This model although relatively simple has some interesting fea-
tures. It predicts the diffusive kinetics of any surfactant concen-
tration φX :

L2 (φX ) = 4D f

[
erf−1

(
φX

φ init
s

)]2
t (2)

where φ init
s = 1− φw,0 = 0.72 is the initial surfactant concentra-

tion. The concentration dependent effective diffusion coefficient
is shown in the inset of figure 5b (continuous line), normalized
by D f . The actual values for the three fronts are plotted on the
same graph and, of course, show good agreement with the model
prediction. It is clear that, in the context of this model, the Deff
diverges at the initial φX = 0.72 and approaches zero as φX → 0.
Hence the different front speeds emerge as a natural consequence
of water diffusion into the surfactant phase.

It is perhaps surprising that such a simple model can satisfacto-
rily capture the main features of the complex dissolution process.
The two main drawbacks are that it does not take into account
the potentially different diffusion coefficients of the phases along
the dissolution pathway8,12 and also it does not take into account

Journal Name, [year], [vol.], 1–9 | 5



the accompanying swelling of the surfactant phases upon ingress
of water. However, both these effects are diffusive and hence they
are incorporated in an effective D f . This in turn restricts the in-
terpretation of D f in terms of more fundamental quantities (e.g.
water self-diffusion).

3.4 Concentration dependence

Fig. 6 Dissolution front kinetics for different initial surfactant volume
fractions φ init

s . Inset: Effective diffusion coefficient of the dissolution front
as a function of initial surfactant volume fraction. The red dashed line is
a prediction based only on equation 2, and the solid red line a prediction
of the extended model that includes an osmotic pressure contribution
given by equation 3. The vertical lines indicate the positions of the
phase boundaries.

Figure 6 shows the propagation kinetics of the dissolution front
for different initial surfactant concentrations φ init

s . These results
are only shown for the dissolution front because in the case of
lower initial surfactant concentrations the material is already in
the hexagonal phase and hence only the hexagonal to micellar
interface appears in the dissolution path. It is clear that in all
cases the front propagation is also diffusive in character. How-
ever, the variation of the effective diffusion coefficient with sur-
factant concentration is highly non-linear. This is quite evident
by comparing the dissolution kinetics of the hexagonal phase at
φ init

s = 0.5 with that of the original lamellar phase at φ init
s = 0.72

(squares vs diamonds in figure 6). The two are indistinguishable
leading to the same effective diffusion coefficient as seen in the
inset of figure 6. This result is quite surprising as one could intu-
itively expect that the lower concentration phase, which is closer
to the phase boundary, dissolves faster. However, only surfactant
concentrations much closer to the micellar phase boundary (e.g.
φ init

s = 0.32 shown with triangles in figure 6) exhibit significantly
faster dissolution with an effective diffusion coefficient 2.5 times
larger.

This highly non-linear variation of the effective diffusion coef-
ficient can be partly understood by referring back to the water
penetration model. Equation 2 can predict effective diffusion co-

efficients for the dissolution front (φX = 0.30) as a function of
φ init

s . The model prediction though does not agree well with the
experimental data (red dashed line in the inset of figure 6). The
prediction can be improved by considering the driving force for
water penetration into the surfactant phase. For a charged sur-
factant like SLE3S, the Na+ counterion concentration inside the
aqueous part of any mesophase will be relatively high. Hence,
there will be a high osmotic pressure gradient perpendicular to
the interface that will act as a driving force for the penetration of
neat water into the surfactant phase16,44. We can estimate the os-
motic pressure by assuming that we have a gas of counterions that
are free to move only inside the aqueous part of the mesophase.
Hence, the Na+ counterion concentration is directly proportional
to the surfactant volume fraction (φ init

s ) but also inversely pro-
portional to the water volume fraction as they are excluded from
the hydrophobic part of the mesophase. For a more complete cal-
culation of the osmotic pressure, the Poisson-Boltzmann approx-
imation can be used45 but this is not necessary in the context of
this work. Taking all that into account we have to add a factor of
φ init

s /(1−φ init
s ) to the prediction of equation 2. Hence,

Deff, dis

(
φ

init
s

)
= 4D f

[
erf−1

(
φX

φ init
s

)]2
φ init

s

1−φ init
s

(3)

The predicted variation is shown with a solid red line in the inset
of figure 6 and agrees rather well with our results. It predicts that
Deff is essentially independent of the initial surfactant concentra-
tion in a wide range of φ init

s between 0.45-0.72.

3.5 Dissolution of cylindrical drops

Qualitatively the same observations can be made on a dissolving
cylindrical drop of SLE3S surfactant at 0.72 of initial radius R0.
Experimentally, this is realized by sandwiching a droplet between
two glass microscope slides with a 0.11 mm spacer. At t = 0,
the drop comes into contact with water (figure 7a). After 100 s a
series of circular interfaces have appeared within the drop. The
initial lamellar phase is in the middle of the drop, surrounded by
a thin cubic shell and the hexagonal shell on the outside of the
drop (figure 7b). As the interfaces continuously progress towards
the center of the droplet, the widths of the cubic and hexagonal
shells increase (figure 7c). After 1600 s, the initial lamellar phase
has been completely transformed into a hexagonal phase that in
turn has dissolved into a micellar phase decreasing the radius of
the drop (figure 7d). This particular drop completely dissolves
after 2250 s.

The kinetics of water penetration and dissolution are shown in
figure 8. As expected and in contrast to the linear penetration
experiments, the kinetics in circular geometry depend on the ini-
tial size of the drop. This can clearly be seen in figure 8a where
the blue points indicate the radius squared (R2) of five drops with
different initial radii R0 in the range 0.7−1.1 mm plotted against
time after water contact. All the curves have a similar shape but
the initially smaller drops dissolve faster than the larger drops.
The same is true for the radius of the cubic-to-hexagonal interface
shown here for three of the drops (red points in figure 8a). The
effect of the circular geometry can be taken into account by renor-
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Fig. 7 Circular penetration experiments. A cylindrical drop of surfactant (φs = 0.72) of radius R0 = 1.15 mm is sandwiched between two microscope
slides with a 0.11 mm spacer. At t=0 the drop comes into contact with water and the dissolution process begins. Similarly to the linear penetration
experiments, a series of circular interfaces appears within 100 s. The interfaces move towards the center of the drop demarcating the lamellar, cubic,
hexagonal, and micellar phases. After 1600 s only the hexagonal phase remains and the drop has dissolved and shrunk to a fraction of its original
size shown by the green dashed circle in all subfigures. The position of the two fronts that we track are shown in (c): cubic-to-hexagonal (red) and
hexagonal-to-micellar (blue).

malizing both axes by the initial radius squared R2
0 . In figure 8b,

we show that using this renormalization, we can obtain master
curves for the kinetics of the dissolution and cubic-to-hexagonal
fronts that are independent of the initial radius of the drop.

We have seen before that the water penetration and dissolu-
tion kinetics in linear penetration experiments can be modeled
accurately by considering only the diffusion of water into the sur-
factant phase. A similar model can be built to describe the results
of the circular penetration experiments. The initial conditions are
that φw(r < R0) = 0.28 and φw(r > R0) = 1, and the boundary con-
dition is that far from the drop the surface, at r = a, is maintained
at a constant water volume fraction φw(r = a, t) = 1. Following
Crank43, we can write down the solution of the diffusion equa-
tion in cylindrical coordinates as:

φw (r, t) = φ0

{
1− 2

a

∞

∑
n=1

1
αn

J0 (rαn)

J1 (aαn)
exp
(
−D f α

2
n t
)}

+

2
a2

∞

∑
n=1

exp
(
−D f α

2
n t
) J0 (rαn)

J2
1 (aαn)

∫
r f (r)J0 (rαn)dr (4)

where J0(x) and J1(x) are the zero and first order Bessel functions
of the first kind, and the αn’s are the positive roots of J0 (aαn) = 0.
The function f (r) is the initial concentration distribution: f (r <
R0) = 0.28 and f (R0 < r < a) = 1. Equation 4 is solved numerically
using PYTHON with D f as the only adjustable parameter.

The model described by equation 4 can predict the evolution of
the water concentration as a function of time. In order to compare
with the kinetics of front propagation shown in figure 8b, we track
the position of the two volume fractions that correspond to the
respective phase transitions: φs = 1−φw = 0.3 for the hexagonal-
to-micellar interface (blue points) and φs = 1−φw = 0.62 for the
cubic-to-hexagonal interface (red points). The model prediction
with a diffusion coefficient D f = 2.5 10−10 mm2/s is shown with
a solid black line in figure 8b. With just one adjustable parame-
ter, it can describe the observed data remarkably well. It captures
the different kinetic behavior of the two fronts and even predicts

the slight swelling of the drop at the initial stages after contact
with water. Note that this diffusion coefficient is approximately
two times smaller than the one that best describes the linear pen-
etration results. In the same figure we also show the model pre-
diction for D f = 4.55 10−10 mm2/s which of course shows a faster
dissolution and movement of fronts. This discrepancy can be at-
tributed to the effect of swelling on the water penetration kinet-
ics. As mentioned above, swelling which without doubt takes
place when water is drawn inside the lamellar phase is not ex-
plicitly taken into account by this simple model. However, as
it is a diffusive-type process its effect on the kinetics is incorpo-
rated in D f . But swelling depends on geometry and the optical
images clearly show that it is much more pronounced in the disso-
lution of cylindrical drops than in linear penetration experiments.
As greater swelling generally means lower diffusion coefficients,
it can qualitatively explain the difference in D f between the 2D
drops and the 1D linear penetration scans.

Another possibility would be the effect of lamellar phase align-
ment in the dissolution process. The linear penetration exper-
iments start from a well defined macroscopic alignment of the
bilayers perpendicular to the interface (figure 3), whereas on the
surface of the cylindrical drop the lamellar phase seems to be ran-
domly aligned. Hence, diffusion of water into the highly aligned
lamellar phase should be faster than diffusion into a randomly
oriented lamellar phase which wold translate into a higher dif-
fusion coefficient. However, additional experiments (not shown)
indicate that the effect of alignment on water penetration kinetics
is comparatively very small, so it cannot explain the discrepancy
in D f .

4 Conclusions
We have studied the dissolution of anionic SLE3S surfactant
mesophases in water, using polarized light optical microscopy, in
both linear microchannel and circular geometries. Linear solvent
penetration experiments of an initially well aligned lamellar (Lα )
phase show the formation of a series of planar bands with sharp
interfaces whose optical textures allow them to be identified with
the cubic, hexagonal, and micellar phases present in the dilution
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Fig. 8 (a) Kinetics of dissolution of cylindrical surfactant drops. Blue
points: radius squared of the dissolving drop (dissolution front) as a
function of time for five drops with different initial radii R0. Red points:
radius squared of the cubic to hexagonal interface for three selected
drops. (b) Same data plotted with both axes renormalized by R2

0. Two
master curves are obtained for the dissolution front and the cubic to
hexagonal front respectively. The solid and dashed lines are predictions
of the diffusion model discussed in the text with diffusion coefficients
D f =2.5 10−10 mm2 /s and D f =4.6 10−10 mm2 /s, respectively.

pathway of the SLE3S surfactant. It is well known that phase
transformation kinetics are fast compared to the timescales of
such penetration experiments11,13. Hence, each interface tracks a
fixed surfactant concentration (φs) that corresponds to the phase
boundaries in the equilibrium phase diagram of the surfactant. By
simultaneously tracking the movement of the three interfaces –
lamellar-to-cubic (φs = 0.67), cubic-to-hexagonal (φs = 0.62), and
finally hexagonal-to-micellar (φs = 0.30) – we show that solvent
penetration and dissolution is a diffusive process, and we extract
effective diffusion coefficients for each front.

Cylindrical surfactant drop penetration experiments show qual-
itatively the same succession of cubic, hexagonal, and micellar
phases. We experimentally confirm that, as expected, in circular
geometry the kinetics of front movement are scaled by the square
of the initial drop radius R2

0.
We further propose a simple model that can explain the time

evolution of the surfactant concentration profiles and the diffu-
sive movement of the fronts. This model is based on the idea that

the observed behavior stems only from water penetration which
locally reduces the surfactant concentration and drives the phase
transformations. Remarkably, a single fitting parameter – an ef-
fective water diffusion coefficient D f = 4.6 10−10 mm2/s can ade-
quately describe the observed movement of all fronts.

This simple model can also accurately describe the kinet-
ics of front movement and dissolution of cylindrical drops, al-
beit requiring a lower effective water diffusion coefficient D f =

2.5 10−10 mm2/s. This is rationalizes in terms of the observed
swelling of the surfactant mesophases that is more prominent in
cylindrical drops. Swelling tends to slow down front movement
and is not explicitly taken into account by the model, and is in-
stead subsumed under D f .

We also demonstrate the effect of the initial surfactant con-
centration (φ init

s ) on the kinetics of dissolution in linear pene-
tration scans. We show that rather counterintuitively the disso-
lution kinetics are identical when the initial surfactant volume
fraction is reduced from 0.72 to 0.5 and only appreciably speed
up when φ init

s approaches the hexagonal-to-micellar phase bound-
ary at 0.30. The highly non-linear variation is explained by com-
bining our model with the idea that the driving force for water
penetration is essentially the difference in osmotic pressure be-
tween the neat water and the aqueous environment inside the
mesophase that has a high Na+ surfactant counterion concen-
tration. Our experimental approach and minimal model provide
thus a powerful and robust means to investigate dissolution of
surfactant mixtures over a wide range of concentrations and esti-
mate dissolution kinetics in geometries.
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