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Abstract

We extend the common Poisson shock framework reviewed for example in Lind-

skog and McNeil (2003) to a formulation avoiding repeated defaults, thus obtaining

a model that can account consistently for single name default dynamics, cluster

default dynamics and default counting process. This approach allows one to in-

troduce significant dynamics, improving on the standard “bottom-up” approaches,

and to achieve true consistency with single names, improving on most “top-down”

loss models. Furthermore, the resulting GPCL model has important links with the

previous GPL dynamical loss model in Brigo, Pallavicini and Torresetti (2006a,b),

which we point out. Model extensions allowing for more articulated spread and

recovery dynamics are hinted at. Calibration to both DJi-TRAXX and CDX index

and tranche data across attachments and maturities shows that the GPCL model

has the same calibration power as the GPL model while allowing for consistency

with single names.

JEL classification code: G13.

AMS classification codes: 60J75, 91B70

Keywords: Loss Distribution, Loss Dynamics, Single Name Default Dynamics, Clus-

ter Default Dynamics, Calibration, Generalized Poisson Processes, Stochastic Intensity,

Spread Dynamics, Common Poisson Shock Models.

∗This paper has been written partly as a response to criticism, suggestions, encouragements and ob-

jections to our earlier GPL paper. In particular, we are grateful to Aurélien Alfonsi, Marco Avellaneda,
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1 Introduction

The modeling of dependence or “correlation” between the default times of a pool of

names is the key issue in pricing financial products depending in a non-linear way on

the pool loss. Typical examples are CDO tranches, forward start CDO’s and tranche

options.

Bottom-up approach

A common way to introduce dependence in credit derivatives modeling, among other

areas, is by means of copula functions. A copula corresponding to some preferred multi-

variate distribution is “pasted” on the exponential random variables triggering defaults

of the pool names according to first jumps of Poisson or Cox processes. In general, if one

tries to control dependence by specifying dependence across single default times, one is

resorting to the so called “bottom-up” approach, and the copula approach is typically

within this framework. Yet, such procedure cannot be extended in a simple way to a

fully dynamical model in general. A direct alternative is to insert dependence among the

default intensities dynamics of single names either by direct coupling between intensity

processes or by introducing common factor dynamics. See for example the paper by

Chapovsky, Rennie and Tavares (2006).

Top-down approach

On the other side, one could give up completely single default modeling and focus on the

pool loss and default counting processes, thus considering a dynamical model at the ag-

gregate loss level, associated to the loss itself or to some suitably defined loss rates. This

is the “top-down” approach pioneered by Bennani (2005, 2006), Giesecke and Goldberg

(2005), Sidenius, Piterbarg and Andersen (2005), Schönbucher (2005), Di Graziano and

Rogers (2005), Brigo, Pallavicini and Torresetti (2006a,b), Errais, Giesecke and Gold-

berg (2006) among others. The first joint calibration results of a single model across

indices, tranches attachments and maturities, available in Brigo, Pallavicini and Torre-

setti (2006a), show that even a relatively simple loss dynamics, like a capped generalized

Poisson process, suffices to account for the loss distribution dynamical features embed-

ded in market quotes. However, to justify the “down” in “top-down” one needs to show

that from the aggregate loss model, possibly calibrated to index and tranche data, one

can recover a posteriori consistency with single-name default processes. Errais, Giesecke

and Goldberg (2006) advocate the use of random thinning techniques for their approach,

but in general it is not clear whether a fully consistent single-name default formulation

is possible given an aggregate model as the starting point. Interesting research on this

issue is for example in Bielecki, Vidozzi and Vidozzi (2007), who play on markovianity

of families of single name and multi-name processes with respect to different filtrations,

introducing assumptions that limit the model complexity needed to ensure consistency.
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Common Poisson Shock (CPS) approach and Marshall-Olkin copula

Apart from these two general branches and their problems, mostly the above mentioned

lack of dynamics in the classical “bottom-up” approach and the possible lack of “down”

in the “top-down” approach, there is a special “bottom-up” approach that can lead to

a loss dynamics resembling some of the “top-down” approaches above, and the model

in Brigo, Pallavicini and Torresetti (2006a) in particular. This approach is based on the

common Poisson shock (CPS) framework, reviewed in Lindskog and McNeil (2003) with

application in operational risk and credit risk for very large portfolios. This approach

allows for more than one defaulting name in small time intervals, contrary to some of

the above-mentioned “top-down” approaches.

The problem of the CPS framework is that it leads in general to repeated defaults.

If one is willing to assume that single names and groups of names may default more

than once, actually infinite times, the CPS framework allows one to model consistently

single defaults and clusters defaults. Indeed, if we term “cluster” any (finite) subset of

the (finite) pool of names, in the CPS framework different cluster defaults are controlled

by independent Poisson processes. Starting from the clusters defaults one can easily go

back either to single name defaults (“bottom-up”) or to the default counting process

(“top-down”). Thus we have a consistent framework for default counting processes and

single name default, driven by independent clusters-default Poisson processes. In the

“bottom-up” language, one sees that this approach leads to a Marshall-Olkin copula

linking the first jump (default) times of single names. In the “top-down” language, this

model looks very similar to the GPL model in Brigo, Pallavicini and Torresetti (2006a)

when one does not limit the number of defaults.

In the credit derivatives literature the CPS framework has been used for example in

Elouerkhaoui (2006), see also references therein. Balakrishna (2006) introduces a semi-

analytical approach allowing again for more than one default in small time intervals

and hints at its relationship with the CPS framework, showing also some interesting

calibration results.

CPS without repeated defaults?

Troubles surface when one tries to get rid of the unrealistic “repeated default” feature.

In past works it was argued that one just assumes cluster default intensities to be small,

so that the probability that the Poisson process for one cluster jumps more than once is

small. However, calibration results in Brigo, Pallavicini and Torresetti (2006a) lead to

high enough intensities that make repeated defaults troublesome. The issue remains then

if one is willing to use the CPS framework for dependence modeling in credit derivatives

pricing and hedging.

New results

In this paper we start from the standard CPS framework with repeated defaults and use it

as an engine to build a new model for (correlated) single name defaults, clusters defaults
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and default counting process or portfolio loss. Indeed, if s is a set of names in the portfolio

and |s| is the number of names in the set s, we start from the (independent) cluster

default Poisson processes Ñs for example in Lindskog and McNeil (2003), consistent

with (correlated) single name k repeated default Poisson processes Nk, and build new

default processes avoiding repeated single name and cluster defaults. We propose two

ways to do this, the most interesting one leading to a new definition of cluster defaults

Ñ2
s avoiding repetition and (correlated) single name defaults N2

k avoiding repetition as

well, whose construction is detailed in Section 3.3. An alternative approach, based on an

adjustment to avoid repeated defaults at single name level, and leading to (correlated)

single name default processes N1
k , is proposed in Section 3.2. This approach however

leads to a less clear cluster dynamics in terms of the original cluster repeated default

processes Ñs.

The Generalized Poisson Cluster Loss (GPCL) model

We then move on and examine the approach based on the non-repeated cluster and

single name default processes Ñ2
s , N

2
k , which we term “Generalized Poisson Cluster Loss

model” (GPCL), detailing some homogeneity assumptions that can reduce the other-

wise huge number of parameters in this approach. We calibrate the associated default

counting process to a panel of index and tranche data across maturities, and compare

the resulting model with the Generalized Poisson Loss (GPL) model in Brigo, Pallavicini

and Torresetti (2006a,b). The GPL model is similar to the GPCL model but lacks a

clear interpretation in “bottom-up” terms, since we act on the default counting process,

by capping it to the portfolio size, without any control of what happens either at single

name or at clusters level. The GPCL instead allows us to understand what happens

there. Calibration results are similar but now we may interpret the “top-down” loss dy-

namics associated to the default counting process in a “bottom-up” framework, however

stylized this is, and have a clear interpretation of the process intensities also in terms of

default clusters.

Possible extensions

In Section 5 we present possible extensions leading to richer spread dynamics and recov-

ery specifications. This, in principle, allows for more realism in valuation of products

that depend strongly on the spread dynamics such as forward starting CDO tranches or

tranche options. However, since we lack liquid market data for these products, we can-

not proceed with a thorough analysis of the extensions. Indeed, the extensions are only

presented as a proposal and to illustrate the fact that the model is easily generalizable.

Further work is in order when data will become available.
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2 Modeling framework and the Common Poisson

Shock approach

We consider a portfolio of M names, typically M = 125, each with notional 1/M so

that the total pool has unit notional. We denote with L̄t the portfolio cumulated loss,

with Ct the number of defaulted names up to time t (“default counting process”) and

we define C̄t := Ct/M (default rate of the portfolio).

Since a portion of the amount lost due to each default is usually recovered, the loss

is smaller than the default fraction. Thus,

0 ≤ dL̄t ≤ dC̄t ≤ 1 for all t, L̄0 = 0, C̄0 = 0, (1)

which in turn implies (but is not implied by) 0 ≤ L̄t ≤ C̄t ≤ 1.

Notice that with the notation dXt, where Xt is a jump process which we assume to

be right continuous with left limit, we actually mean the jump size of process X at time

t if X jumps at t, and zero otherwise, or, in other terms, pathwise, dXt = Xt − Xt− ,

where in general we define Xt− := limh↓0Xt−h.

We can relate the cumulated loss process L̄t and the re-scaled number of defaults C̄t

at any time t through the notion of recovery rate at default Rt,

dL̄t = dC̄t(1 − Rt) (2)

where Rt satisfies some technicalities that we detail later in Section 5.5. This equation

actually is an abbreviation for

L̄t =

∫ t

0

(1 − Ru)dC̄u.

The no-arbitrage condition (1) is met if R takes values in [0, 1].

2.1 CPS Basic Framework

The modeling of the dependence between the default times of the pool names is the key

point in pricing financial products depending in a non-linear way on the loss distribution.

Typical examples are CDO tranches and options on them.

We begin by briefly illustrating the common Poisson shock framework (CPS), re-

viewed for example in Lindskog and McNeil (2003).

The occurrence of a default in a pool of names can be originated by different events,

either idiosyncratic or systematic. In the CPS framework, the occurrence of the event

number e, with e = 1 . . .m, is modelled as a jump of a Poisson process N (e). Notice that

each event can be triggered many times. Poisson processes driving different events are

considered to be independent.

The CPS setup assumes unrealistically that a defaulted name k may default again.

In the next section of the paper the try and limit the number of defaults of each name

to one. For now, we assume that the r-th jump of N (e) triggers a default event for
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the name k with probability p
(e)
r,k, leading to the following dynamics for the single name

default process Nk, defined as the process that jumps each time name k defaults:

Nk(t) :=
m∑

e=1

N(e)(t)∑

r=1

I
(e)
r,k

where I
(e)
r,k is a Bernoulli variable with probability Q

{
I

(e)
r,k = 1

}
= p

(e)
r,k. Under the

Poisson assumption for N e and the Bernoulli assumption for I
(e)
r,j it follows that Nk is

itself a Poisson process. Notice however that the processes Nk and Nh followed by two

different names k and h are not independent since their dynamics is explained by the

same driving events.

The core of the CPS framework consists in mapping the single name default dynamics,

consisting of the dependent Poisson processes Nk, into a multi-name dynamics explained

in terms of independent Poisson processes Ñs, where s is a subset (or “cluster”) of names

of the pool, defined as follows.

Ñs(t) =
m∑

e=1

N(e)(t)∑

r=1

∑

s′⊇s

(−1)|s
′|−|s|

∏

k′∈s′

I
(e)
r,k′

where |s| is the number of names in the cluster s. In a summation, s ∋ k means we

are adding up across all clusters s containing k, k ∈ s means we are adding across all

elements k of cluster s, while |s| = j means we are adding across all clusters of size j

and, finally, s′ ⊇ s means we are adding up across all clusters s′ containing cluster s as

a subset.

The non-trivial proof of the independence of Ñs for different subsets s can be found

in Lindskog and McNeil (2003). Notice that a jump in a Ñs processes means that all

the names in the subset s, and only those names, have defaulted at the jump time.

We denote by λ̃s the intensity of the Poisson process Ñs(t), and we assume it to be

deterministic for the time being, although we present extensions later.

2.2 Cluster processes (Ñs) as CPS building blocks

One does not need to remember the above construction. All that matters for the following

developments are the independent clusters default Poisson processes Ñs(t). These can

be taken as fundamental variables from which (correlated) single name defaults and

default counting processes follow. The single name dynamics can be derived based on

these independent Ñs processes in the so-called fatal shock representation of the CPS

framework:

Nk(t) =
∑

s∋k

Ñs(t), or dNk(t) =
∑

s∋k

dÑs(t), (3)

where the second equation is the same as the first one but in instantaneous jump form.

We now introduce the process Zj(t), describing the occurrence of the simultaneous default
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of any j names whenever it jumps (with jump-size one):

Zj(t) :=
∑

|s|=j

Ñs(t). (4)

Notice that each Zj(t), being the sum of independent Poisson processes, is itself Poisson.

Further, since the clusters corresponding to the different Z1, Z2, . . . , ZM do not match,

the Zj(t) are independent Poisson processes.

The multi-name dynamics, that is the default counting process Zt for the whole pool,

can be easily derived by carefully adding up all the single name contributions.

Zt :=
M∑

k=1

Nk(t) =
M∑

k=1

∑

s∋ k

Ñs(t) =
M∑

k=1

M∑

j=1

∑

s∋ k,|s|=j

Ñs(t) =
M∑

j=1

j
∑

|s|=j

Ñs(t),

leading to the relationship which links the set of dependent single name default processes

Nk with the set of independent and Poisson distributed counting processes Zj:

M∑

k=1

Nk(t) =

M∑

j=1

jZj(t) =: Zt (5)

Hence, the CPS framework offers us a way to consistently model the single name

processes along with the pool counting process taking into account the correlation struc-

ture of the pool, which remains specified within the definition of each cluster process

Ñs. Notice, however, that the Zt/M process is not properly the re-scaled number of de-

faults C̄t, since the former can increase without limit, while the latter is bounded in the

[0, 1] interval. We address this issue in Section 3 below, along with the issue of avoding

repeated single names and cluster defaults.

2.3 Equivalent formulation as compound Poisson process

One more way of looking at the Zt process is the compound Poisson process, although

the link with single name dynamics is lost with this interpretation, since we cannot single

out each Ñs given only the dynamics of Zt. At any time t the process Zt has the same

characteristic function as a particular compound Poisson process. Consider the following

compound Poisson process

Xt =

Nt∑

i=1

Yi,

where λj :=
∑

|s|=j λ̃s, N is a standard Poisson process with intensity λ and the Yj ’s are

i.i.d random variables, independent of N , and with distribution given by

Yj ∼






1 λ1/(
∑M

j=1 λj)

2 λ2/(
∑M

j=1 λj)
...

M λM/(
∑M

j=1 λj)
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If we define λ :=
∑M

j=1 λj , then the compound Poisson process Xt has the same

characteristic function, at all times t, as the process Zt. The finite dimensional distri-

butions of the two processes coincide as well, so that substantially Zt and Xt are the

same process. This is easily checked by writing the finite dimensional distributions in

terms of independent increments, while recalling that both Zt and Xt have stationary

independent increments.

Finally, we notice that also Di Graziano and Rogers (2005) in some of their formula-

tions obtain a compound Poisson process for the loss distribution.

2.4 Copula structure of default times

The single name default dynamics in the CPS framework induces a Marshall-Olkin copula

type dependence between the first jumps of the single name processes Nj . More precisely,

if the random default times {τ1, . . . , τM} of names 1, . . . ,M in the pool are modeled as

the first jump times of the single name processes N1, . . . , NM ,

τk := inf{t ≥ 0 : Nk(t) > 0},

then Lindskog and McNeil (2003) show that the default times vector is distributed

according to a multi-variate distribution whose survival copula is a M-dimensional

Marshall-Olkin copula.

3 Avoiding repeated defaults

In the above framework we have a fundamental problem, due to repeated jumps of the

same Poisson processes. Indeed, if the jumps are to be intepreted as defaults, this leads

the above framework to unrealistic consequences. Indeed, repeated defaults would occur

both at the cluster level, in that a given cluster s of names may default more than

once, as Ñs keeps on jumping, and at the single name level, since each name k keeps on

defaulting as the related Poisson process Nk keeps on jumping. These repetitions would

cause the default counting process Zt to exceed the pool size M and to grow without

limit in time.

There are two main strategies to solve this problem. Both take as starting points the

cluster repeated-default processes Ñs and then focus on different variables. They can be

summarized as follows.

Strategy 1 (Single-name adjusted approach). Force single name defaults to

jump only once and deduce clusters jumps consistently.

Strategy 2 (Cluster adjusted approach). Force clusters to jump only once and

deduce single names defaults consistently.

The two choices have different implications, and we explore both of them in the

following, although we anticipate the second solution is more promising.

If one gives up single names and clusters, and focuses only on the default counting

process and the loss (throwing away the “bottom-up” interpretation), there is a third

9



default process default proc default count proc total default

for cluster s for name k for j simult defaults counting

Repeated defaults Ñs Nk Zj Z

Strategy 0 (GPL) – – Z0
j min(Z,M)

Strategy 1 Ñ1
s N1

k Z1
j Z1

Strategy 2 (GPCL) Ñ2
s N2

k Z2
j Z2

Table 1: Notation for default processes according to the different strategies

possible strategy to make the default counting process above consistent with the pool

size:

Strategy 0 (Default-counting adjusted approach). Modify the aggregated pool

default counting process so that this does not exceed the number of names in the pool.

Strategy 0 addresses the problem of the CPS framework at the default counting level.

In the basic CPS framework, the link between the re-scaled pool counting process Zt/M ,

which can increase without limit, and the re-scaled number of defaults C̄t, that must

be bounded in the [0, 1] interval, is not correct. This forbids in principle to model C̄t

as Zt/M . In the CPS literature this problem is not considered usually. Lindskog and

McNeil (2003) for instance suppose that the default intensities of the names are so small

to lead to negligible “second-default” probabilities. If this assumption were realistic, this

would allow for adopting Zt/M as a model for C̄t and strategy 0 would not be needed.

However, in our calibration results in Brigo, Pallavicini and Torresetti (2006a) we find

that intensities are large enough to make repeated defaults unacceptable in practice.

In Table 1 we summarize the notation we are going to adopt in the following.

3.1 Default-counting adjustment: GPL model (strategy 0)

One possibility is to consider the pool counting process Zt merely as a driving process

of some sort for the market relevant quantities, namely the cumulated portfolio loss L̄t

and the re-scaled number of defaults C̄t. This candidate underlying process Zt is non-

decreasing and takes arbitrarily large values in time. The portfolio cumulated loss and

the re-scaled number of defaults processes are non-decreasing, but limited to the interval

[0, 1]. Thus, we may consider a deterministic non-decreasing function ψ : N∪{0} → [0, 1]

and we define either the counting or loss process as ψ(Zt). In Brigo, Palavicini and

Torresetti (2006a) we go for the former choice, by capping the counting process coming

from single name repeated defaults, assuming

C̄t := ψC̄(Zt) := min(Zt/M, 1), (6)
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where M > 0 is the number of names in the portfolio, while in Brigo, Pallavicini and

Torresetti (2006b) we adopt the latter choice,

L̄t := ψL̄(Zt) := min(Zt/M
′, 1), (7)

where 1/M ′, with M ′ ≥ M > 0, is the minimum jump-size allowed for the loss process,

leading to more refined granularity solutions. The quantity that is not modelled directly

between C̄t and L̄t can be obtained from the one modelled directly through explicit

assumptions on the recovery rate. We discuss recovery assumptions in general below, in

Section 5.5.

This approach has the drawback of breaking the relationship (5) which links the

single name processes Nk with the counting processes Zj. We can still write the counting

processes as a function of the repeated default counting process Zt under formula (6):

Z0
j (t) =

∫ t

0

1{dZu=j,Z
u−≤M−j} =

∫ t

0

1{Z
u−≤M−j}dZj(u),

but we have clearly no link with single names.

This can be considered a viable approach, if we are interested only in the collective

dynamics of the pool without considering its constituents, i.e. in the aggregate loss

picture typical of many “top-down” approaches.

3.2 Single-name adjusted approach (strategy 1)

In order to avoid repeated defaults in single name dynamics, we can introduce constraints

on the single name dynamics ensuring that each single name makes only one default.

Such constraints can be implemented by modifying Equations (3) in order to allow for

one default only. Given the same repeated cluster processes Ñs as before, we define

the new single name default processes N1
k replacing Nk as solutions of the following

modification of Equation (3) for the original Nk:

dN1
k (t) := (1 −N1

k (t−))
∑

s∋ k

dÑs(t) (8)

=
∑

s∋k

dÑs(t)
∏

s∋k

1{ eNs(t−)=0}

Interpretation: This equation amounts to say that name k jumps at a given time if

some cluster s containing k jumps (i.e. Ñs jumps) and if no cluster containing name k

has ever jumped in the past.

We can compute the new cluster defaults Ñ1
s consistent with the single names N1

k as

dÑ1
s (t) =

∏

j∈s

dN1
j (t)

∏

j∈sc

(1 − dN1
j (t)) (9)

where sc is the set of all names that do not belong in s.
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Now, we can use equation (5) with the N1
k replacing the Nk, to calculate how the

new counting processes Z1
j are to be defined in terms of the new single names default

dynamics:

M∑

k=1

dN1
k (t) =

M∑

k=1

(1 −N1
k (t−))

∑

s∋k

dÑs(t) =
M∑

k=1

(1 −N1
k (t−))

M∑

j=1

∑

s∋k,|s|=j

dÑs(t)

=
M∑

j=1

∑

|s|=j

dÑs(t)
∑

k∈s

(1 −N1
k (t−)) =

M∑

j=1

∑

|s|=j

dÑs(t)
∑

k∈s

∏

s′∋k

1{ eNs′ (t
−)=0}.

This expression should match dZ1(t) :=
∑

j j dZ
1
j (t), so that the counting processes are

to be defined as

dZ1
j (t) :=

1

j

∑

|s|=j

dÑs(t)
∑

k∈s

∏

s′∋k

1{ eNs′(t
−)=0} (10)

The intensities of the above processes can be directly calculated in terms of the

density of the process compensator. We obtain by direct calculation

hN1
k
(t) =

∏

s∋ k

1{ eNs(t−)=0}

∑

s∋k

λ̃s(t)

hZ1
j
(t) =

1

j

∑

|s|=j

λ̃s(t)
∑

k∈s

∏

s′∋k

1{ eNs′ (t
−)=0}

where in general we denote by hX(t) the compensator density of process X at time t,

referred to as “intensity of X”, and where λ̃s is the intensity of the Poisson process Ñs′ .

Given exogenously the repeated Poisson “cluster” default building blocks Ñs, the

model N1
k , Ñ

1
s , Z

1
j is a consistent way of simulating the single name processes, the cluster

processes and the pool counting process from the point of view of avoiding repeated

defaults. In particular, we obtain C̄t :=
∑

k N
1
k (t)/M = Z1

t /M ≤ 1.

Notice, however, that the definition of N1
k in (8), even if it avoids repeated defaults of

single names, is not consistent with the spirit of the original repeated cluster dynamics.

Consider indeed the following example.

Begin Example. Consider two clusters s = {1, 2, 3}, z = {3, 4, 5, 6}. Assume no

name defaulted up to time t except for cluster z, in that in a single past instant preceding

t names 3, 4, 5, 6 (and only these names) defaulted together (Ñz jumped at some past

instant). Now suppose at time t cluster s jumps, i.e. names 1, 2, 3 (and only these

names) default, i.e. Ñs jumps for the first time.

Question: Does name 2 default at t?

According to our definition of N1
2 the answer is yes, since no cluster containing name

2 has ever defaulted in the past. However, we have to be careful in interpreting what is

happening at cluster level. Indeed, clusters z and s cannot both default since this way

name 3 (that is in both clusters) would default twice. So we see that the actual clusters

default of this approach, implicit in Equation (9), do not have a clear intuitive link with

repeated cluster defaults Ñs.

End Example.
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To simplify the parameters, we may assume the cluster intensities λ̃s to depend only

on the cluster size |s| = j. Then it is possible to directly calculate the intensity of the

pool counting process C = Z1 as

hZ1(t) =

(
1 −

Z1
t−

M

) ∑

j

j

(
M

j

)
λ̃j

where λ̃j is the common intensity of clusters of size j.

We see that the pool counting process intensity hZ1 is a linear function of the counting

process C = Z1 itself, as we can expect by general arguments for a pool of independent

names (again with homogeneous intensities). In such a pool default of one name does

not affect the intensity of default of other names, and the pool intensity is the common

homogeneous intensity times the number of outstanding names. Each new default simply

diminishes the pool intensity of one common intensity value and the pool intensity is

always proportional to the number (fraction) of outstanding names (1 − C̄).

3.3 GPCL model: Cluster-adjusted approach (strategy 2)

In the preceding sections we have seen that, if we are able to model all the repeated

cluster defaults Ñs, we are able to describe the repeated default dynamics of both single

names and the pool as a whole. Indeed, by knowing all the Ñs, we can directly compute

the single name processes Nk and the aggregated counting processes Zj by means of

equations (3) and (4).

In the previous section we have used the Ñs exogenously as an engine to generate

single name and aggregated defaults. This avoids repeated defaults of single names and

a default rate exceeding 1, but is not consistent with the initial intuitive meaning of the

Ñs’s as repeated clusters defaults.

The key to consistently avoid repeated cluster defaults (and subsequently single

names) is to track, when a cluster jumps, which single-name defaults are triggered,

and then force all the clusters containing such names not to jump any longer.

We may formalize these points by introducing the process Js(t) defined as

Js(t) :=
∏

k∈s

∏

s′∋k

1{ eNs′ (t)=0} =
∏

s′: s′∩s 6=∅

1{ eNs′(t)=0}

The process Js(t) is equal to 1 at starting time and it jumps to 0 whenever a cluster

containing one element of s jumps. Or one may view the process Js as being one when

none of the names in s have defaulted and 0 when some names in s have defaulted.

Notice that Js(t) = 1 implies 1{ eNs(t)=0} but not viceversa.

We now correct the cluster dynamics by avoiding repeated clusters defaults. We

define as new cluster dynamics the following:

dÑ2
s (t) = Js(t

−)dÑs(t). (11)
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Interpretation: every time a repeated cluster default process Ñs jumps, this is a jump

in our “no-repeated-jumps” framework only if no name contained in s has defaulted in

the past, i.e. if no cluster intersecting s has defaulted in the past.

Once the clusters defaults are given, single name defaults follow easily. We can change

equation (3) and define the single name dynamics as

dN2
k (t) :=

∑

s∋k

dÑ2
s =

∑

s∋ k

Js(t
−)dÑs(t). (12)

Now, we can use equation (4) to see how the counting processes Zj are to be re-defined

in terms of our new cluster dynamics (11). We obtain

dZ2
j :=

∑

|s|=j

dÑ2
s =

∑

|s|=j

Js(t
−)dÑs(t). (13)

The pool counting process reads

dZ2 =

M∑

j=1

j
∑

|s|=j

dÑ2
s =

M∑

j=1

j
∑

|s|=j

Js(t
−)dÑs(t). (14)

If not for the cluster-related indicators Js(t
−), Z2 would be a generalized Poisson

process. That is why we term the model N2
k , Ñ

2
s , Z

2
j the Generalized Poisson Cluster-

adjusted Loss model (GPCL).

Recall that we can always consider cluster dynamics as defined by single name dy-

namics rather than directly. That is, we can define

dÑ2
s (t) =

∏

j∈s

dN2
j (t)

∏

j∈sc

(1 − dN2
j (t)) (15)

This way the cluster s defaults, i.e. Ñ2
s jumps (at most once), when (and only when)

all single names in cluster s jump at the same time (first product), provided that at that

time no other name jumps (second product).

One can check that (15) and (11) are indeed consistent if the single name dynamics

is defined by (12).

To appreciate how this second strategy formulation improves on the first strategy,

we consider again our earlier example.

Example (Reprise). Consider the same example as in Section 3.2 up to the Ques-

tion: “Does name 2 default at t?”

According to our definition of N2
2 the answer is now NO, since the cluster z =

{3, 4, 5, 6}, intersecting the s currently jumping (they both have name 3 as element),

has already defaulted in the past. Thus we see a clear difference between strategies 1 and

2. With strategy 2 name 2 does not default when s jumps, with strategy 1 it does. Notice

that strategy 2 is more consistent with the original spirit of the repeated cluster defaults

Ñs. Indeed, if cluster z = {3, 4, 5, 6} has defaulted in the past (meaning that Ñz has

14



jumped), s = {1, 2, 3} should never be allowed to default, since it is impossible that now

“exactly the names 1, 2, 3 default”, given that 3 has already defaulted in z.

End Example

The intensities of the above processes can be directly calculated as densities of the

processes compensators. We obtain by direct calculation, given that Js(t) is known given

the information (and in particular the Ñs) at time t:

hN2
k
(t) =

∑

s∋ k

Js(t
−)λ̃s(t) (16)

hZ2
j
(t) =

∑

|s|=j

Js(t
−)λ̃s(t) (17)

Remark 3.1. (Self-affecting features ). Notice that in the GPCL model the single

name intensities hN2
k
(t) are stochastic, since they depend on the process Js. Moreover,

the single name intensities are affected by the loss process. In particular, the intensity

of a single-name jumps when one of the other names jumps. Consider for example a

name k that has not defaulted by t, with intensity hN2
k
(t), and one path where there are

no new defaults until t′ > t, when name k′ defaults. Now all clusters s containing k′

have Js(t
′) = 0 so that

hN2
k
(t′) =

∑

s∋k

Js(t
′−)λ̃s(t

′) =
∑

s∋ k

Js(t
−)λ̃s(t

′) −
∑

s⊇{k,k′}

Js(t
−)λ̃s(t

′)

We see that the the k-th name intensity reduces when k′ defaults, and it reduces of

the second summation in the last term.

At first sight this is a behaviour that is not ideally suited to intensities. For example,

looking at the loss feedback present in the default intensities of Hawkes-processes (see

Errais, Giesecke and Goldberg (2006) for Hawkes processes applied to default modeling),

one sees that intensities are self-exciting, in that they increase when a default arrives. As

soon as one name defaults, the intensities of the pool jump up, as is intuitive. However,

Errais, Giesecke and Goldberg (2006) (but also Schönbucher (2005) and others) assume

there is only one default at a time. We are instead assuming there may be more than one

default in a single instant. Therefore the self-exciting feature is somehow built in the fact

that more than one name may default at the same instant. In other terms, instead of

having the intensity of default of a related name jumping up of a large amount, implying

that the name could default easily in the next instants, we have the two names defaulting

together. From this point of view cluster defaults embed the self-exciting feature, although

in an extreme way.

The best way to summarize our construction is through the three equations defining

respectively cluster defaults, single name defaults and default counting processes:

dÑ2
s (t) = Js(t

−)dÑs(t), dN2
k (t) :=

∑

s∋ k

dÑ2
s (t), dZ2

j (t) :=
∑

|s|=j

dÑ2
s (t)
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Notice that once the new cluster default processes Ñ2
s are properly defined, single

name and default counting processes follow immediately in what is indeed the only

possible relationships that make sense for connecting clusters fatal shocks to single name

defaults and to default counting processes. With our particular choice for the cluster

defaults Ñ2
s dynamics we start from the repeated cluster defaults Ñs dynamics and

correct it to avoid repeated defaults at a cluster level. Then everything follows for

default counting and single names.

We may also write the cluster intensities as

h eN2
s
(t) = Js(t

−)λ̃s(t) =: λ̄s(t)

Notice that this strongly reminds us of what we do with Poisson (or more generally

Cox) processes to model single name defaults. The default time τk of the single name

k is modeled as the first jump of a Poisson process with intensity λk(t), and then the

process is killed after the first jump in order to avoid repeated defaults. This way the

intensity λ̄k(t) of the default time τk is

λ̄k(t) = 1{τk>t}λk(t)

What we do is similar for clusters: we start from clusters with repeated jumps Ñs

and then we kill the repeated jumps through an indicator Js(t), replacing the simpler

indicator 1{τk>t} of the single-name case.

If, as before, we assume the cluster intensities λ̃s to depend only on the cluster size,

λ̃s = λ̃|s|, it is possible to directly calculate the intensity of the pool counting process

Z2(t) :=
∑

j jZ
2
j (t). We obtain

hZ2(t) =
∑

j

j

(
M − Z2

t−

j

)
λ̃j

where λ̃j is the common intensity of clusters of size j. The pool counting process intensity

is a non-linear function of the counting process, taking into account the co-dependence

of single name defaults.

3.4 Comparing models in a simplified scenario

It is interesting to compare the relationships between the pool counting process Ct and

its intensity across the different formulations we considered above.

Here, we summarize the approaches shown above in the case cluster intensities depend

only on the cluster size, λs = λ|s|.

1. Repeated defaults. The counting process can increase without limit, as implictly

done in Lindskog and McNeil (2003).

Ct = Zt, hZ(t) = hC(t) =

M∑

j=1

j

(
M

j

)
λ̃j(t)
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Figure 1: The relationships between the pool counting process Ct−/M and its intensity

ratio hC(t;Ct−)/hC(t;Ct− = 0) in the four different cases summarized in Section 3.4. The

cluster intensities for the GPL and GPCL models are listed in the rightmost columns of

the two panels of Table 5.

2. Strategy 0. The counting process is bounded by the mapping ψ(·) := min(·,M),

as in Brigo, Pallavicini and Torresetti (2006a). This is the Generalized Poisson

Loss (GPL) model.

Ct = min(Zt,M), h0(t) := hC(t) =
M∑

j=1

min(j, (M − Zt−)+)

(
M

j

)
λ̃j(t)

3. Strategy 1. The counting process is bounded by forcing each single name to jump

at most once. A dynamics, leading to a similar form of the intensity, is considered

also in Elouerkhaoui (2006).

Ct = Z1
t , h1(t) := hC(t) =

(
1 −

Z1
t−

M

) M∑

j=1

j

(
M

j

)
λ̃j(t)

4. Strategy 2. The counting process is bounded by forcing clusters dynamics to give

raise to at most one jump in each single name. This is the Generalized Poisson

Cluster Loss (GPCL) model.

Ct = Z2
t , h2(t) := hC(t) =

M∑

j=1

j

(
M − Z2

t−

j

)
λ̃j(t)
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In Figure 1 we plot hC(t;Ct−)/hC(t;Ct− = 0) against Ct−/M in the four cases. The

cluster intensities λ̃j for the first and the third model are not relevant, since their influence

cancels taking the ratio. The cluster intensities for the second and the fourth model are

calibrated against the 10-year DJi-TRAXX tranche and index spreads on October 2,

2006 (see Table 5).

Notice, further, that for any choice of the cluster intensities the pool intensities are

monotonic non-increasing functions of the pool counting process, not explicitly depending

on time.

4 Beyond GPL: The GPCL model calibration

In Brigo, Pallavicini and Torresetti (2006a) the GPL basic model Ct = min(Zt,M) is

calibrated to the index and its tranches for several maturities. Here we try instead the

richer GPCL model Ct = Z2
t introduced above, allowing us in principle to model also

cluster and single name defaults consistently. However, the GPCL model can hardly be

managed without simplifying assumptions. In the following we assume again that the

cluster intensities λ̃s depend only on the cluster size |s|. Moreover, as with the basic

GPL model, we try calibration of multi-name products only, such as credit indices and

CDO tranches, leaving aside single name data for the time being. Indeed, with respect

to our earlier paper in Brigo Pallavicini and Torresetti (2006a), we focus only on the

improvement in calibration due to using a default counting process whose intensity has

a clear interpretation in terms of default clusters. This will allow us, in further work,

to include single names in the picture, since our GPCL framework allows us to do so

explicitly.

The recovery rate is considered as a deterministic constant and set equal to R = 40%.

Thus, the underlying driving model definition is

Ct := Z2(t) =

M∑

j=1

j Z2
j (t), where dZ2

j (t) ∼ Poisson

((
M − Z2

t−

j

)
λ̃j(t)dt

)

while the pool counting and loss processes are defined as

dC̄t := dZ2
t /M

dL̄t := (1 −R) dZ2
t /M

In the following sections we first discuss the numerical issues concerning calibration,

and, then, we show some model calibration results.

4.1 Numerical issues concerning calibration

Given our recovery assumption, the prices of the products to be calibrated, presented

in the appendix, depend only on knowledge of the probability distribution of the pool

counting process Ct. Thus, our main issue is to calculate this law as fast as possible.
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When dealing with dynamics derived from Poisson processes, there are different available

calculation methods, depending on the structure of the intensities.

If the intensity does not depend on the process itself, or it does only in a simple way,

then the probability distribution can be derived by means of Fast Fourier inversion of

the characteristic function, when the latter is available in closed form. This method is

described and used for the GPL model in Brigo, Pallavicini and Torresetti (2006a,b).

Again, the GPL process is based on the driver Z, that can be interpreted also as a

compound Poisson process, as we have seen in Section 2.3. In general the probability

distributions of compound Poisson processes can be calculated in closed form if the i.i.d.

jump amplitudes have a discrete-valued distribution. Consider the compound Poisson

process defined in Section 2.3. It is possible to find a relationship, known as Panjer

recursion, between the probability densities pXt
(n) and pXt

(n− 1) as done in Hess et al.

(2002).

However, with the GPCL model, the dependence of the intensity of the pool counting

process on the process itself prevents us either to calculate the relevant characteristic

function in closed form or to use the Panjer method.

Our choice then is to explicitly calculate the forward Kolmogorov equation satisfied

by the probability distribution pZ2
t
(x) = Q {Z2

t = x }, namely

d

dt
pZ2

t
(x) =

M∑

y=0

At(x, y)pZ2
t
(y)

where the transition rate matrix At = (At(x, y))x,y=0,...,M is given by

At(x, y) := lim
∆t→0

Q
{
Z2

t+∆t = x|Z2
t = y

}

∆t
=

(
M − y

x− y

)
λ̃x−y(t)

for x > y,

At(y, y) := lim
∆t→0

Q
{
Z2

t+∆t = y|Z2
t = y

}
− 1

∆t
= −

M−y∑

j=1

(
M − y

j

)
λ̃j(t).

for x = y, and zero for x < y.

In matrix form we write

d

dt
π̂t = Atπ̂t, π̂t :=

[
pZ2

t
(0) pZ2

t
(1) pZ2

t
(2) . . . pZ2

t
(M)

]′

whose solution is obtained through the exponential matrix,

π̂t = exp

(∫ t

0

Audu

)
π̂0, π̂0 = [1 0 0... 0]′.

Matrix exponentiation can be quickly computed with the Padé approximation (see Golub

and Van Loan (1983)), leading to a closed form solution for the probability distribution

pCt
= π̂t of the pool counting process Ct. This distribution can then be used in the

calibration procedure.
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4.2 GPCL model detailed Calibration procedure

If we define the cumulated cluster intensities as

Λ̃j(t) =

∫ t

0

λ̃j(u) du.

then the entries of the matrix undergoing exponentiation in determining the default

counting distribution are given by

for x > y:

∫ t

0

Au(x, y)du =

(
M − y

x− y

)
Λ̃x−y(t)

for x = y:

∫ t

0

Au(y, y)du = −

M−y∑

j=1

(
M − y

j

)
Λ̃j(t).

We assume the Λ̃j to be piecewise linear in time, changing their values at payoff

maturity dates. We use Λ̃j as calibration parameters. We have bM free calibration

parameters, if we consider b maturities. Notice that many Λ̃j(t) will be equal to zero for

all maturities, meaning that we can ignore their corresponding counting process Z2
j (t).

One can think of deleting all the modes with jump sizes having zero intensity and keep

only the nonzero intensity ones. Call α1 < α2 < ... < αn the jump sizes with nonzero

intensity. Then one renumbers progressively the intensities according to the nonzero

increasing α: Z2
j becomes the jump of a cluster of size αj .

The calibration procedure for GPCL is implemented using the αj in the same way as

in Brigo, Pallavicini and Torresetti (2006a) for the GPL model. As concerns the GPCL

intensities, in the tables we display
(

M
αj

)
Λ̃j , i.e. we multiply a cluster cumulated intensity

for a given cluster size for the number of clusters with that size at time 0.

We also calibrate the GPL model, for comparison. In this paper we denote the GPL

cumulated intensities for the αj mode by Λ0
j , which reads, using the link with repeated

defaults, as Λ0
j =

(
M
αj

)
Λ̃j. Given the arbitrary a-posteriori capping procedure in GPL,

these Λ̃j are not to be interpreted as cluster parameters, the only actual parameters being

the Λ0
j directly, and they are to be interpreted as merely describing the pool counting

process dynamic features.

More in detail, the optimal values for the amplitudes αj in GPCL are selected, by

adding non-zero amplitudes one by one, as follows, where typically M = 125:

1. set α1 = 1 and calibrate Λ̃1;

2. add the amplitude α2 and find its best integer value by calibrating the cumulated

intensities Λ̃1 and Λ̃2, starting from the previous value for Λ̃1 as a guess, for each

value of α2 in the range [1, 125],

3. repeat the previous step for αi with i = 3 and so on, by calibrating the cumulated

intensities Λ̃1, . . . , Λ̃i, starting from the previously found Λ̃1, . . . , Λ̃i−1 as initial

guess, until the calibration error is under a pre-fixed threshold or until the intensity

Λ̃i can be considered negligible.
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The objective function f to be minimized in the calibration is the squared sum of the

errors shown by the model to recover the tranche and index market quotes weighted by

market bid-ask spreads:

f(α, Λ̃) =
∑

i

ǫ2i , ǫi =
xi(α, Λ̃) − xMid

i

xBid
i − xAsk

i

(18)

where the xi, with i running over the market quote set, are the index values S0 for

DJi-TRAXX index quotes, and either the index periodic premiums SA,B
0 or the upfront

premium rates UA,B for the DJi-TRAXX tranche quotes, see the appendix for more

details.

4.3 Calibration results

The calibration data set is the DJi-TRAXX main series on the run on October, 2 2006.

In Tables 2 and 3 we list the discount interest rates, the CDO tranche spreads and the

credit index spreads.

We calibrate three methods against such data set and we compare the results. They

are listed in the tables.

1. The implied expected tranched loss method (hereafter ITL) described in Walker

(2006) or in Torresetti, Brigo and Pallavicini (2006). It is a method which allows

to check if arbitrage opportunities are present on the market by implying expected

tranched losses satisfying basic no-arbitrage requirements.

2. The GPL model described in Brigo, Pallavicini and Torresetti (2006a) and summa-

rized above, i.e. Ct = min(Zt,M) with Z as in (5) (referred to before as strategy

0). Such model, due to the capping feature, is not compatible with any of the

previously described single-name dynamics avoiding repeated defaults.

3. The GPCL model described in the present paper (strategy 2), which represents an

articulated solution to the repeated defaults problem. We implement the simplified

version with cluster intensity λ̃s depending only on cluster size |s|.

First, we check that there are no arbitrage opportunities on October, 2 2006, by

calibrating the ITL method. The calibration is almost exact and in Table 7 we show the

expected tranched losses implied by the method, which we can use as reference values

when comparing the other two models.

Then we calibrate the GPL and GPCL models, and we obtain the calibration pa-

rameters presented in Table 5, while the expected tranched losses implied by these two

models are included in Table 7. We point out that this is a joint calibration across

tranche seniority and maturity, since we are calibrating all and every tranche and index

quote with a single model specification. When looking at the outputs of the calibrated

models on the different maturities, we see that both our models perform very well on

maturities of 3 years, 5 years and 7 years, for which the calibration error is within the
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Figure 2: Loss distribution evolution of the GPL model (upper panel) and of the GPCL

model (lower panel) at all the quoted maturities up to ten years, drawn as a continuous

line.

bid-ask spread. The 10 year maturity quotes are more difficult to recover, but both

models are close to the market values, as we see from the left panel of Table 8. Notice,

however, that the GPCL model has a lower calibration error (10% − 20% better).

The probability distributions implied by the two dynamical models are similar at

gross-grain view, as one can see in Figure 2, but they differ if we observe the fine structure.

Indeed, the tails of the two distributions show different bumps. The GPCL model shows

a more complex pattern, and, as one can see from Table 5, its highest mode is the

maximum portfolio loss, while the GPL model has a less clear tail configuration.

We also apply the ITL, GPL and GPCL methods to the CDX index and tranches

(see Table 4 for market quotes), following the same procedure used for the DJi-TRAXX

above. We find better results, that are summarized in Table 6 and in the right panel of

Table 8.
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5 Model Extensions

In this final section we hint at possible extensions of the basic model to account for more

sophisticated features.

5.1 Spread dynamics

The valuation of credit index forward contracts or options maturing at time T = Ta

requires the calculation of the index spread at those future times, which in turn depends

on the default intensity evolution. Consider, for instance, the case of deterministic

interest rates (or more generally interest rates independent of defaults) for an index

whose default leg protects against losses in the index pool up to time Tb and where the

spread premium payments occur at times T1, T2, . . . , Tb. We have the spread expression

at Ta as

ST =

∫ Tb

T
D(T, t) ET [hL̄(t) ] dt

∑b
i=1 δiD(T, Ti)

(
1 − C̄T −

∫ Ti

T
ET [hC̄(t) ] dt

)
1{Ti>T}

where hL̄(t) is the default intensity of the cumulated portfolio loss process and hC̄(t) is

the default intensity of the re-scaled default counting process C̄ (see for example Brigo,

Pallavicini e Torresetti (2006a), or the Appendix, for a detailed description of credit

index contracts) and D(s, t) is the discount factor, often assumed to be deterministic,

between times s and t.

The GPCL model presented in the previous sections has single-name and default

counting intensities given by equations (16). These intensities depend on which names

have already defaulted. The dynamics of the index St (spread dynamics) can be enriched

by more sophisticated modelling of the default intensities hL̄(t) and hC̄(t), by explicitly

adding stochasticity to the Poisson intensities λ̃j(t), e.g. resorting to the Gamma, sce-

nario or CIR extensions of the model seen above.

5.2 Spread dynamics through Gamma intensity

Assume now that the cumulated clusters intensities Λ̃s(t) :=
∫ t

0
λ̃s(u)du are distributed

at any time t according a Gamma distribution, i.e.

Λ̃s(t) ∼ Γ(ks(t), θs)

where k > 0 is the shape parameter and θ > 0 is the scale parameter in the Gamma

distribution. These gamma processes are assumed to be independent of the exponential

random variables triggering the jumps in the Ñs Poisson processes. The Gamma choice

is convenient because it does not alter the tractability of the basic model. See Brigo,

Pallavicini e Torresetti (2006b) for a Gamma GPL implementation.

The Gamma distribution assumption for Λ̃s(t) ∼ Γ(ks(t), θs) at every time t is con-

sistent with a Gamma process assumption for Λ̃s(t), whose distribution is controlled by

both parameters k and θ. The time constant θ allows for little flexibility in the variance
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term-structure of the process. In Brigo, Pallavicini and Torresetti (2006b) we improve

the model in this respect, by introducing a piecewise Gamma GPL process extension.

5.3 Spread dynamics through CIR intensity

A different and possibly more interesting extension is to model the cluster intensities

according to a Cox Ingersoll Ross (CIR) process

dλ̃s(t) = ks(θs − λ̃s(t))dt+ σs

√
λ̃s(t)dWs

with 2ksθs > σ2
s . These CIR processes are assumed to be independent of the exponential

random variables triggering the jumps in the Ñs Poisson processes.

With respect to the case of deterministic cluster intensities, the model tractability

is preserved, due to the closed form results which can be derived. Alternatively, jump

diffusion JCIR intensities can be considered, maintaining tractability.

5.4 Spread dynamics through Scenario intensity

A different extension is as follows. By taking scenarios on the clusters intensities we may

easily extend our basic model. In this model we assume the intensities in all the clusters

to take different scenarios with different probabilities. Indeed, assume now that the

(possibly time varying) intensities λ̃s are indexed by a random variable I taking values

1, 2, . . . , m with (risk-neutral) probabilities q1, q2, . . . , qm: λ̃I
s is then a random intensity

for the s-th cluster process, depending on I. The related Poisson process is denoted by

Ñ I
s . I is assumed to be independent of the exponential random variables triggering the

jumps of the Poisson processes. Conditional on I = i, the intensity of the process Ñ I
s is

λ̃i
s. This formulation does not spoil analytical tractability, since all the expected values

can be calculated as a linear combination of conditional expectations.

5.5 Recovery dynamics

We introduced in (2), reported below here, the notion of recovery at default Rt:

dL̄t = (1 −Rt)dC̄t (or, more precisely L̄t =

∫ t

0

(1 −Ru)dC̄u). (19)

Now we specify more about this notion. In general, for ease of computation, we

assume Rt to be a Gt-adapted and left-continuous (and hence predictable) process taking

values in the interval [0, 1]. On predictability of the recovery process see also Bielecki

and Rutkowski (2001). Here Gt denotes the filtration consisting of default-free market

information and of the default-count monitoring up to time t. This implies in particular,

given (19), that the loss L̄t is Gt-adapted too, as is reasonable. We noticed earlier that

the no-arbitrage condition (1) is met if R takes values in [0, 1]. Equation (19) leaves us

with the freedom of defining only two processes among L̄t, C̄t and Rt. The more natural
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approach would be modeling explicitly (C̄t, Rt), obtaining L̄t, or modeling explicitly

(L̄t, Rt), obtaining C̄t, all of them adapted.

However, if we choose to model both L̄t and C̄t as Gt-adapted processes and to infer Rt,

we have to ensure that the resulting process Rt implicit in (19) is indeed left-continuous

(and hence Gt-predictable).

Indeed, in some formulations the predictability of the recovery is not possible. It is

also a notion not always realistic: whether one or 125 names default in instant (t− dt, t]

(i.e. dCt = 1 or dCt = 125, respectively), we would be imposing the recovery Rt to be

the same in both cases and, in particular, to depend only on the information up to t−.

However, under adapted-ness and left-continuity the recovery rate can be expressed

also in terms of the intensities of the loss and default rate processes. From equation (19),

by definition of compensator, we obtain

Rt = 1 −
hL̄(t)

hC̄(t)
. (20)

Equation (20) shows that the recovery rate at default is directly related to the intensi-

ties of both the loss and the default rate processes. Thus, the choice for the intensity

dynamics does induce a dynamics for the recovery rate.

In Brigo, Pallavicini and Torresetti (2006b) the cumulated portfolio loss process L̄ is

directly modelled as a GPL-type process with deterministic intensities and an extended

set of allowed jump amplitudes that go beyond 1/M, 2/M, . . . , 1, according to (7). In

this approach the recovery is implicitly defined. Numerical results show that calibrations

are better with respect to the choice of modeling the default counting process as a GPL

process instead (Brigo, Pallavicini, and Torresetti (2006a)). The direct loss modeling

allows for both portfolio total loss and for more granular small-size losses. In particular

super-senior tranches seem to be quoted taking into account the possibility of portfolio

total loss, so that the direct loss model outperforms the default counting process model

with a constant or simple recovery formulation.

On the other hand, the GPCL model derived within the CPS framework in the

preceding sections requires direct modeling of the pool counting process. Thus, if the

recovery rate R is constant, the portfolio total loss is forbidden, since bounded to be not

greater than 1 − R on a unit portfolio notional.

We now examine possible ways to model the loss more realistically, starting from a

GPL or GPCL model formulated in terms of default counting process. This amounts to

implicitly model the recovery rate, since the number of defaults and the loss are linked

by the recovery at default.

5.6 Recovery dynamics through Deterministic mapping

A first approach to implicitly model recovery rates consists in defining the cumulated

portfolio loss L̄t process as a deterministic function of the pool counting process C̄t via

a deterministic map, as previously done when dealing with repeated defaults exceeding

the pool size, through the a-posteriori capping technique used in the basic GPL model
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(see Section 3.1). Generalizing that approach leads to the setting

L̄t := ψ(C̄t),

where ψ is a non-decreasing deterministic function with ψ(0) = 0 and ψ(1) ≤ 1. What

does this imply in terms of recovery dynamics? We can easily write

dL̄t =
M∑

k=1

[
ψ(C̄t− + k/M) − ψ(C̄t−)

k/M

]
1{dC̄t=k/M}dC̄t

which shows that the recovery at default in this case would not be predictable, depending

explicitly from dCt, except for very special ψ’s.

A generalization based on a random process transformation (rather than a determin-

istic function) of the counting process leading to an implicit dynamics of the recovery

process is presented in the next section.

5.7 Recovery dynamics through Gamma mapping

Consider a stochastic process u 7→ Ψu in time u, Gu-adapted and taking values in [0, 1],

right-continuous with left limit, and independent of the default counting process C̄t, and

use it to map the positive non-decreasing pool counting process C̄t taking values in [0, 1]

into the portfolio cumulated loss L̄t, sharing the same characteristics, i.e. define

L̄t := ΨC̄t
.

Further, assume the process satisfies the following requirements, enforcing the no-

arbitrage conditions:

Ψ0 = 0, Ψ1 ≤ 1, and dΨt ≥ 0

This way the cumulated portfolio loss can be viewed as a stochastic time change of the

process Ψ. Further, in order to allow for portfolio total loss, we enforce the stronger

condition

Ψ1 = 1.

The time change does not spoil the analytical tractability of the model. If we know the

probability distribution function of the pool counting process and of Ψ, we can simply

derive the probability distribution function of the portfolio loss through an iterated

expectation, thanks to independence:

Q
{
L̄t ≤ x

}
= E

[
Q

{
L̄t ≤ x|C̄t

} ]
=

∫
Q {Ψy ≤ x } pC̄t

(y)dy

As a relevant example, assume the process u 7→ Ψu is a Gamma process with shape

parameter µ(u) and scale parameter ν. The monotonicity of the resulting loss process

can be easily checked, while the probability distribution of the process can be calculated

explicitly. Indeed, as a direct calculation can show, for any times s < t < T , the condi-

tional distribution of Ψt, given Ψs and ΨT is known in terms of the Beta distribution.
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The calculation of the unconditional distribution of the cumulated portfolio loss fol-

lows directly.

Exactly as for the previous case based on the deterministic transform ψ, here the

implicit recovery at default turns out to be not predictable in general.

6 Conclusions

We have extend the common Poisson shock (CPS) framework in two possible ways that

avoid repeated defaults. The second way, more consistent with the original spirit of the

CPS framework, leads to the Generalized-Poisson adjusted-Cluster-dynamics Loss model

(GPCL) . We have illustrated the relationship of the GPCL with our earlier Generalized

Poisson Loss (GPL) model, pointing out that while the GPCL model shares the good

calibration power of the GPL model, it further allows for consistency with single names,

thus constituing one of the few explict examples of top down approaches to loss modeling

with real consistency for single names, or of bottom up approaches with real dynamical

features.

Further research concerns recovery dynamics, calibration and analysis of forward

start tranches and tranche options, when liquid quotes will be available, and analysis of

calibration stability through history. A preliminary analysis of stability with the GPL

model is however presented in Brigo, Pallavicini and Torresetti (2006b), showing good

results. This is encouraging and leads to assuming the GPCL stability as well, although

a rigorous check is in order in further work.
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A Market quotes

The most liquid multi-name credit instruments available in the market are credit indices

and CDO tranches (e.g. DJi-TRAXX, CDX).

A.1 Credit indices

The index is given by a pool of names 1, 2, . . . ,M , typically M = 125, each with notional

1/M so that the total pool has unitary notional. The index default leg consists of

protection payments corresponding to the defaulted names of the pool. Each time one

or more names default the corresponding loss increment is paid to the protection buyer,

until final maturity T = Tb arrives or until all the names in the pool have defaulted.

In exchange for loss increase payments, a periodic premium with rate S is paid from

the protection buyer to the protection seller, until final maturity Tb. This premium

is computed on a notional that decreases each time a name in the pool defaults, and

decreases of an amount corresponding to the notional of that name (without taking out

the recovery).

We denote with L̄t the portfolio cumulated loss and with C̄t the number of defaulted

names up to time t re-scaled by M . Thus, 0 ≤ L̄t ≤ C̄t ≤ 1. The discounted payoff of

the two legs of the index is given as follows:

DEFLEG(0) :=

∫ T

0

D(0, t)dL̄t

PREMIUMLEG(0) := S0

b∑

i=1

D(0, Ti)

∫ Ti

Ti−i

(1 − C̄t)dt

where D(s, t) is the (deterministic) discount factor between times s and t. The integral

on the right hand side of the premium leg is the outstanding notional on which the

premium is computed for the index. Often the premium leg integral involved in the

outstanding notional is approximated so as to obtain

PREMIUMLEG(0) = S0

b∑

i=1

δiD(0, Ti)(1 − C̄Ti
)

where δi = Ti − Ti−1 is the year fraction.

Notice that, differently from what will happen with the tranches (see the following

section), here the recovery is not considered when computing the outstanding notional,

in that only the number of defaults matters.

The market quotes the value of S0 that, for different maturities, balances the two

legs. If one has a model for the loss and the number of defaults one may impose that

the loss and number of defaults in the model, when plugged inside the two legs, lead

to the same risk neutral expectation (and thus price) when the quoted S0 is inside the

premium leg, leading to
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S0 =
E0

[ ∫ T

0
D(0, t)dL̄t

]

E0

[ ∑b
i=1 δiD(0, Ti)(1 − C̄Ti

)
] (21)

A.2 CDO tranches

Synthetic CDO with maturity T are contracts involving a protection buyer, a protec-

tion seller and an underlying pool of names. They are obtained by putting together a

collection of Credit Default Swaps (CDS) with the same maturity on different names,

1, 2, ...,M , typically M = 125, each with notional 1/M , and then “tranching” the loss of

the resulting pool between the points A and B, with 0 ≤ A < B ≤ 1.

L̄A,B
t :=

1

B −A

[
(L̄t −A)1{A<L̄t≤B} + (B − A)1{L̄t>B}

]

Once enough names have defaulted and the loss has reached A, the count starts. Each

time the loss increases the corresponding loss change re-scaled by the tranche thickness

B −A is paid to the protection buyer, until maturity arrives or until the total pool loss

exceeds B, in which case the payments stop.

The discounted default leg payoff can then be written as

DEFLEG(0;A,B) :=

∫ T

0

D(0, t)dL̄A,B
t

Again, one should not be confused by the integral, the loss L̄A,B
t changes with discrete

jumps. Analogously, also the total loss L̄t and the tranche outstanding notional change

with discrete jumps.

As usual, in exchange for the protection payments, a premium rate SA,B
0 , fixed at time

T0 = 0, is paid periodically, say at times T1, T2, . . . , Tb = T . Part of the premium can

be paid at time T0 = 0 as an upfront UA,B
0 . The rate is paid on the “survived” average

tranche notional. If we assume that the payments are made on the notional remaining

at each payment date Ti, rather than on the average in [Ti−1, Ti], the discounted payoff

of the premium leg can be written as

PREMIUMLEG(0;A,B) := UA,B
0 + SA,B

0

b∑

i=1

δiD(0, Ti)(1 − L̄A,B
Ti

)

where δi = Ti − Ti−1 is the year fraction.

When pricing CDO tranches, one is interested in the premium rate SA,B
0 that sets

to zero the risk neutral price of the tranche. The tranche value is computed taking the

(risk-neutral) expectation (in t = 0) of the discounted payoff consisting on the difference

between the default and premium legs above. We obtain

SA,B
0 =

E0

[ ∫ T

0
D(0, t)dL̄A,B

t

]
− UA,B

0

E0

[ ∑b
i=1 δiD(0, Ti)(1 − L̄A,B

Ti
)
] (22)
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The above expression can be easily recast in terms of the upfront premium UA,B
0 for

tranches that are quoted in terms of upfront fees.

The tranches that are quoted on the market refer to standardized pools, standardized

attachment-detachment points A− B and standardized maturities T .

Actually, for the i-Traxx and CDX pools, the equity tranche (A = 0, B = 3%) is

quoted by means of the fair UA,B
0 , while assuming SA,B

0 = 500bps. All other tranches are

quoted by means of the fair SA,B
0 , assuming no upfront fee (UA,B

0 = 0).

B Tables: Calibration Inputs and Outputs

Date Rate Date Rate Date Rate Date Rate

20-Dec-06 3.41% 21-Sep-09 3.71% 20-Jun-12 3.75% 20-Mar-15 3.83%

20-Mar-07 3.57% 21-Dec-09 3.72% 20-Sep-12 3.76% 22-Jun-15 3.84%

20-Jun-07 3.66% 22-Mar-10 3.72% 20-Dec-12 3.76% 21-Sep-15 3.84%

20-Sep-07 3.70% 21-Jun-10 3.72% 20-Mar-13 3.77% 21-Dec-15 3.85%

20-Dec-07 3.72% 20-Sep-10 3.72% 20-Jun-13 3.77% 21-Mar-16 3.86%

20-Mar-08 3.72% 20-Dec-10 3.72% 20-Sep-13 3.78% 20-Jun-16 3.87%

20-Jun-08 3.72% 21-Mar-11 3.73% 20-Dec-13 3.79% 20-Sep-16 3.87%

22-Sep-08 3.72% 20-Jun-11 3.73% 20-Mar-14 3.80% 20-Dec-16 3.88%

22-Dec-08 3.72% 20-Sep-11 3.74% 20-Jun-14 3.80%

20-Mar-09 3.71% 20-Dec-11 3.74% 22-Sep-14 3.81%

22-Jun-09 3.71% 20-Mar-12 3.74% 22-Dec-14 3.82%

Table 2: EUR zero-coupon continuously-compounded spot rates (ACT/365).
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Att-Det Maturities

3y 5y 7y 10y

Index 18(0.5) 30(0.5) 40(0.5) 51(0.5)

Tranche 0-3 350(150) 1975(25) 3712(25) 4975(25)

3-6 5.50(4.0) 75.00(1.0) 189.00(2.0) 474.00(4.0)

6-9 2.25(3.0) 22.25(1.0) 54.25(1.5) 125.50(3.0)

9-12 10.50(1.0) 26.75(1.5) 56.50(2.0)

12-22 4.00(0.5) 9.00(1.0) 19.50(1.0)

22-100 1.50(0.5) 2.85(0.5) 3.95(0.5)

Table 3: DJi-TRAXX index and tranche quotes in basis points on October 2, 2006, along

with the bid-ask spreads. Index and tranches are quoted through the periodic premium,

whereas the equity tranche is quoted as an upfront premium. See Appendix A.

Att-Det Maturities

3y 5y 7y 10y

Index 24(0.5) 40(0.5) 49(0.5) 61(0.5)

Tranche 0-3 975(200) 3050(100) 4563(200) 5500(100)

3-7 7.90(1.6) 102.00(6.1) 240.00(48.0) 535.00(21.4)

7-10 1.20(0.2) 22.50(1.4) 53.00(10.6) 123.00(7.4)

10-15 0.50(0.1) 10.25(0.6) 23.00(4.6) 59.00(3.5)

15-30 0.20(0.1) 5.00(0.3) 7.20(1.4) 15.50(0.9)

Table 4: CDX index and tranche quotes in basis points on October 2, 2006, along with

the bid-ask spreads. Index and tranches are quoted through the periodic premium,

whereas the equity tranche is quoted as an upfront premium. See Appendix A.

33



αj Λ0

j(T )

3y 5y 7y 10y

1 0.778 1.318 3.320 4.261

3 0.128 0.536 0.581 1.566

15 0.000 0.004 0.024 0.024

19 0.000 0.007 0.011 0.028

32 0.000 0.000 0.000 0.007

79 0.000 0.000 0.003 0.003

120 0.000 0.002 0.003 0.008

αj

(
M

αj

)
Λ̃j(T )

3y 5y 7y 10y

1 0.882 1.234 3.223 3.661

3 0.128 0.615 0.682 1.963

15 0.001 0.002 0.023 0.023

19 0.000 0.009 0.016 0.043

57 0.000 0.000 0.002 0.007

80 0.000 0.000 0.000 0.010

125 0.001 0.005 0.042 0.042

Table 5: DJi-TRAXX pool. Left side: cumulated intensities, integrated up to tranche

maturities, of the basic GPL model. Each row j corresponds to a different Poisson

component with jump amplitude αj . Right side: cumulated cluster intensities, integrated

up to tranche maturities, and multiplied by the number of clusters of the same size at

time 0. Each row j corresponds to a different cluster size αj . The amplitudes/cluster-

sizes not listed have an intensity below 10−7. The recovery rate is 40%.

αj Λ0

j(T )

3y 5y 7y 10y

1 1.132 3.043 4.247 7.166

2 0.189 0.189 0.812 1.625

6 0.011 0.091 0.091 0.091

18 0.000 0.006 0.028 0.028

23 0.000 0.004 0.005 0.032

32 0.000 0.000 0.000 0.009

124 0.000 0.003 0.005 0.010

αj

(
M

αj

)
Λ̃j(T )

3y 5y 7y 10y

1 0.063 0.552 3.100 6.661

2 0.804 1.531 1.531 2.076

3 0.020 0.195 0.195 0.195

17 0.000 0.010 0.037 0.087

32 0.000 0.003 0.009 0.032

110 0.000 0.000 0.000 0.010

125 0.000 0.011 0.054 0.054

Table 6: CDX pool. Left side: cumulated intensities, integrated up to tranche maturities,

of the basic GPL model. Each row j corresponds to a different Poisson component with

jump amplitude αj . Right side: cumulated cluster intensities, integrated up to tranche

maturities, and multiplied by the number of clusters of the same size at time 0. Each

row j corresponds to a different cluster size αj . The amplitudes/cluster-sizes not listed

have an intensity below 10−7. The recovery rate is 40%.
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Tranches

Models Maturities 0-3 3-6 6-9 9-12 12-22 22-100

ITL 3y 18.6% 0.2% 0.1% 0.0% 0.0% 0.0%

5y 44.6% 4.2% 1.2% 0.6% 0.2% 0.1%

7y 71.0% 14.5% 4.3% 2.1% 0.7% 0.2%

10y 91.6% 49.2% 14.1% 6.4% 2.2% 0.4%

GPL 3y 18.6% 0.2% 0.1% 0.1% 0.0% 0.0%

5y 44.5% 4.2% 1.2% 0.6% 0.2% 0.1%

7y 70.8% 14.6% 4.3% 2.1% 0.7% 0.2%

10y 91.2% 47.2% 14.6% 6.4% 2.2% 0.4%

GPCL 3y 18.7% 0.2% 0.1% 0.0% 0.0% 0.0%

5y 44.7% 4.2% 1.2% 0.6% 0.2% 0.1%

7y 70.9% 14.6% 4.3% 2.1% 0.7% 0.2%

10y 91.2% 47.5% 14.5% 6.4% 2.2% 0.4%

Table 7: Implied expected tranched loss for the ITL, GPL and GPCL models. Results

refer to DJi-TRAXX market.

Att-Det DJi-TRAXX 10y

GPL GPCL

Index 0.00 0.00

Tranche 0-3 0.76 0.62

3-6 -2.35 -1.93

6-9 1.21 1.04

9-12 -0.40 -0.36

12-22 0.02 0.02

22-100 0.00 0.00

Att-Det CDX 10y

GPL GPCL

Index 0.00 -0.06

Tranche 0-3 1.43 1.60

3-7 -0.45 -0.22

7-10 0.22 0.25

10-15 -0.08 -0.12

15-30 0.01 0.07

Table 8: Calibration errors calculated with the GPL and GPCL models with respect to

the bid-ask spread (i.e. ǫi in (18)) for tranches quoted by the market for the ten year

maturity (see Tables 3 and 4). The left panel refers to DJi-TRAXX market quotes, while

the right panel refers to CDX market quotes. Calibration errors for the other maturities

are within the bid-ask spread and therefore they are not reported. The recovery rate is

40% .
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