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Abstract Genetic programming can be used to identify
complex patterns in financial markets which may lead to
more advanced trading strategies. However, the computa-
tionally intensive nature of genetic programming makes it
difficult to apply to real world problems, particularly in real-
time constrained scenarios. In this work we propose the use
of Field Programmable Gate Array technology to accelerate
the fitness evaluation step, one of the most computationally
demanding operations in genetic programming. We propose
to develop a fully-pipelined, mixed precision design using
run-time reconfiguration to accelerate fitness evaluation.
We show that run-time reconfiguration can reduce resource
consumption by a factor of 2 compared to previous solu-
tions on certain configurations. The proposed design is up
to 22 times faster than an optimised, multithreaded software
implementation while achieving comparable financial returns.

Keywords Fitness evaluation · Genetic programming ·
High-frequency trading · Run-time reconfiguration

1 Introduction

Genetic programming (GP) is one of the machine learning
techniques which has recently been used to help recognise
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complex market patterns and behaviours [1–4]. In genetic
programming, numerous programs are repeatedly generated
and then evaluated on a large data set, aiming to identify the
best performing ones. The best performing programs can
be selected for the next iteration by using a fitness evalua-
tion function. Due to the potentially complex programs and
large data sets on which these programs need to be evalu-
ated, fitness evaluation is one of the most computationally
expensive components of a genetic program. Some studies
have shown that fitness evaluation may take up to 95% of the
total execution time [5]. The high computational demands of
genetic programming make it an unfeasible technique in the
context of high-frequency markets. Recent developments in
hardware acceleration tools have enabled the use of flex-
ible run-time reconfigurable algorithms which are able to
rapidly react to changing market conditions [6–8].

We propose to leverage the flexibility and performance
advantage of reconfigurable computing to accelerate the
time consuming fitness evaluation step. This could enable
identifying more complex data patterns such as those which
could exist within Foreign Exchange market data and even-
tually pave the way for more advanced trading strategies [9],
potentially higher returns and better risk monitoring.

Our approach includes the following main contributions:

1. A deeply pipelined architecture for evaluating the fit-
ness function of complete expression trees with support
for mixed-precision;

2. A method and design based on run-time reconfigura-
tion to improve hardware resource utilisation, leading
to reduced resource usage and higher parallelism and
performance for certain expressions;

3. Implementation and demonstration of the proposed
approach on synthetic and real market data.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-017-1244-8&domain=pdf
http://orcid.org/0000-0002-8598-0567
mailto:andreea.funie09@imperial.ac.uk
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2 Background

There has been great interest in applying reconfigurable
solutions to genetic programming [5–18] and substantial
progress has been achieved, however, there are still impor-
tant limitations which restrict the applicability of these solu-
tions in real environments and that we propose to address
in our work such as: high latency due to fitness evalua-
tion, simple trading strategies due to GPs represented with
reduced complexity s.a. bit-strings instead of trees, small
number of individuals evaluated, small number of iterations
to reach the maturity of a GP population.

2.1 Genetic Programming Overview

Genetic programming is a branch of evolutionary algo-
rithms which creates computer programs as the solution
compared to genetic algorithms which use a string of num-
bers for their solutions. A GP is a search method that
mimics the process of natural selection [11]. Our approach
adopts generational genetic programming [12] which works
as follows:

1. Generate an initial population of random compositions
of computer programs — individuals— (in our case the
computer program will represent a trading rule which is
being built as a binary expression tree);

2. Assign each individual in the population a fitness value
according to how well it solves the problem;

3. Create a new population of individuals:

– Copy the best existing individuals;
– Create new individuals by mutating a randomly

chosen part of one selected program (mutation);
– Create new individuals by recombining parts

chosen at random from two selected programs
(crossover).

4. The best computer program that appeared in any gener-
ation, at the end of all generations, is designated as the
result of genetic programming.

This method is repeated until it reaches a termination
condition such as a solution is found that satisfies minimum
criteria or a fixed number of generations have been reached
[13].

GP is a machine learning technique which has been used
successfully to detect complex patterns, however, this tech-
nique does not lead to a low latency solution. Computing the
fitness value of each individual is a central computation task
of GP applications, usually consuming most of the over-
all computation time (sometimes larger than 95%). Thus,
the main effort to speedup such applications is focused
on fitness evaluation. We use hardware acceleration tech-
niques such as FPGA technology in order to significantly

reduce the fitness evaluation execution time and obtain a
better overall execution time for a genetic programming
application.

2.2 Trading on the Foreign Exchange Market

Banks, currency speculators, corporations, governments,
retail investors and other financial institutions all trade on
the currency market. The Foreign Exchange Market (FX)
is tradable 24h/day excluding weekends, which makes it
the largest asset class in the world leading to high liq-
uidity. FX gives rise to a number of factors which affect
exchange markets, due to its huge geographical dispersion
nature [14]

2.3 Genetic Programming on FPGAs

Previous researchers have been looking at FPGAs to reduce
the latency of GP methods to apply them in a number of dif-
ferent fields, however these works have certain limitations:

Sidhu et al. [5] shows a novel approach to a whole GP
implementation on FPGAs in which the fitness evaluation
targets a specific problem: having the trees represented by
certain tree templates. Therefore, the user would need to
build different tree templates for different problems, com-
pared with our design in which the user has the freedom to
build any complete binary tree with a range of given ter-
minals and operators. Even though this implementation is
limited to a population of 100 individuals, compared to our
approach which supports up to 992 individuals, the study
presents a 19 times speedup when performing an arithmetic
intensive operation when compared to its CPU equivalent
implementation.

Yamaguchi et al. [15] presents an interesting FPGA
approach, implementing a coprocessor for evolutionary
computation to solve the iterated prisoners dilemma (IPD)
and has reported 200 times speedup when compared to its
CPU equivalent implementation. In our study we address
limitations of this approach: restricted number of GP indi-
viduals and reduced complexity of their specification, as
our study supports flexible complete binary trees, while the
compared outcome uses bit-strings.

Martin [16] shows a different approach to a whole GP
solution on FPGAs using parallel fitness function evalua-
tions. This design only supports a very small number of
individuals, such as 8 or 16, with each individual tree being
able to have a maximum depth of 2, in comparison to
our approach which supports up to 992 individuals, and a
maximum depth of 4.

Kok et al. [17] presents a novel solution which executes
a developmental calculation for an equipment intended for
unmanned elevated vehicle adjustment. While the study
proves to be highly efficient when reaching the 10 Hz
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update frequency of a typical autopilot system, the number
of individuals evaluated at once is limited to just 32.

Liucheng et al. [18] shows a different approach to a
whole new evolutionary algorithm hardware-based frame-
work, created to ease the use of run-time reconfigurable
computing in biology based applications. This design
proves to be highly efficient when solving bit-strings type
problems. This study is somehow limited by the com-
plexity of supported individuals due to the capabilities of
bit-strings, while our design can solve applications using
any binary expression trees.

In our study we attempt to address these limitations by
proposing a design based on run-time reconfiguration which
aims to improve hardware resource utilisation and obtain
higher parallelism as well as performance.

3 Architecture

In this section we propose to exploit the high level of
internal parallelism which can be achieved with the use of
FPGA-based technology, to accelerate fitness evaluation.
We start this by describing a reconfigurable design which
achieves the throughput rate of one data point per clock
cycle. We then explain how our design can be extended to
take advantage of larger commercial chips, where multiple
parallel processing pipelines can be deployed concurrently
to speed up the computation further.

The accelerator model targeted by our design is repre-
sented by a CPU based system which connects via a slow
interconnect to an FPGA accelerator. A substantial part of
the computation is performed on the FPGA. Both CPU node
and FPGA acceleration board have large on-board memory
available, of which we make use, as the transfer speed from
on-board memory is much faster than via the interconnect.
All data is contained initially in the CPU DRAM.

In this work we focus specifically on evaluating complete
expression trees. In Section 6 we show that this is suffi-
cient both to achieve good financial returns and to improve
performance significantly compared to the software ref-
erence. Furthermore the necessary topology is simpler to
implement due to its regular structure, and because we
assume all inputs are complete expression trees, the expres-
sion decoding logic can be simplified: there is no need to
dynamically forward operands and operations in an expres-
sion to the corresponding functional units at runtime. This
routing can be determined at compile time, based on the
supported expression depth and is therefore static at run-
time simplifying or, indeed, eliminating the routing and
decoding logic. If necessary, incomplete expressions can
still be evaluated as long as their size does not exceed the
number of leaves in our design. This can be achieved by
setting the weights and operations to null elements such

that results are passed through. For example, a pass through
operation can be implemented simply as an addition with
a 0 constant value. It would be interesting to understand
how multiple topologies can be integrated in our runtime-
reconfiguration framework. In fact the approach proposed
in Section 4 can be extended to support multiple topolo-
gies, and the cases illustrated in Section 6 represent only an
interesting instantiation of our framework which achieves
a substantial resource saving (and therefore speedup): two
trees, one with division one without. A more careful and
systematic analysis of the benefits of applying the proposed
framework to other instances, is a significant undertaking
however, and left as an opportunity for future work.

All expression trees needed to be evaluated, are gener-
ated on the CPU as part of the larger GP algorithm, and are
then transferred to the FPGA where they are evaluated on a
stream of historical market data. Figure 1 shows an example
expression tree, which corresponds to a trading rule sup-
ported by our proposed design. On each market data tick,
the algorithm takes a buy (1) or sell decision (0).

The fitness of each of the trading rules is computed using
the cumulative returns formula [19]:

R = �t(1 + qt ∗ rt ) − 1 (1)

where rt = (pt - pt−1) / pt−1 is the one-period return of
the exchange rate, pt corresponds to either the bid (outcome
is buy) or ask (outcome is sell) price, while qt takes the value
1 when buying and −1 when selling [20].

We make a number of assumptions to simplify the pro-
posed architecture as follows:

1. We construct GP expressions as complete binary trees
whose internal nodes must be binary operators. There-
fore, we obtain a static topology, which can be imple-
mented efficiently on the FPGA;

2. We restrict the set of internal arithmetic nodes, known
as the GP function set, to the following operations: +, *,
-, /, min, max;

3. The root node must be a boolean operator, since the
output of the evaluation must always be true or false.
Supported operators are ≤ and ≥;

4. The terminal nodes can be either constants (streamed
from the CPU along with the expression) or market vari-
ables. The value of market variables may change in each
time step and their number is arbitrary, but since mar-
ket data are read from on-board memory on every clock
cycle, it may be useful to limit their number;

5. Both constants and market values are single precision
floating point numbers on DRAM input.

In Section 6 we show that some of the supported strategies
are profitable, by evaluating them on historical FX market
data, therefore proving that our assumptions help us identify
well performing trading strategies.



J Sign Process Syst

Figure 1 Example expression
tree for a trading rule in which
terminal nodes are either market
variables or constants. The
internal nodes are represented
by binary arithmetic operators
and the root node by a binary
boolean operator.
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Our design is organised using Processing Elements
(PEs):

1. Arithmetic Processing Elements (APEs) implement
binary arithmetic operations: as inputs they have two
real numbers from the TPEs or from the APE from a
previous layer, and as output a real number. Figure 2
shows an APE structure. We encode operators that
need to be evaluated in the current expression, into an
Opselect signal.The operator codes for arithmetic oper-
ations are integers starting from 0, chosen for purely
decoding simplification reasons. We use a demulti-
plexer to route the left hand side (LHS) and right hand
side (RHS) operands to the correct arithmetic unit. A
multiplexer is then used to select the output from the
correct arithmetic unit and forward it to the next tree
level;

2. Terminal Processing Elements (TPEs) are used to pro-
cess expression terminals which can be either constants
or indices corresponding to the market variables read
from DRAM. We interpret values in [0, 1) to be con-
stants and values greater or equal to 1 to be indices. For
those indices we require an additional cast to an inte-
ger, due to their values being streamed from the CPU
as floating point values. We use an index to control a
16 input multiplexer for selecting the correct market
variable;

3. The Root Processing Element (RPE) is a special root
processing element evaluating comparison operators
s.a. ≤ or ≥. It has real numbers as inputs and a boolean
output, thus ensuring a boolean value stands as the out-
put of the algorithm. We then use the RPE result in the
return evaluation to perform a decision (buy/sell) for the
chosen financial instrument.

The structure in which our design PEs are arranged and
processed is represented by a binary tree depth — Tdepth —
which is a design parameter. We use the expression return
result to choose whether to purchase or offer the present
instrument. We then choose to either use the bid or the
ask price for the current time step to compute the expected
return of the action inside the rT block. We then accumulate
the return across all market ticks. Performing partial accu-
mulation on the FPGA, before sending the results back to
the CPU, reduces traffic over the slow interconnect, and also
reduces the volume of work required on the CPU. We accu-
mulate the fitness values into partial values, whose number
is equal to the latency of the feedback loop FPMultLatency ,
using a feedback multiplier. We use the output control sig-
nal for CPU output enabling, this being high only on the last
FPMultLatency cycles of processing an expression.
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Figure 2 Arithmetic Processing Element.
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By increasing the latency (in cycles) we obtain a more
pipelined implementation of the floating point multiplier,
thus enabling a higher maximum clock frequency. How-
ever, increasing the latency also increases the amount of
partial sums to be transferred back to the CPU and the
amount of work to reduce these partial sums. Practical anal-
ysis shows that 16 cycles are sufficient to enable good clock
frequency (with this architecture we can reach 190 MHz)
with small impact on the transfer and CPU reduction time.
Figure 3 shows an example of an architecture for Tdepth =
4, which could be used to evaluate the expression shown
in Fig. 1. There are in total 16 TPEs, 14 APEs and one
RPE.

3.1 Pipelining

The architecture of our approach is deeply pipelined com-
prising of multiple pipeline stages per tree level. This is an
efficient method to take advantage of the high degree of fine
grained parallelism on the FPGA: at each point in time a
number of floating point expressions equal to the number of
nodes in the trees is evaluated on-chip. This design scales
well with both tree depth and number of trees to be eval-
uated. In practice we find that a higher tree depth leads to
better financial results, but evaluating more trees leads to
faster solutions. However, as shown in Section 6 a tree depth
of 4 proves to be sufficient to provide good trading strate-
gies. Internal nodes are also deeply pipelined to improve
timing.
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Figure 3 Architecture Diagram for Tdepth = 4. There are in total 16
TPEs, 14 APEs and one RPE.

3.2 Parallelism

We are able to parallelise the design efficiently as long as
sufficient expressions need to be evaluated. This enables us
to further improve the performance of the proposed design
by implementing multiple parallel processing pipelines on-
chip; we refer to these as pipes. Each pipe is an evaluation
architecture as presented above. Therefore multiple expres-
sions — up to N pipes can be evaluated in parallel, sub-
stantially reducing the overall computation time as shown in
Eq. 2.

Since all expression tress are evaluated on the same
data point from memory, the DRAM bandwith requirements
remain the same, while the PCIe bandwidth increases lin-
early with the number of trees. The latter happens due to
streaming the expressions through PCIe. However by using
double buffering, the next expressions can be fetched while
the current ones are evaluated, resulting in a negligible
performance impact.

3.3 Wordlength Optimisation

The evaluation tree (excluding the accumulation circuit for
cumulative return) can be implemented in reduced preci-
sion. However the accumulation may still require a large
range so floating point is required. This leads to a mixed
precision architecture. Reduced precision implementations
allow us to trade-off accuracy for resource usage. Smaller
resource usage implies either larger tree depth (preferable
from a financial performance perspective) or better per-
formance. It is thus important to explore opportunities to
reduce precision.

In this work we analyse single precision floating point
and fixed point implementations. We therefore split the
computational flow into a full precision floating point part
and a fixed point part. We store market data in DRAM in sin-
gle precision and convert it to a fixed point format on-chip
as part of a pipeline. These fixed point numbers form inputs
to fixed point APEs, which provide the boolean output to
choose between buy or sell choice.

Since floating point arithmetic takes more LUTs than
DSP units, it is important to implement APEs in fixed pre-
cision for design scalability. We provide single precision
implementation of APEs for comparison. The market inputs
belong to the interval (1, 2) with only 4 significant digits.
For division operations the dynamical range is constrained
to 10−4, ..., 104, therefore being covered by 32 bit fixed
point representation.

Tree expressions are evaluated on independent inputs,
so there is no round-off error accumulation associated with
reduced precision. The accumulation of returns and compu-
tation of current stock (rT ) is more sensitive to round-off
error accumulation and thus implemented in floating point.
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However this part of the design has smaller impact on design
scalability due to a lower amount of arithmetic operations.

The market data and terminal constants are guaranteed
to be nonzero numbers, but a cancellation of terms may
occur within expression trees, resulting in division by zero
or a very small number. We thus check whether a divisor is
greater than tol = 10−4 at any sample of the training set.
Our APEs compute both the resulting expressions as well
as validity flags, compensating for lack of infinity and NaN
values in fixed point representation. If we obtain an invalid
output then the whole tree expression gets invalidated and
therefore pruned from the GP population.

3.4 Performance Model of Computation

The computation time can be modeled as:

Tcompute = Tinitialise + NExprNT icks

Cf reqNP ipes

(2)

where NExpr is the total number of expressions to be
evaluated, NT icks is the number of market ticks to evaluate
each expression tree on, CFreq is the FPGA clock frequency
and NPipes is the number of pipes used by our design.
Tinitialise is:

Tinitialise = TPCIeLatency + TDRAMT ransf er + Tload (3)

where TPCIeLatency , TDRAMT ransf er and Tload represent
the initial interconnect latency, the time to load the mar-
ket data into accelerator DRAM and the number of clock
cycles required to load the initial expression into the on-
chip expression buffer. For large problem sizes, Tinitialise is
insignificant.

3.5 Overview

As part of the genetic programming algorithm, all data,
including market data variables and generated expressions,
are initially stored in CPU memory. In our design, market
values such as bid and ask prices will be reused for each
expression that is evaluated, therefore being stored in accel-
erator’s DRAM and only incurring the transfer penalty over
the slow interconnect between the CPU and FPGA once.

In contrast, the expressions to be evaluated are loaded
only once so there is no need to store them in on-board
DRAM, but they can be streamed over the CPU/FPGA inter-
connect, together with the terminals. A BRAM buffer is
used to store expressions and operators, to fix the ineffi-
cient data delivery rate which does not allow one full tree
and the operators to be read in one clock cycle. This allows
the design to only pay the large transfer penalty once: while

the current expression evaluation progresses, the design can
fetch the following expression and terminals to be evaluated
in the background, at no additional cost.

We can thus summarise our design operation as fol-
lows: 1) Load market data to accelerator DRAM; 2) Queue
expression trees from CPU to FPGA BRAM; 3) Evaluate
expression on historical market data; 4) Fetch next expres-
sion to FPGA BRAM; 5) Output partial results to CPU; 6)
Repeat the above steps until done.

4 Run-time Reconfiguration

One potential issue with the architecture outlined in
Section 3 is poor hardware utilisation: each node imple-
ments all operators but one particular expression can only
use one operator at each node. It is clear that for a given
expression only 1/Noperators can be achieved. This is made
worse by the fact that some operators (such as floating
point division and multiplication) may consume consid-
erably more resources than other operators. For example
experimental results show that for an 8 pipe, 32 bit fixed
point design, the floating point division may consume as
much as 50 times more resources than addition, account-
ing for almost 50% of the entire design usage, including
memory and the PCIe controller. This shows that improved
hardware utilisation can reduce resource usage significantly
— by half or even more. This either translates to an increase
in the supported tree depth, or to an increase in the num-
ber of pipes. Alternatively the spare resources could be used
to implement additional functionality (more compute ker-
nels of the genetic programming algorithm, more operators
etc.). All alternatives are extremely desirable. We there-
fore propose to use full run-time reconfiguration to improve
resource utilisation during various stages of evaluation:

• at compile time we prepare a number of likely configu-
rations

• at runtime we:

– group the expressions according to operator
usage

– for each group we load the appropriate con-
figuration (which supports the required oper-
ators), execute it and send the results to the
CPU

Returning to our motivating example, we prepare two
configurations: one with the division operator completely
removed (C0) and one with all operators (C1). The former
can use the area saved by removing the operator to imple-
ment more pipes so it would run twice as fast. Depending on
the number of expressions which require division this could
result in substantial speedup.
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4.1 Challenges

There are a number of challenges related to the runtime
environment and platform which may make run-time recon-
figuration a less attractive option. In particular, some plat-
forms have not been specifically optimised for run-time
reconfiguration and as such reconfiguration times are large
or require additional steps to ensure correctness, for exam-
ple saving DRAM contents. In this work we show that
even for such platforms there are many cases where run-
time reconfiguration can be used, particularly to accelerate
very long-running computations, where acceleration is most
needed.

One potential issue on many commercial devices cur-
rently available is the reconfiguration time. This is particu-
larly true for large chips (such as Stratix V) where loading
the configuration file could take as much as 2.8 seconds for
large bitstreams, as we show in our evaluation. Depending
on the total runtime, the impact of run-time reconfigura-
tion may be significant. For example in [10], evaluating 992
expressions on 3.84M data points will take approximately
12 seconds for a fully accelerated version.

Another challenge is the overhead introduced by DRAM
transfer. Many commercial platforms use a soft memory
controller on the FPGA fabric, thus reconfiguring the FPGA
results in the loss of DRAM contents, since the DRAM
controller is no longer available to refresh DRAM. There-
fore, before reconfiguration any intermediary data must be
saved and after reconfiguration any problem data must be
loaded on-chip. Depending on the problem size, this may
also become a bottleneck. However we note that even plat-
forms with large amounts of DRAM will likely require in
an order of 10s of seconds at most to re-load data (loading
48GB over an Infiniband 2GB/s connection).

Both issues can be addressed efficiently either by:

– increasing problem sizes (and using adequate input
distribution) – the reconfiguration overhead becomes
negligible compared to the savings in execution time;

– tighter integration between CPU and FPGA, such as
Intel’s new Xeon/Altera CPUs to reduce reconfigura-
tion and CPU to FPGA transfer time;

– using hard memory controllers - to eliminate the need
for data transfer between CPU and FPGA prior to and
after reconfiguration;

Since these points correspond to present or likely trends
in industry at the moment of writing, we believe run-time
reconfiguration has good potential.

4.2 Performance Model of Reconfiguration

The proposed approach can be applied to generate Nconf igs

distinct configurations, based on the operator distribution

of the expressions to be evaluated. In general, accounting
for reconfiguration and DRAM transfer overhead, the total
execution time for our RTR design would be given by:

TT otal = TcomputeC0 +
∑Nconf igs

1
(Treconf ig + TcomputeC1)

(4)

where Tcompute is presented in Eq. 2 and Treconf ig is:

Treconf ig = Tload + Tunload + TDRAMT ransf er (5)

where Tload , TDRAMT ransf er , Tunload represent the time
taken to unload the previous initial configuration, rewrite
the market data entries to DRAM and load the final config-
uration onto FPGA.

The total resource usage for our designs is represented by
the sum of the total number of resources used by each of the
operators (e.g. add, sub, div, mult) and is calculated using
the following formula:

R(C) = Nadders(C) ∗ Radders + Nmults(C) ∗ Rmults

+Nsubs(C) ∗ Rsubs + Ndiv(C) ∗ Rdiv (6)

+NMin/Max(C) ∗ RMin/Max + Rother (C)

Rdesign =
∑X

1
R(C)

where X stands for the total number of configurations and
Rother (C) is represented by:

Rother = RmemoryController + RPCIeController

+RdataFIFOs + Rcontrol (7)

where R(C) represents the resource usage for compu-
tational kernels in a particular tree configuration. We
ignore the utilisation for the ooutput accumulator, since
it is neglijible compared to that of the TPEs and APEs.
RmemoryController and RP CIe are static logic resources
for the DRAM memory and PCIe Controllers (including
command and data queues). RdataFIFOs represent data
FIFOs used to buffer data between computational kernels
and I/O devices (memory, PCIe), including resources for
double buffering of expression from PCIe. Rcontrol stands
for additional control logic required to decode and forward
the expressions to the functional units, manage fixed point
exceptions (s.a. division by zero, etc.).

In our evaluation we focus specifically on minimising
R(C), by identifying operators which could be removed
from the evaluation tree, specifically division. Other design
resources, noted by Rother (C) remain constant, since we do
not modify the tree depth between configurations.
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5 Implementation

The implementation of the proposed design targets a Max-
eler MPCX node, which contains a Maia dataflow engine
(DFE) with 48 GB of onboard DRAM.

5.1 Input/Output

Our design makes use of both DRAM and the Infiniband
interconnect. In our situation, we can read up to 1536 bits
per clock cycle from DRAM and an additional 128 bits per
clock cycle from Infiniband. As a result, the design is com-
pute bound, which is ideal for FPGA. Using the fact that
market data variables are single precision floating point val-
ues (32 bits wide), we could read up to 1536/32 = 48
different market variables from on-board DRAM without
causing the design to become memory bound. This is well
inside the cutoff points of our problem. Assuming we would
need to utilize our tool to perform intra-day trading, we
could increase this quantity by multiplying the clock fre-
quency of the memory controller from the default value of
400 MHz to 800 MHz. However, in practice this results in
higher resource usage and in longer compilation times, since
we require more pipelining to empower timing conclusion.
In our application we use just 16 market variables, hence the
default memory controller frequency functions well for us.

5.2 CPU Implementation

The CPU implementation is built using C++11 and paral-
lelised using OpenMP and compiled using g++ 4.9.2 with
flags -O3 -march=native -fopenmp to enable gen-
eral performance optimisations, architectural optimisations
for the Intel XEON and the use of multithreading.

The CPU code is parallelised in a similar manner to
the hardware implementation: each core is assigned one
expression which it executes and measures the fitness of
the entire data set. In the software implementation we mark
the tree depth as a constant, therefore allowing the com-
piler to unroll the expression evaluation loops and to resolve
some computations at compile time for better performance
achievement.

Table 1 shows the scalability of our CPU implementation
with the number of threads. We choose to disable Hyper-
Threading on the CPU node and only use 6 threads per
CPU - for a total of 12 threads - therefore avoiding the
CPU implementation to scale sub-linearly with the number
of threads. Table 1 shows close to linear scaling for the CPU
implementation, when tested on 19.2M (M=million) ticks
and 992 expressions. These are expected results given that
our parallelisation strategy requires minimal communica-
tion between threads and therefore, for large problem sizes
we end up with a clear domination of the computation times.

Table 1 CPU scalability results show linear scaling for up to 12
threads.

# Threads 1 2 4 8 10 11 12

CPU Time (s) 248.1 125.9 62.9 31.5 25.5 23.02 21.4

Speedup 1X 1.9 3.9 7.9 9.7 10.8 11.6

All run times are measured using the
chrono::high resolution clock::now() high
resolution clock which is part of the C++11 standard library.

5.3 FPGA Implementation

While the run-time reconfiguration (RTR) is applicable to
any number and combination of operators, for the purpose
of this paper we limit to the initial operators (add, subtract,
multiply, divide, min, max). Out of these, the obvious candi-
dates for optimisation are multiply and divide which consist
of the most complex logic blocks. However on Altera chips
the floating and fixed point multiplication makes good use
of DSPs and since DSPs are not a bounding resource in our
design, it would not be effective to remove multiplications.
On the other hand, division is significantly more expen-
sive and is thus an excellent candidate for the proposed
optimisation.

We therefore used the proposed approach to create two
configurations: one with division removed but with double
the number of pipes (C0) and one with all the operators
included (C1). In our design we allow different parameters
for our configurations, therefore being able to run our design
with any number of expressions for both C0 and C1, thus
exploiting the best financial returns.

In the following section we compare the static version
(C1) with the run-time reconfigurable version (C0 + C1) to
illustrate the benefits of our approach.

6 Evaluation

The accelerator system we use is a Maxeler MPCX node.
The system properties are summarised in Table 2. It consists
of a CPU node and a DFE node. The two are connected via
Infiniband through a Mellanox FDR Infiniband switch.

6.1 Resource Usage Results

Resource usage analyses what the best performing con-
figurations would be (in our case removing division) and
describes the properties of the configurations. Table 3 shows
the FPGA total resource usage expressed as a percentage of
the total available resource on the chip for the fixed point
precision implementation based on 1 pipe and 8 pipes. The
resource usage is shown for both manager and kernels of our
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Table 2 System properties.

CPU Dual Intel Xeon E5-2640,

6 cores per CPU

CPU Cache 15 MB

CPU DRAM 64GB DDR3-1333

CPU DRAM Bandwidth 42.6 GB/s (Peak)

FPGA Stratix V

5SGSMD8N1F45C2

FPGA DRAM 48 GB

FPGA DRAM Bandwidth 38 GB/s (Achieved at 400 MHz freq.)

CPU to FPGA Bandwidth 2 GB/s

design. The kernels provide an environment concentrated
around data flow and arithmetic. The manager provides a
interface to the kernels which incorporates the configuring
connectivity between kernels and external I/O, as well as
the build process control. Thus, Table 3 shows the resources
used by the manager, by the kernels (compute logic (APE,
RPE, TPE etc.), as well as the total design resource usage
which is represented by the kernels resource usage and the
IO resource usage (e.g. I/O FIFOs, memory controller etc.)

Table 4 summarises the soft and hard logic resource
usage for each of the operator in the proposed run-time
reconfiguration design, aggregated across all 8 pipes of the
design. The most resources are used by the fixed point
division operation: more than half of the logic and BRAM
resources used by the computational kernel are from the
division cores. The division operation is thus the main
limitation of the proposed design in terms of scalability,
becoming a good candidate for the optimisation proposed
in Section 4. By creating an additional configuration, with
the division operation removed, substantial resource savings
can be achieved, leading to increased throughput.

Table 5 shows that removing the division operation (con-
figuration C0, 16 parallel pipelines) allows us to double the
number of pipes, therefore doubling the throughput of the
entire design, for those expressions which do not require
the division operation. Therefore for the performance and
financial evaluation of our approach, we focus on a recon-
figurable design with configurations C0 and C1 (as outlined

Table 3 FPGA total resource usage for fixed point arithmetic static
design implementation.

# of Pipes LUTs FFs BRAMs DSPs of use

1 10.76% 7.61% 16.21% 0.00% by manager

1 7.40% 4.35% 3.12% 1.88% by kernels

1 18.33% 12.14% 19.83% 1.88% total resources

8 10.95% 8.05% 22.32% 0.00% by manager

8 51.49% 30.98% 22.52% 15.08% by kernels

8 62.61% 39.21% 45.34% 15.08% total resources

Table 4 Operator resource usage for a 8 pipe fixed point build as
total number (#) and percentage of entire resource usage for the
computational kernel %).

Operator LUT FF BRAM DSP

Add/Sub. 3584 / 1.3 3696 / 1.2 0 / 0 0 / 0

Multiply 3920 / 1.5 3696 / 1.2 0 / 0 224 / 75.6

Divide 141792 / 54.6 173799 / 61.1 224 / 75.6 0 / 0

Min/Max 3242 / 1.2 3920 / 1.2 0 / 0 0 / 0

in Table 7). Although other partitions of the expressions
based on the used operator set are possible, the design based
on configurations C0 and C1 provides a sufficient bench-
mark to illustrate the potential benefits of the proposed
approach.

6.2 Performance Results

We evaluate our designs on a synthetic benchmark, which
contains randomly generated expressions, that comply with
the assumptions presented in Section 3.

Table 6 shows the obtained speedup results (measured
for the fitness evaluation only) for a number of NT icks =
3.84M, as well as NT icks = 19.2M, NExpr = 992 when
running at a clock frequency of F = 190MHz. In order
to be able to correctly compare these results to the ones
obtained by using the RTR design, we have performed the
tests on expressions which have the exact same split, fol-
lowing the chosen configurations (C0 and C1). We note that
estimated compute times closely match observed execution
times. This confirms that the design is compute bound.

In Table 7 we evaluate 992 expressions on 3.84M as well
as 19.2M synthetically generated market data points on our
RTR design. As explained previously, C0 is built on a dou-
ble number of pipes than C1, in our case being 16 pipes vs 8

Table 5 Resource Usage and Performance for Configurations C0 and
C1. Throughput is measured in expressions evaluated per second, on
19.2 Million (M) data points.

Configuration

Property C1 C0

Observations All Ops No Division

Precision Fixed Point

Compute Clock Frequency 190 MHz

Memory Clock Frequency 400MHz

Pipes 8 16

Total Logic 84.91% 86.92%

Total BRAM/DSP 46%/15.08% 36.93%/30.16%

Throughput (Expr/s) 396.8 793.6

Throughput (GOP/s) 304.7 609.4
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Table 6 8 pipes fixed-point FPGA speedup results compared to 12
CPU threads.

# Market Ticks 3.84M

# C0/C1 48/944 248/744 496/496 744/248 944/48

CPU Time (s) 51.58 50.53 49.96 48.83 46.24

FPGA Time (s) 2.52633 2.53409 2.53462 2.53551 2.52635

Est. Speedup 20.58 20.16 19.94 19.48 18.45

Speedup 20.42 19.94 19.71 19.26 18.30

# Market Ticks 19.2M

# C0/C1 48/944 248/744 496/496 744/248 944/48

CPU Time (s) 253.579 251.99 252.821 249.428 243.135

FPGA Time (s) 12.551 12.5592 12.5589 12.554 12.5575

Est. Speedup 20.24 20.11 20.18 19.91 19.40

Speedup 20.20 20.06 20.13 19.87 19.36

pipes. These measurements include the RTR overhead time
as well as the DRAM write time when switching between
the two configurations, while we ignore the initial DRAM
write time, as we did with the measurements of the non-RTR
implementation.

Figure 4 provides insights in how much the total recon-
figuration time affects the overall speedup of our RTR
design. We thus show speedup obtained just by measur-
ing the execution time as well as the speedup obtained by
measuring the total computation time of both our static
implementation as well as for our RTR design (both mea-
surements neglect the initial CPU-DRAM transfer time). As
expected, increasing the number of expressions which do
not contain the division operator helps increase the over-
all performance of our RTR design, compared to the static
implementation where it does not make any difference.

When analysing the RTR Design measurements con-
taining the total reconfiguration time (computed using for-
mula 3), the static implementation and the ones that neglect
it, we notice a much higher speedup overall when we neglect
all reconfiguration time costs (i.e. 40 times speedup when

Table 7 FPGA run-time reconfiguration speedup results compared
to 12 CPU threads for C0+C1, evaluated on C0 expressions without
division and C1 expressions which include division.

# Market Ticks 3.84M

# C0/C1 48/944 248/744 496/496 744/248 944/48

CPU Time (s) 51.58 50.53 49.96 48.83 46.24

FPGA Time (s) 6.110 5.831 5.733 5.467 5.103

Speedup 8.44 8.66 8.72 8.93 9.06

# Market Ticks 19.2M

# C0/C1 48/944 248/744 496/496 744/248 944/48

CPU Time (s) 253.579 251.99 252.821 249.428 243.135

FPGA Time (s) 16.786 15.346 13.705 12.274 10.946

Speedup 15.11 16.42 18.45 20.32 22.21

neglecting all reconfiguration costs vs 22 times speedup
when including them). As explained in Section 5, even
though reconfiguration costs can become a bottleneck, it can
also be solved in a number of efficient ways, e.g for a larger
data set, the reconfiguration overhead becomes negligible
compared to the savings in execution time.

We present in Fig. 5 how much each of the reconfigura-
tion time components affect the overall RTR design as well
as the static implementation run-time.

Figure 6 shows the estimated execution time for our
RTR implementation versus a static one. We notice that
increasing the number of market data points evaluated,
reduced the overall impact of the reconfiguration overhead
time, while improving the overall performance of our RTR
design.

We notice that our RTR design outperforms the static
implementation when a larger number of market data points
are evaluated. A small data set benchmark is not realistic for
the FX trading market which is one of the biggest market
in volume of trades nowadays [21]. Therefore, being able
to evaluate a larger data set shows our design potential in
identifying complex trading strategies.

6.3 Financial Analysis

In the following subsection we use historical GBP/USD
tick-data from the FXmarket, corresponding to time periods
from 2003 and 2008, to verify the reliability and correct-
ness of the trading strategies supported using the presented
approach.

6.3.1 Individual Returns

Table 8 presents the daily returns for the best performing
trading strategy, when evaluating the GP on a set of N dif-
ferent expressions, over 10,000 iterations. We notice a clear
decrease in the return levels between 2003 and 2008 which
might be an indication of greater FX market efficiency
in 2008. These results prove that we can use our design
supported trading strategies to identify underlying charac-
teristics of the financial market, such as market efficiency
or abnormal market evolution.

Table 9 shows returns obtained using different config-
urations (C0, C1) at run-time. C0 evaluating expressions
without the division operator, while C1 evaluating expres-
sions which include the division operator. From this table
we can also notice a tendency of decrease in the obtained
returns when the number of expressions which contain divi-
sion decreases. This can be related to the fact that some of
the trading strategies that are based on well known techni-
cal indicators, such as MACD, RSI index, Bollinger Bands,
etc (whose mathematical formula uses the division operator)
cannot be easily identified as a pattern when needed.
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Figure 4 Static vs RTR Design
Analysis: RTR Design is up to 2
times faster with better platform
support for runtime
reconfiguration and up to 1.5
times better for larger problem
sizes.

Figure 5 Reconfiguration Time
Components Analysis.

Figure 6 Static vs RTR
Estimated Execution Times for
different market data entries
sizes: 38.4M, 86.4M, 192M,
384M.
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Table 8 2003–2008 Historical
GP individual returns - static
design.

N Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08

992 1.278 1.188 1.103 1.076

768 1.047 1.024 0.998 0.937

384 0.904 0.856 0.889 0.793

144 0.789 0.683 0.654 0.578

Table 9 2003–2008 Historical
GP individual returns - RTR
design.

C0/C1 Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08

48/944 1.050 1.012 0.972 0.883

944/48 0.898 0.851 0.802 0.765

248/744 1.163 1.084 1.007 0.972

744/248 0.950 0.909 0.842 0.791

496/496 1.213 1.134 1.074 1.022

Table 10 2003 Historical GP
individual returns comparison. Work N X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03

[19] 150 103 1.142 1.094 1.003

Static 144 103 0.603 0.551 0.580

RTR 144 103 0.521 0.488 0.515

Static 144 104 1.078 1.101 0.975

RTR 144 104 1.003 0.922 0.941

Table 11 2003 Historical GP
individual performance
comparison for 384000 Market
Entries.

Work N X TDepth Time (s) Speedup

[19] 150 103 16 14574 0

Static (8 pipes) 144 103 4 60 242.9

Static (1 pipe) 144 103 4 320 45.54

Optimised CPU (12 core) 144 103 4 760 19.17

Optimised CPU (1 core) 144 103 4 9120 1.6

Static (8 pipes) 144 104 4 600 24.29

Static (1 pipe) 144 104 4 3200 4.55

Optimised CPU (12 core) 144 104 4 7600 1.92

Optimised CPU (1 core) 144 104 4 91200 0.16

Table 12 2003–2008
Historical GP individual
returns - Jan(20-24)’03 - N
individuals for 100, 1000 and
10000 iterations respectively.

Tree Depth 100 1000 10000 N

1 0.048 0.107 0.167 144

2 0.108 0.25 0.373 144

3 0.221 0.423 0.895 144

4 0.200 0.603 1.078 144

5 0.25 0.676 1.165 144

10 0.301 0.991 1.259 144

16 0.422 1.153 1.344 144
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As seen in Table 10, when comparing the same number of
expressions (N), iterations (X) and number of market entries
(384000) with [19], our design results in inferior returns due
to the reduced tree depth of our implementation (the maxi-
mum tree depth for our design is 4 and for [19] it is 16). Our
design seems to have a reduced capability to produce more
complex trading strategies. However, [19] presents a sub-
optimal fitness evaluation implementation which makes use
of just 1-core CPU architecture.

We have implemented an optimised version of fitness
evaluation and, as we can notice from Table 11, we are
able to obtain a 1.6 times speedup when comparing our
optimised implementation to [19] on the same 1-core CPU
architecture. If we use all 12-cores of the CPU, we become
19.17 times faster than [19]. When using a 1-pipe FPGA
static design we obtain a 45.54 times speedup compared
to [19]’s implementation of fitness evaluation, while if we
were to use a 8-pipe FPGA static design we obtain 242.9
times speedup.

Therefore, as we can notice from Table 12, for a smaller
tree depth (4) but a higher number of iterations (10000) than
in [19], our solution produces comparable returns. Hence,
even with a smaller tree depth and less complex strategies,
overall performance is preferable.

7 Conclusion

In our study we show the effectiveness of FPGAs in
accelerating genetic programming applications. Using both
our deeply-pipelined fixed-point implementation as well as
highly efficient run-time reconfiguration, we demonstrate
that one of the most computationally intensive tasks asso-
ciated with genetic programming, fitness evaluation, can be
accelerated substantially by exploiting the massive amounts
of on-chip parallelism available on commercial FPGAs.

When evaluating our designs on 19.2M market data points
and 992 expressions, our fixed precision and run-time recon-
figuration implementations are up to 20 and 22 times faster
respectively compared to a corresponding multi-threaded
C++11 implementation running on two six-core Intel Xeon
E5-2640 processors. We also show that our proposed design
is reliable by evaluating against historical Foreign Exchange
market data as well as synthetically generated data.

Future work opportunities include extending the GP
alphabet, increasing the maximum supported depth for
expression trees as well as allowing for arbitrary topologies
which support both complete and incomplete binary trees
to be evaluated. These improvements could lead to more
profitable trading strategies as outlined in [19]. We also
plan to apply our framework to other applications targeting
genetic programming and evaluation of expression trees and
identify their performance.
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