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Abstract. Generative Adversarial Networks (GAN) are able to learn
excellent representations for unlabelled data which can be applied to im-
age generation and scene classification. Representations learned by GANs
have not yet been applied to retrieval. In this paper, we show that the
representations learned by GANs can indeed be used for retrieval. We
consider heritage documents that contain unlabelled Merchant Marks,
sketch-like symbols that are similar to hieroglyphs. We introduce a novel
GAN architecture with design features that make it suitable for sketch
retrieval. The performance of this sketch-GAN is compared to a modified
version of the original GAN architecture with respect to simple invariance
properties. Experiments suggest that sketch-GANs learn representations
that are suitable for retrieval and which also have increased stability to
rotation, scale and translation compared to the standard GAN architec-
ture.
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1 Introduction

Recently, the UK’s National Archives has collected over 70, 000 heritage docu-
ments that originate between the 16th and 19th centuries. These documents make
up a small part of the “Prize Papers”, which are of gross historical importance,
as they were used to establish legitimacy of ship captures at sea.

This collection of documents contain Merchant Marks (see Fig.4B), symbols
used to uniquely identify the property of a merchant. For further historical re-
search to be conducted, the organisation requires that the dataset be searchable
by visual example (see Fig.1). These marks are sparse line drawings, which makes
it challenging to search for visually similar Merchant Marks between documents.
This dataset poses the following challenges to learning representations that are
suitable for visual search:

1. Merchant marks are line drawings, absent of both texture and colour, which
means that marks cannot be distinguished based on these properties.

2. Many machine learning techniques, and most notably convolutional neural
networks (CNNs), require large amounts of labelled training data, containing
on the order of millions of labelled images [7]. None of the Merchant Marks
are labelled, and in many cases it is not clear what labels would be assigned
to them. This motivates an unsupervised approach to learning features.
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3. The marks are not segmented from the dataset, limiting the number of ex-
amples available, and making it difficult to train CNNs.

Fig. 1: An overview of the problem: the circled items contain examples of Mer-
chant Marks; note that although some marks are distinct, they are still visu-
ally similar. We would like to retrieve visually similar examples, and find exact
matches if they exist. Note that the two marks on the left are exact matches,
while the others might be considered to be visually similar.

To perform visual search on the Merchant Marks, a representation for the
marks that captures their structure must be learned. Previous work has demon-
strated that deep convolutional neural networks (CNNs) are able to learn excel-
lent hierarchical representations for data [15]. CNNs have proven useful for tasks
such as classification [7], segmentation [9] and have been applied to retrieval of
art work [2][1]. However, these methods rely on large amounts of labelled data
for learning the weights. In the absence of sufficient labelled training data, we
propose the use of unsupervised techniques with CNN architectures to learn
representations for the Merchant Marks.

Unlike some previous approaches in which feature representations were learned
by using labelled datasets that differ in appearance from the retrieval set, we
used the Merchant Marks dataset itself to learn dataset-specific features. For
example, Crowley et al. [2] trained a network similar to AlexNet [7] on examples
from the photographic scenes of ILSVRC-2012 in order to learn features for the
retrieval of art work; they also trained a network on photographs of faces to
learn features for retrieving paintings of faces [1]. Yu et al. [14] suggested that
features suitable for understanding natural images are not necessarily the most
appropriate for understanding sketches.

Convolutional Auto-encoders (CAE) can be a useful tool for unsupervised
learning of features. They are made up of two networks, an encoder which com-
presses the input to produce an encoding and a decoder, which reconstructs the
input from that encoding. It has been shown [8] that shallow CAEs often learn
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Fig. 2: Most marks in the Merchant Marks dataset are made of of the above
sub-structures which we refer to as parts.

the delta function (a trivial solution) which is not a useful representation for
the data. Instead, deep encoders are needed with strict regularisation on the
activations. The Winner Take All CAE [8] imposes both spatial and life-time
sparsity on the activations of the CAE in order to learn useful representations.
Other regularisation techniques include the Variational Auto-encoder [6], which
imposes a prior distribution on the encoding.

An alternative method, which learns representations from data without the
need for regularisation, is the Generative Adversarial Network [3] (GAN). Deep
convolutional generative adversarial networks [10] have been shown to learn good
representations for data. In this paper, we propose the use of GANs for learning
a representation of the Merchant Marks that can be used for visual search.

The key contribution is to show that GANs can be used to learn a repre-
sentation suitable for visual search. We apply this novel idea to the Merchant
Mark dataset, and compare two GAN architectures. The first GAN is designed
to learn a representation for sketches, based on reported architectural consid-
erations specific to sketches [14]. The second GAN is a modified version of the
network proposed by Radford et. al [10] often used for learning representations
for natural images. The representations are evaluated by comparing their in-
variance to shift, scale and rotation as well as the top 8 retrieval results for 15
examples.

2 Generative Adversarial Networks

Generative Adversarial Networks (see Fig. 3), (GANs) where first introduced
by Goodfellow et al [3], as a generative model that learned an excellent repre-
sentation for the training dataset. GANs consist of two networks, a generative
network, G and a discriminative network, D. The goal of the generative network
is to learn the distribution of the training data, pdata(x) where x ∈ Rdx and dx
is the dimensions of a data sample.
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Fig. 3: Generative Adversarial Network: A random sample z is drawn from a prior
distribution and fed into the generator, G to generate a sample. The discrimi-
nator will take a sample either from the generator, G(z), or from the Merchant
Mark dataset, pdata(x), and predict whether the sample is machine or human
generated. The discriminator’s objective is to make the correct prediction, while
the generator’s objective is to generate examples that fool the discriminator.

In a GAN, the generator takes as input a vector, z ∈ Rdz of dz random
values drawn from a prior distribution pz(z), and maps this to the data space,
G : Rdz → Rdx. The discriminator takes examples from both the generator and
real examples of training data and predicts whether the examples are human (or
real) (1) or machine generated (0), D : Rdx → [0, 1].

The objective of the discriminator is to correctly classify examples as human
or machine generated, while the objective of the generator is to fool the discrimi-
nator into making incorrect predictions. This can be summarised by the following
value function that the generator aims to minimise while the discriminator aims
to maximise:

min
G

max
D
Ex∼pdata(x)

logD(x) +Ez∼pz(z) log(1−D(G(z)))

Training an adversarial network, both the generator and the discriminator
learn a representation for the real data. The approach considered here will use
the representation learned by the discriminator.

3 Methods

Here, we show how the discriminator, taken from a trained GAN, can be modified
to be used as an encoder for sketch retrieval. An overview of the methods used
can be seen in Fig.4.
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Fig. 4: Overview: (A) Shows examples of raw Merchant Mark data, photographs
of the documents. (B) Shows examples extracted by hand from the raw Merchant
Mark dataset, a total of 2000 examples are collected. (C) An encoder is simply
a discriminator, taken from a trained GAN with the final layer removed. Rep-
resentations for both query and data samples are obtained by passing examples
through the encoder, the representations are used for retrieval.

3.1 Dataset Acquisition

The raw Merchant Mark dataset that we have been working with consists of 76
photographs of pages from the raw Merchant Mark dataset, similar to the one
shown in Fig.4A, which contain multiple Merchant Marks at different spatial
locations on the page. The focus of this paper is on retrieval of visually similar
examples rather than localisation, so the first step involved defining box regions
from which Merchant Mark training examples could be extracted. The extracted
examples are re-size to be 64× 64 pixels to form a suitable dataset for training
a GAN. In total there are 2000 training examples (see Fig.4B).

3.2 Learning an Encoder

Training A GAN To learn an encoding, the generator and the discriminator of
a GAN are trained iteratively, as proposed by Goodfellow et al. [3]. See pseudo-
code in Alg.1.

Network Architecture Both the generator, and the discriminator are convo-
lutional neural networks [13], using convolutions applied with strides rather than
pooling as suggested by Radford et al. [10]. In the discriminator, the image is
mapped to a single scalar label, so the stride applied in the convolutional layer of
the discriminator must be grater than 1. A stride of 2 is used in all convolutional
layers of the discriminator. In the generator, a vector is mapped to an image,
so a (positive) step size less than 1 is needed to increase the size of the image
after each convolution. A stride of 0.5 is used in all convolutional layers of the
generator.

Encoding Samples Having trained both the generator and the discriminator,
the discriminator can be detached from the GAN. To encode a sample, it is
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for Number of training iterations do
for k iterations do

sample pz(z) to get m random samples {z1...zm}
sample pdata(x) to get m random samples {x1...xm}
calculate the discriminator error:

JD = − 1

2m

(
m∑
i=1

logD(xi) +

m∑
i=1

log(1−D(G(zi)))

)

update θD using Adam [5] update rule.
end
sample pz(z) to get m random samples {z1...zm}
calculate the generator error:

JG = − 1

m

m∑
i=1

log(D(G(zi)))

update θG using Adam [5] update rule.
end

Algorithm 1: Training a GAN: After Goodfellow et al. [3] with changes to the
optimisation, using Adam [5] instead of batch gradient descent. Note, m is the
batch size and θG,θD are the weights of the generator, G and discriminator,
D.

passed through all but the last layer of the discriminator. The discriminative
network without the final layer is called the encoder. Both the query examples
and all examples in the dataset can be encoded using the this encoder. The
encoding is normalised to have unit length by dividing by the square root of the
sum of squared values in the encoding.

3.3 Retrieval

The objective is to retrieve samples that are visually similar to a query example.
To retrieve examples similar to the query, similarity measures are calculated
between the representation for the query and representations for all samples in
the dataset. Examples with the highest similarity scores are retrieved. The focus
of this paper is on learning a good representation for the data, for this reason a
simple similarity measure is used, the (normalised) dot product.

4 Experiments And Results

The purpose of these experiments is to show that GANs can be used to learn
a representation for our Merchant Mark dataset from only 2000 examples, that
can be used to precisely retrieve visually similar marks, given a query. We com-
pare invariance of feature representations learned and retrieval results from two
different networks to show that there is some benefit to using a network designed
specifically for learning representations for sketches.
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4.1 GAN Architectures

Two different architectures were compared:

sketch-GAN We propose a novel GAN architecture inspired by Sketch-A-Net
[14], a network achieving state of the art recognition on sketches. Sketch-A-
Net employs larger filters in the shallower layers of the discriminative network
to capture structure of sketches rather than fine details which are absent in
sketches. This motivated our network design, using larger filters in the lower
levels of the discriminator and the deeper levels of the generator. This network
will be referred to as the sketch-GAN. This network has only 33k parameters.

thin-GAN A network similar to that proposed by Radford et al. [10] is used.
This network has very small filters, consistent with most of the state-of-the-
art natural image recognition networks [12]. The original network has 12.4M
parameters which would not compare fairly with the sketch-GAN, instead a
network with 1/16th of the filters in each layer is used, this will be referred to as
the thin-GAN and has 50k parameters. Full details of the architecture are given
in Table.1.

4.2 Details of Training

In adversarial training the generator and discriminator networks are competing
against eachother in a mini-max game, where the optimal solution is a Nash Equi-
librium [11]. Adversarial networks are trained iteratively alternating between the
generator and discriminator using gradient descent which aims to minimise the
individual cost functions of the generator and discriminator, rather than finding
a Nash Equilibrium [11]. For this reason convergence, during adversarial training
cannot be guaranteed [11][4]. During training we found that networks did not
converge, for this reason networks were trained for a fixed number of iterations,
rather than till the networks converged. The networks are trained for 2000 itera-
tions with batch size of 128 according to Alg. 1 [3], with k = 1, dz = 2, learning
rate = 0.002, and pz(z) ∼ U(0, 1). The networks were still able to learn features
useful for retrieval despite not converging.

4.3 Feature Invariance

Merchant Marks are hand drawn, which means that the marks are likely to vary
in both scale and orientation. It is therefore important to consider the rota-
tion and scale invariance of the representations that result from training. When
searching a document for Marks, one approach may be to apply a sliding box
search. The step size in sliding the search box will affect the computational feasi-
bility of the search. If a representation used for search is invariant to larger shifts,
then a sliding box search can be performed with a larger step size, making the
search more efficient. For this reason, shift invariance of the two representations
is also compared.
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Table 1: A summary of the network architectures used in this study. fc=fully
connected layer, c=convolutional layer with stride 2, d=convolutional layer with
stride 0.5, unless stated otherwise; for all cases, dz, the dimension of the random
valued vector input to the generator is 2. The ReLU activation function is used
in all hidden layers of all networks and the sigmoid activation is used in final
layer of each network.

thin-GAN:G thin-GAN:D

fc: 1024× dz, reshape(64,4,4) c: 8× 1× 3× 3
d: 32× 64× 3× 3 c: 16× 8× 3× 3
batch normalisation batch normalisation
d: 16× 32× 3× 3 c: 32× 16× 3× 3
batch normalisation batch normalisation
d: 8× 16× 3× 3 c: 64× 32× 3× 3
batch normalisation batch normalisation, reshape(1024)
d: 1× 8× 3× 3 fc: 1× 1024

sketch-GAN:G sketch-GAN:D

fc: 128× dz, reshape(8,4,4) c: 8× 1× 9× 9 (stride=1)
d: 16× 8× 3× 3 c: 16× 8× 5× 5
batch normalisation batch normalisation
d: 16× 16× 5× 5 c: 16× 16× 5× 5
batch normalisation batch normalisation
d: 16× 16× 5× 5 c: 16× 16× 5× 5
batch normalisation batch normalisation, reshape(1,1024)
d: 16× 16× 5× 5 fc: 1× 1024
batch normalisation -
d: 1× 16× 9× 9 (stride=1) -
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Fig. 5: Invariance: Shows invariance of the sketch-GAN and thin-GAN represen-
tations to A) rotation, B) scale and C,D) translation.
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Invariance To Rotation To assess the degree of rotation invariance within
the two representations, 100 samples were randomly taken from the Merchant
Mark dataset and rotated between the angles of −10 and 10 degrees. At each
0.5 degree increment, the samples were encoded and the similarity score between
the rotated sample and the sample at 0 degrees was calculated. The similarity
score used was the normalised dot product, since this was also the measure used
for retrieval. The results are shown in the top left of Fig.5. It is clear that the
sketch-GAN encoding is more tolerant to rotation than the thin-GAN encoding.
Note that the background of the rotated samples were set to 0 to match the
background of the samples.

Invariance To Scale A similar approach was used to assess the degree of scale
invariance within the two networks. Again, 100 samples were randomly taken
from the Merchant Mark dataset, and scaled by a factor between 0.5 and 1.5.
At each increment of 0.05, the scaled sample was encoded and a similarity score
was calculated between the scaled samples and the sample at scale 1. The results
are shown in the top right of Fig.5. Note, that when the scaling factor is < 1
the scaled image is padded with zeros to preserve the 64× 64 image size. When
scaling with a factor > 1, the example is scaled and cropped to be of size 64×64.
The bounding box of the unscaled marks is tight, which means that at higher
scaling factors parts of the marks are sometimes cropped out. Despite this, the
sketch-GAN encoding is able to cope better with up-scaling compared to down-
scaling. The sketch-GAN encoder generally outperforms the thin-GAN encoder,
particularly for up-scaling.

Invariance To Shift Finally, we compared the shift invariance of the two
encoders. Sampling 100 marks from the merchant mark dataset, and applying
shifts between −10 and 10 pixels in increments of 1 pixel in both the x and y
directions. The results are shown as a heat map in Fig.5, where the sketch-GAN
encoding appears to be more invariant to shift than the thin-GAN encoding.

4.4 Retrieval

For the retrieval experiments, 500 queries were taken at random from the training
dataset and used to query the whole dataset using features from the sketch-GAN.
The top 9 matches were retrieved, where the first retrieval is the example itself
and the rest are examples that the system thinks are similar. The results from
some of these queries are shown in Fig.6b. The same query examples were used
to query the dataset using the features from the thin-GAN, the results of these
queries are shown in Fig.6a.

Retrieval results using trained sketch-GAN encoder Results show that
using the sketch-GAN encoder for Merchant Marks retrieval (Fig.6b) allows
retrieval of examples that have multiple similar parts for example results for
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(a) thin-GAN (b) sketch-GAN

Fig. 6: Retrieval examples using different GAN architectures. Each sub-figure
shows 15 retrievals where the 1st example, in a purple box, in each row is the
query and the following images on each row are the top 8 retrievals. (a) Shows
retrievals using the thin-GAN encoder and (b) shows retrievals using the sketch-
GAN encoder.

queries #4,#8,#11,#14 and #15 consistently retrieve examples with at least
two similar parts (Fig.2). Specifically, most retrievals for query #15, Fig.6b have
parts 12 and 19 from Fig.2. Exact matches are found for retrievals #4,#5,#8
and #10. Specifically, query #10 finds an exact match despite the most similar
example being shifted upwards and rotated slightly. Retrievals for query #6 finds
an exact match but does not rank the retrieval as high as non-exact matches,
suggesting that there is still room for improvement in the representations that
are learned.

Retrieval results using trained thin-GAN encoder On visual inspection
of the retrieval results that use the thin-GAN encoder, it is clear that they under
perform compared to the sketch-GAN for the same query examples, with fewer
visually similar examples. The thin-GAN encoder fails to find exact matches for
4,5 and 10. Failure to find a match for 10 further suggests that the thin-GAN is
less invariant to rotation.
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5 Conclusions

Convolutional networks contain, at a minimum, tens of thousands of weights.
Training such networks has typically relied on the availability of large quantities
of labelled data. Learning network weights that provide good image representa-
tions in the absence of class labels is an attractive proposition for many problems.
One approach to training in the absence of class labels is to encourage networks
to compete in coupled tasks of image synthesis and discrimination. The question
is whether such Generative Adversarial Networks can learn feature representa-
tions suitable for retrieval in a way that matches human perception.

We have found that GANs can indeed be used to learn representations that
are suitable for image retrieval. To demonstrate this, we compared the represen-
tation learned by GANs that were trained on Merchant Marks. We compared two
related architectures, sketch-GAN and thin-GAN ; sketch-GAN has an architec-
tural design that is more appropriate for performing generation and discrimina-
tion of sketches. Our experiments showed that GANs are suitable for retrieval
of both visually similar and exact examples. Experiments also showed that the
features that were learned by the sketch-GAN were, on average, more robust
to small image perturbations in scale, rotation and shift than the thin-GAN.
Further, retrieval results when using the sketch-GAN appeared more consistent
than in using thin-GAN.

More generally, the experiments suggest that adversarial training can be used
to train convolutional networks for the purpose of learning good representations
for the retrieval of perceptually similar samples; this can be achieved without the
level of labelling and examples required for non-adversarial training approaches.
This broadens the scope of deep networks to problems of perceptually similar
retrieval in the absence of class labels, a problem that is increasingly of interest
in heritage collections of images.
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