
1 
 

Chapter 7 

Title: Metabolic phenotyping of diet and dietary intake 

Jerusa Brignardello 1, Elaine Holmes 1 and Isabel Garcia- Perez2† 

1 Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College 

London, London SW7 2AZ, U.K. 

2 Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Imperial 

College London, London W12 0NN, U.K. 

† corresponding author 

 

Abstract 

Nutrition provides the building blocks for growth, repair and maintenance of the body and is 

key to maintaining health. Exposure to fast foods, mass production of dietary components and 

wider importation of goods has challenged the balance between diet and health in recent 

decades and both scientists and clinicians struggle to characterise the relationship between this 

changing dietary landscape and human metabolism with its consequent impact on health. 

Metabolic phenotyping of foods, using high density data-generating technologies to profile the 

biochemical composition of foods, meals and human samples (pre and post food intake) can be 

used to map the complex interaction between the diet and human metabolism and also to assess 

food quality and safety. Here we outline some of the techniques currently used for metabolic 

phenotyping and describe key applications in the food sciences, ending with a broad outlook 

at some of the newer technologies in the field with a view to exploring their potential to address 

some of the critical challenges in nutritional science.  

 

1. Introduction to metabolic profiling in nutritional research   

 

Although nutrition studies in controlled clinical settings and epidemiological cohorts have 

unequivocally supported an underlying relationship between diet and health, the field is fraught 
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with limitations, particularly in free-living populations where dietary monitoring and 

misreporting are challenging. Whether we are evaluating the association of specific foods with 

a health claim, such as the anti-inflammatory activity of turmeric (largely due to the chemical 

curcumin) (1) or focus on the broader problems of over- or undernutrition, accurate reporting 

of dietary intake is key to making a true assessment of the impact of diet on health. 

Nutritional recommendations from health policies, as well as Dietary Reference Intake values, 

are based on the nutritional needs of a population to keep that population healthy. Most 

Governments implement healthy eating policies based around increasing daily intake of high 

quality proteins and carbohydrates, low saturation fats, vitamins, minerals, fibre and water 

focussing on increasing portions of fruits and vegetables, non-animal proteins and whole grains 

whilst decreasing dietary salt, sugar, saturated fats and alcohol. Dietary advice, using food- 

based dietary guidelines, are the main cornerstone of the worldwide public health policies to 

reducing non-communicable diseases (NCDs) (2-4). The impact of dietary change in controlled 

environments such as metabolic wards, induces a 10% decrease in total cholesterol (5). But 

even in this controlled environment the response to standardised dietary change varies, 

suggesting there is individual variability in response to diet (6). In free-living people, total 

cholesterol is reduced to 5% following implementation of a dietary plan for weight-loss and/or 

metabolic improvement (7) and highlights the problem of compliance to one-size-fits-all 

dietary advice. This is compounded further by the fact that the use of self-reported food intake, 

wherein the prevalence of misreporting is estimated to be between 30-88% (8, 9), compromises 

understanding of the impact of dietary changes on preventing disease. For example, with 

present dietary tools it is difficult to assess if lack of effect at a population or individual level 

is due to there being no physiological effect, poor compliance to the recommended dietary 

change or high interpersonal variability in response to the same diet. Indeed, interpersonal 

variability has been observed in the amount of weight loss induced by caloric restriction (10) 
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and in the postprandial response to identical meals (11). However, it must also be borne in 

mind that foods often constitute a rich chemical composition such that different brands or types 

of food may represent a distinct panel of chemicals, for example apple juice is sometimes found 

to be adulterated with other fruits such as pears (12) while grape juice is commonly adulterated 

with apples (13). In addition to the complexity of food matrices the chemical composition 

changes during food processing (14) due to the large number of factors involved (temperature, 

pH, pressure, etc.) generating new chemicals, which in some cases has resulted in production 

of trace amounts of carcinogens, thereby posing  a risk to human health (15). 

Thus in assessing dietary intake amongst populations, new tools are urgently needed to promote 

progress in research, both in terms of being able to efficiently profile dietary components 

themselves, and in characterising the metabolic consequence of individual nutrients, foods and 

diets in humans. Moreover, based on evidence of inter-individual differences in metabolism of 

dietary components, a strategy for providing reliable individualised dietary advice is required.  

There are multiple benefits of applying metabolic phenotyping to elucidate chemical profiles 

associated with particular diets or with specific metabolic responses to dietary intervention. 

The main applications of metabolic phenotyping in nutrition research are shown in Figure 1. 

These applications include i) quality control of food products, ensuring authenticity and 

provenance of material; ii) detection of toxicity of foods / food contaminants; iii) assessing 

metabolic response to diet at the individual and population levels; iv) stratification of 

individuals according to dietary response; v) identifying non-adherence to dietary interventions 

or plans.  

By exploiting thousands of measured metabolites reflecting physiological status, food intake, 

metabolism and environmental exposure, the balance of traditional standardised nutritional 

advice can be shifted towards personalised nutritional management, accounting for an 



4 
 

individual’s unique lifestyle, culture, environment and phenotype. Ultimately this may improve 

dietary compliance and effectiveness of the diet. 

 

 

Figure 1 Applications of metabolic phenotyping in different food and nutritional 

settings 

 

1.1 Metabolic phenotyping technology currently employed in nutrition research 

Metabolic profiling strategies for analyzing biosamples, encompassing high-resolution 

spectroscopic methods in combination with multivariate statistical modelling tools, have been 

shown to be well-suited to generating metabolic signatures reflecting gene-environment 

interactions (16). Spectroscopic analysis has been applied across a wide range of studies with 
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the aim of characterizing classes of disease, different physiological states or response to 

particular therapies. In addition to endogenous metabolites reflecting the functionality of the 

human genome, spectroscopic profiles report on chemicals from food components and other 

xenobiotics and their metabolic transformation by the gut microbiota. The main players in 

metabolic phenotyping technologies are nuclear magnetic resonance spectroscopy (NMR) and 

mass spectrometry coupled to either gas-phase or liquid-phase chromatography (GC-MS and 

LC-MS respectively). These technology platforms are used to generate high fidelity profiles 

consisting of hundreds of molecules defining a biological sample which could be a 

homogenised diet, a blood or urine sample, or even a tissue biopsy (17-20). Other spectroscopic 

tools used less frequently include infrared spectroscopy and capillary electrophoresis mass 

spectrometry (CE-MS). These complex molecular profiles are subsequently analysed using 

computational modelling tools to accommodate the simultaneous analysis of multiple 

compounds.  

 

No single analytical technology is capable of analysing the totality of compounds present in 

biological samples and in foods, nutrients, phytochemicals, dietary supplements, 

pharmaceutical derivatives, chemicals formed during storage, and food handling as well as 

microbiome-related chemicals.  Each platform will deliver a different set of information and 

achieve only partial coverage of the metabolome. The combination of multiple analytical 

platforms for metabolic profiling analysis can provide a more holistic measure of food 

composition compounds and compounds derived from the ingestion of foods. However, the 

choice of analytical platforms is typically governed by practical and economic constraints.  

NMR spectroscopy is rapid and non-destructive and has the advantage of high reproducibility 

and robustness producing metabolic profiles in a short period of time without the need for 

derivation and separation. It is the only spectroscopic tool that can deliver atom-centred 
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information giving it premium position in molecular structural elucidation. NMR spectroscopy 

is based on exploiting the molecular property of spin and the fact that small differences in local 

electronic environment around a molecule will result in differences in properties such as 

chemical shift that relate to specific molecules or chemical groups. Additionally, it is capable 

of providing wide selectivity with respect to analytes and definitive structural information for 

detecting them with no restrictions on the polarity, volatility, or chromophore content. 

However, NMR technology is not capable to detect inorganic ions or salts, and requires larger 

volumes of samples (typically 0.3–0.5 mL for high-throughput phenotyping studies) than the 

other analytical platforms. Mass spectrometry (MS), being inherently more sensitive than 

NMR, can reach very low LODs (sub nanomole level) and mass accuracy <1ppm and offers 

complementary molecular information.  

Ultra performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/LC-MS) 

used as a molecular separation phase prior to MS detection provides rapid analysis and delivers 

excellent chromatographic resolution (21). UPLC-MS/LC-MS has become the powerhouse of 

the pharmaceutical and biotechnology industries for the metabolic profiling of drugs. It is the 

most sensitive profiling technique of all, and requires minimal sample volume. However, it is 

not as robust as NMR, samples are not recoverable, analysis time is typically relatively slow 

and novel compound identification is more challenging since metabolite identification 

databases are highly dependent on the condition of the analytical method employed.  In 

comparison to GC, it will yield a poor separation resolution and reproducibility. GC-MS has a 

good sensitivity, excellent separation reproducibility, detects most organic and some inorganic 

molecules, and requires low sample volumes. Like NMR it is robust and comprehensive 

databases are available for metabolite identification. Limitations of GC-MS include 

requirement for sample derivatization and separation, relatively slower analysis times, and non-

recoverability of samples post analysis.  



7 
 

CE-MS is a fast, sensitive and inexpensive technique with high separation capabilities and 

rapid detection of ionic and highly polar metabolites that cannot be easily obtained by GC and 

LC/UPLC-MS.  It requires low sample volume and less solvent. Poor reproducibility is 

inherently a limitation of CE-MS that makes it the least suitable of the platforms described for 

analysing large numbers of complex biological samples.  

MS-profiling can be performed in screening mode to obtain broad coverage of the metabolome 

without the need for a priori hypotheses, or in targeted mode to give deep coverage for selected 

metabolite classes, for example amino acids, eicosanoids (inflammatory conditions), bile acids 

(liver disease) or short chain fatty acids. 

 

Much effort has been directed towards the processing of spectral profiles and subsequent 

computational modelling in order to extract robust patterns related to biological endpoints. The 

main focus of these modelling technologies in nutrition and biomedical research in general is 

to i) identify trends, patterns and outliers in the data; ii) allow visualisation of chemically 

complex datasets by reducing the dimensionality of the data without losing biologically 

relevant variance in the data; iii) identify patterns of key metabolites (biomarker panels) related 

to a biological class or intervention; iv) define the dynamic behaviour of those profiles; v) 

derive predictive models for new samples introduced into the model e.g. prediction of response 

to a given dietary intervention; vi) assess authenticity or quality of biological materials based 

on multiple parameters.  Key statistical techniques can be divided into those that are agnostic 

of class or biological information and operate solely on the inherent similarities / dissimilarities 

in biochemical composition of a group of samples (unsupervised techniques such as 

hierarchical clustering analysis (HCA), principal components analysis (PCA) or self-

organizing maps (SOM)) and those that use information on sample class or biological response 

to maximize differences between classes and optimize recovery of biomarkers (supervised 
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techniques such as partial least squares discriminant analysis (PLS-DA), neural networks and 

machine learning techniques). For a comprehensive review of multivariate techniques refer to 

De Iorio et al. (22) and Smolinska et al (23). 

Once a systematic effect of a diet or food has been identified, the signals that define the 

response can be related to a series of chemicals that are identified either from databases relating 

spectral information to chemical structure or by performing specific analytical experiments on 

selected or pooled samples to recover further chemical information. For example, application 

of NMR pulse programs that allow derivation of information relating to neighbouring proton 

or carbon atoms (24), isolation of chemical components using solid, liquid or gas-phase 

chromatography followed by measurement using NMR and MS technologies (25), direct 

hyphenation of LC-NMR-MS (25), or by use of statistical spectroscopic correlation methods 

(see Robinette et al. for a summary of available methods (26) ) based on identifying covariance 

of signals across an NMR or combined NMR and MS dataset.  

The use of these technologies has provided an enormous step forward in nutritional sciences 

that allows a better understanding of the complex interactions between food, diet, microbiota, 

chronic diseases and metabolic phenotypes. Considering the nature and diversity of compounds 

which are metabolized, a single analytical technique is unlikely to yield a comprehensive and 

complete metabolic profile and frequently is used in a complementary manner.   

 

2. Applications in food and nutritional research  

Different approaches have been suggested for metabolic profiling applications in food and 

nutritional sciences. The following section addresses some scenarios where metabolic profiling 

has shown to be useful in specific food and nutritional contexts with promising results.  
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2.1 Food composition, organoleptic properties and food safety 

Food composition has been traditionally evaluated by the standard methods suggested by the 

Food and Agriculture Organization of the United Nations (FAO) for the evaluation of 

carbohydrates, proteins, lipids, alcohol, polyols, organic acids and other food energy sources 

(27). These methodologies basically provide information about energy content of food, but the 

diversity of molecules and individual chemical forms are not detected. The use of metabolic 

phenotyping to analyse and identify food compounds enables identification of specific 

molecules and can provide the data required to validate the authenticity, quality and 

acceptability of some certain type of foods (28). This type of identification is fundamental for 

wines, vegetables, fruits and specific type of foods. 

Protein content in food is determined by the Kjeldahl method, which evaluates the amount of 

nitrogen in food, but without the discrimination of the nitrogen source (27, 29). However, it is 

possible to artificially enhance the measured protein content of a food by adulteration of a 

product with melamine. Melamine contains 66.6% nitrogen and adding 1% to proteins leads to 

a false increase content by 4.16% in the results analysed with the Kjeldahl method (30, 31). 

Melamine has become one of the most effective adulterants used to increase the nitrogen 

content in food products and this type of adulteration has been a common occurrence in the last 

10 years (32). In 2007 a massive pet food recall in United States was caused by the presence 

of melamine in pet food (33), which was present in wheat gluten, rice protein, and corn gluten 

imported from China and used as an ingredient (33, 34). Kidney stones and renal failure in cats 

and dogs were reported as some of the most common toxic effects of melamine-adulteration in 

pet foods (35). Toxicology evaluation of contaminated food and gluten protein from food recall 

using HILIC-(TOF) MS, identified the presence of melamine, cyanuric acid, and several other 

triazines as contaminants (34). Melamine also has been added to powdered infant formulas to 

increase falsely the content of proteins by increasing of non-protein nitrogen level (32). The 
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most famous case of melamine in food was in China in September of 2008, causing kidneys 

stones and urinary tract effects in more than 300.000 children and six infant deaths were 

reported as a consequence of melamine contamination (36, 37). After this event WHO/FAO 

recommended LC-MS and GC-MS, both targeted methodologies for screening, confirmation 

and quantification for the presence of melamine in food products (38). The use of non-targeted 

spectroscopic techniques has been employed for the detection of melamine in food and it is a 

suitable alternative to detect other types of adulterant components in food products (30). It has 

been suggested that renal toxicity of melamine is mediated by the gut microbiota in rats, where 

microbes transform melamine to cyanuric acid (39). A recent study from South Africa analysed 

the level of melamine in different sport products using LC-MS and found 46 % of them 

contained melamine in low levels which were within the Tolerable Daily intake (TDI) 

according to the WHO (38, 40). However, considering the low cost of melamine and its ability 

to increase the level of nitrogen, it is important to ensure food ingredients from well-known 

suppliers and especially if these food products are oriented for vulnerable groups as children 

so as to avoid future public health problems. 

Wine is one the most widely consumed beverages of the world and several health benefits have 

been suggested to result from its moderate consumption (41). There are many varieties of wine 

according to their organoleptic characteristics such as aroma, flavour and colour to name a few 

and those characteristics are attributed to its geographical location, growing conditions and 

fermentation processes (42). The nature and structure of molecules found in wine are diverse 

and their concentration can vary depending on variety, making it an easy target for adulteration 

(43) The use of metabolic profiling techniques for wine analysis has been a useful tool to ensure 

the traceability and quality of wines (44). Metabolic profiling with NMR and HPLC–QTOFMS 

has permitted the identification of metabolite differences between grapes and wine varieties, 

for examples wines made with Campbell Early, Cabernet Sauvignon, and Shiraz grape and 
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Cabernet Sauvignon, Merlot and Pinot Noir wine varieties (45, 46). Additionally, the use of 

metabolic profiles has enabled detection of metabolite differences between the same wines 

varieties but produced in different stages of grape fermentation and different geographical 

locations (45, 47). In another study, samples of Riesling and Mueller-Thurgau wines from the 

Palatinate Region in Germany were analysed with NMR according to their quality 

classification assessed by a sensory panel. High and low quality wines showed a correlation of 

specific metabolites to its quality classification (48). The use of metabolic profiling in wine 

analysis provides a valuable tool to wine producers to ensure a good quality product and 

original denomination of origin.   

Mozzarella cheese is a traditional dairy product from Italy, made with fresh buffalo milk and 

called Mozzarella di Bufala Campana (MBD) with Protected Designation of Origin (PDO): 

This characteristic means that the entire product must be traditionally and entirely 

manufactured (prepared, processed and produced) within the specific region and thus acquire 

unique properties attributed to this type of cheese (49). However, there are reports of this 

product being adulterated with the addition of another type of milk or claiming a false PDO 

status. The European Union (EU) has recommended the detection of bovine proteins in dairy 

products based on gel isoelectric focusing of γ-caseins after plasminolysis (EU Regulation 

Nº273/2008) to ensure the quality. The results of this method nevertheless are sometimes 

ambiguous with overlapped proteins and can result in false positive results (50). An alternative 

method for adulteration detection has been developed based on ultra-high performance LC-

MS/MS for the detection of phosphorylated β-casein f33-48 tryptic peptide which is a specific 

and sensitive specie marker for MDB that can be detected in three magnitude orders lower than 

the methodology recommended by the EU (51) with a detection limit for bovine milk in buffalo 

cheese products of about 1%. Additionally, MDB has been profiled with HR-MAS-NMR (High 

Resolution Magic Angle Spinning Nuclear Magnetic Resonance) and this has been proven to 
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be a reliable methodology for detection of specific metabolic fingerprints that provides 

guarantee its PDO, thereby avoiding fraud (52). 

Early detection of pathogens in crops is fundamental for the agricultural sector, the use of 

metabolic profiles may prove to be helpful to this purpose (53). The non-cultivable bacteria 

Candidatus Liberibacter spp is the responsible of the disease known as Huanglongbing (HLB) 

in citrus trees (54). There is no known cure for this disease and infected trees die after a few 

years. Furthermore this disease produces a change in the flavour of oranges, which then cannot 

be consumed because of the extremely bitter- acid flavour they acquire (54). Recent studies 

have described the use of metabolic profiling by NMR in orange juice, leaves and roots from 

asymptomatic and symptomatic trees detecting differences in their metabolites (55, 56). The 

implementation of new strategies to tackle and detect timely the presence of HLB are important 

for citrus industry, where metabolic profiling techniques could be useful in developing new 

protocols to reduce HLB infected plants. 

Metabolic profiling techniques have been studied to detect food pathogens in various types of 

food with promising results (28). Foodborne pathogens are a constant threat for the food 

industry and public health, consequently rapid techniques are required to obtain reliable 

detection of spoiled or dangerous foods. A proof concept of a rapid method detection for 

Listeria monocytogenes has been developed using gas chromatography coupled to orthogonal 

acceleration time-of-flight mass spectrometry (GC-oaToFMS) capable of detecting metabolic 

fingerprints in laboratory media and milk (57). Additionally, an alternative method for 

pathogens detection has been developed to detect Escherichia coli O157:H7, Salmonella 

Typhimurium, Salmonella Muenchen, and Salmonella Hartford in laboratory samples with GC-

MS (58). The unmet need for rapid techniques for accurate and sensitive detection of food 

pathogens in food presents an analytical challenge, particularly when metabolite patterns are 

required to be specific down to the level of bacterial strain and food matrix. However, new 
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technologies capable of real-time metabolite profiling linked to extensive databases of bacterial 

profiles are on the horizon and are described in Section 3.  

 

 

 

2.2  The use of dietary biomarkers to improve the assessment of dietary intake  

 

Collection of dietary data is generally carried out by different methods like weighed food 

records, food frequency questionnaires, food diaries and 24 hour recall methods, to name but a 

few (59). These techniques provide information about eating habits, portion size, food and 

nutrient consumption, but these data tend to lack accuracy considering the different sources of 

food composition tables estimating energy, nutrients and other food elements (60, 61). 

Additionally, dietary assessment usually requires highly trained personnel, careful validation, 

time and cognitive ability from the respondent and skill of the researcher to obtain reliable 

results (62).  

A major limitation of nutritional science is the objective assessment of dietary intake at both 

individual and population levels. The prevalence of misreporting is estimated at 30-88% (63, 

64) based on underreporting biased towards unhealthy foods and over-reporting towards fruits 

and vegetables (65). Moreover, underreporting dietary energy intake is exacerbated in obese 

individuals which is a major concern considering the increasing prevalence of obesity globally 

(66-68). 

With the present dietary tools it is difficult to assess if lack of effect at a population or individual 

level is due to there being no physiological effect, poor compliance to the recommended dietary 

change, differences in chemical composition of foods sourced from different origins or high 

inter-individual variability in response to the same diet. 
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The urgent need to improve methods for the assessment of dietary intake for nutrition studies 

has been widely discussed, where the use of dietary biomarkers (DBs) and metabolic profiling 

techniques have been proposed as a promising approach for this purpose (69). 

 

DBs are defined as measurable metabolite or metabolites excreted in biofluids that derive 

directly or indirectly from a given nutrient, food or diet.  This concept is based on the principle 

that excretion levels of metabolites are highly correlated to the dietary intake of a food or 

nutrient over a fixed period of time (70). The assessment and validation of DBs consist in 

identifying a candidate metabolite or metabolites and subsequently evaluating them in a 

nutritional trial under controlled conditions (71). The application of high- throughput analytical 

techniques has permitted the identification and discovery of several DBs in urine and blood 

(72, 73). Dietary biomarkers from different food groups identified from 2006 to 2016 using 

multiplatform metabolic profiling strategies are summarised in Table 1.  

The approaches that have been used to DBs discovery can be either hypothesis led or data 

driven (72, 74). In the hypothesis driven case, a prior knowledge of different DB is selected 

according to their food composition data and information about in vivo metabolism. If a dietary 

study is hypothesis driven, for example the assertion that conferred health benefits are due to a 

specific component or class of components e.g. polyphenols or citrus fruits, then targeted 

detection methods are chosen according to the type of metabolites to be evaluated allowing 

easy identification and potentially quantification (75, 76). Alternatively where the food or diet 

is associated with improved health but the chemical components responsible are not known, 

then a data driven approach is adopted and multivariate analysis techniques are used to identify 

potential DBs. The samples to study DBs are mainly obtained from two types of studies: 1) the 

study of associations of dietary intake and metabolites analysis from biofluids in cross sectional 

studies or 2) controlled nutritional interventions where participants consume known amounts 
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of certain foods (72). Dietary biomarker validation must be done in a cross-sectional study after 

its detection in a controlled nutrition intervention study if the results from the controlled trial 

are to be useful in the general population (76). Conversely, the identification of DBs from 

cross-sectional or epidemiological studies generally only consider associations between DBs 

levels, amount of food consumed and presence or absence of disease, in some cases. However, 

in most cases, direct relationships between foods and disease are not demonstrated and neither 

are the biochemical mechanisms regarding metabolism of nutrients and their relationship with 

DBs explained. Thus the DBs identified in population studies often require interrogation via in 

vitro or in vivo models to ascertain mechanisms of action. 

Nevertheless, the information provided by DBs is a useful adjunct to complement the dietary 

data obtained from traditional methods of dietary assessment and provides an important support 

in epidemiological studies of association between diet and diseases (53, 77).  

 

 

 

2.3 Dietary effects on metabolic profile in health and disease  

 

Different life style factors have a deep impact on health and diseases status, especially the 

impact of dietary habits and food consumption on the development of NCDs (78). NCDs are 

one the main cause of mortality and morbidity and their prevalence is projected to continue to 

rise during following years (79). The main NCDs include obesity, diabetes, hypertension, 

cardiovascular diseases, cancer and other metabolic disorders (78). Diet and nutrition play a 

key role in the aetiology and progression of NCDs: different studies have found 

epidemiological associations between specific dietary patterns and disease prevalence (80-83). 
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For example, adherence to Mediterranean diet has been associated with cardiovascular disease 

(CVD) prevention and with lower mortality among patients with a history of CVD.  Likewise, 

sodium reduction in combination with a DASH-type diet has been associated with optimal BP 

reduction. However, there is a need to understand the complexity of interactions among 

metabolites, dietary pattern, specific food consumption, onset and progression of healthy and 

diseases states that cannot be detected by traditional medical screening programmes. 

a. The Role of Diet in Influencing Metabolic Syndrome and Obesity 

Metabolic syndrome (MS) is defined according to ATP III criteria (based on meeting at least 

three of the next five parameters: waist circumference >102 cm (men) and >88 cm (women), 

blood pressure ≥130/≥85, fasting triglycerides >1.7 mmol/L, fasting HDL cholesterol <1.04 

(men) and <1.03 mmol/L (women)and fasting glucose ≥6.1 mmol/L) and its diagnosis can be 

made on the basis of presence of three altered symptoms for fasting glucose, blood pressure, 

HDL cholesterol, waist circumference and triglycerides (84). Obesity is defined as an excessive 

fat accumulation that may impair health. Obesity is frequently diagnosed by body mass index 

(BMI). A BMI > 30 is classified as clinically obese, and can be further categorized into grade 

I (BMI 30 to 34.9), grade II (BMI 35 to 39.9) and grade III (BMI >40) (85). There is evidence 

that suggests that obesity and MS are precursors of other metabolic diseases as 2 diabetes 

mellitus (T2DM), hypertension and cardiovascular disease (CVD) associated with high rates 

of mortality (68, 86). Understanding of the significance of metabolic phenotypes in NCDs 

could be a helpful tool to improve clinical treatment of patients and subsequent approaches to 

therapeutic management.  

In one metabolic phenotyping study applied to obesity, plasma metabolites were analysed in a 

cohort of adults classified as normal weight and overweight/obese (OW) individuals with or 

without metabolic syndrome from the INFOGENE study. MS was used to detect differences 
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between metabolic profiles of normal vs OW participants. Metabolite differences in OW 

individuals with MS were especially enriched for metabolites such as PCaa 

(Phosphatidylcholines diacyl), PCae (Phosphatidylcholines acyl-alkyl) and medium chain 

sphingomyelins that were associated with a deteriorated metabolic state, which was more 

related to an obese metabolic profile rather than a healthy metabolic profile(87). 

Other studies have explored the association between the urinary metabolome and BMI. In a 

unique cohort of samples from the INTERMAP epidemiologic study (88), 24 h urine collection 

samples were analysed by NMR to derive an untargeted metabolic profile and a targeted ion 

exchange chromatography (IEC) method was used to measure amino acid metabolites and 

related compounds. Urinary metabolites directly associated with BMI included 

trimethylamine, dimethylamine, 4-cresyl sulfate, phenylacetylglutamine and 2-

hydroxyisobutyrate (gut microbial co-metabolites), succinate and citrate (Tricarboxylic acid c 

cycle intermediates), ketoleucine and the ketoleucine/leucine ratio (linked to skeletal muscle 

mitochondria and branched-chain amino acid metabolism), 3-methylhistidine (skeletal muscle 

turnover and meat intake) and ethanolamine (skeletal muscle turnover) (89). These metabolites 

could be useful in clinical settings where obese urinary phenotypess detected in normal weight 

individuals may indicate a heightened risk of developing obesity or related metabolic diseases.  

Most obese individuals present with at least one altered characteristic for metabolic parameters 

and this condition is termed metabolic unhealthy obesity (MUO). Interestingly, 10 to 30 % of 

obese individuals present healthy metabolic parameters for insulin sensivity, blood pressure 

and lipid profiles (90), referred to as metabolic healthy obesity (MHO) (85, 91, 92). Currently, 

there is little knowledge about the role of abnormal metabolic phenotypes and factors that 

switch from MHO to MUO. Serum metabolic profiling of a paired group of 34 individuals with 

MUO and MHO was carried out using LC-MS for targeted analysis and GC-MS for both target 

and untargeted analysis. Metabolites that systematically differentiated between MUO and 
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MHO individuals included L-kynurenine, glycerophosphocholine (GPC), glycerol 1-

phosphate, glycolic acid, tagatose, methyl palmitate and uric acid. In addition, these 

metabolites were related to several metabolic pathways, including fatty acid biosynthesis, 

phenylalanine metabolism, propanoate metabolism, and valine, leucine and isoleucine 

degradation (93).  

Another similar study described distinct metabolic phenotypes for MUO, MHO and lean 

healthy (LH) subjects after the consumption of a high calorie meal challenge at breakfast. 

Plasma amino acid and fatty acid profiles were analysed by CE-MS and GC, respectively. 

MHO subjects were capable to easily adapt to the caloric challenge compared to MUO, 

showing a preserved insulin sensitivity. The metabolic profile presented some significant 

differences in amino acid levels between fasting and postprandial states for asparagine (LH v/s 

MUO), cystine (LH v/s MUO and LH v/s MHO), glutamine (LH v/s MUO and MUO v/s MHO) 

and serine (LH v/s MUO and LH v/s MHO). Lipid metabolic profiles were significantly 

different between fasting and postprandial for palmitoleic acid (LH v/s MUO; LH v/s MHO), 

Linoleic acid (MUO v/s MHO), γ-linolenic acid (LH v/s MUO and MUO v/s MHO) and 

arachidonic acid levels (MUO v/s MHO). Additionally, positive correlations were found 

between fasting levels of isoleucine, fasting insulin and insulin area under curve (IAUC). Also, 

a positive association of leucine with both HOMA- IR and fasting insulin was described 

confirming the role of branched amino acids (BCAA) to identify possible obese people at 

cardiometabolic risk (94). These fasting metabolites and associations should be considered as 

potential predictive indicators of postprandial response, independently of the BMI or metabolic 

diseases diagnosis in patients. 

A recent study proposed a regression model of prediction for successful weight loss for patients 

with overweight, obesity and morbid obesity based on metabolic signatures at baseline before 

the consumption of caloric restriction diet for 8 weeks. Participants received a liquid diet of 
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approximately 800 kcal during 8 weeks. Metabolic profiles changes in plasma were measured 

before and after weight loss period using NMR for low weight molecular metabolites and LC-

MS for lipidomics. By looking at baseline parameters, a maximum of 57% of participants 

weight loss could be predicted. However, the best predictions were obtained with the morbid 

obesity participants in comparison with obese participants (10). Weight loss prediction was 

based on metabolites related to energy metabolism such as acetoacetate, triacylglycerols, 

phosphatidylcholines, amino acids, creatine and creatinine. Hence, it is suggested that a 

successful weight loss in morbid obesity is modulated by a high energy metabolism status 

previous to a calorie restriction diet period allowing a personalised advice in this type of 

patients in near future. 

2.4 Feeding the gut microbiome 

No nutrition-associated metabolic phenotyping chapter would be complete without mentioning 

the gut microbiome and its role in metabolism of nutrients and foods, with consequent impact 

on metabolic signalling between host and bacterial community. The microbiome is key to the 

status of the immune system with capacity to affect a diverse range of tissues and organs 

including the liver and intestinal tract and is implicated in the aetiology or development of 

many diseases including inflammatory bowel disease, fatty liver diseases and several cancers. 

Given the close relationship between the gut and liver (the “gut-liver axis”), the intestinal 

microbiome has been widely recognized for playing a key role in the maintenance of gut-liver 

health. Ingested foods and nutrients processed by the gut bacteria are transformed into 

metabolically active chemicals, some of which act directly as signalling molecules in gut-brain 

axis communication. 

At the broadest level, high calorie diets and obesity have been shown to be associated with 

distinct microbiomes with an increased ratio of Firmicutes to Bacteroidetes identified as being 

modulated by a weight reduction diet (95) However, other research groups have failed to 
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reproduce consistent differences in the Firmicutes to Bacteroidetes in the microbiota of obese 

and non-obese individuals (96) suggesting a more complex relationship between nutrition and 

the microbiota with regard to its role in metabolic syndrome and obesity. Nevertheless, the 

weight of evidence heavily favours a strong relationship between obesity and the microbiome 

based on both metagenomic data (97) and on metabolic phenotyping data showing clear 

differences in gut microbial metabolites of dietary aromatic amino acids, phenolics and short 

chain fatty acids (98) .  One of the strongest modulators of the intestinal microbes and their 

activity is caloric restriction. Low fat diets and other diets aiming to achieve weight loss result 

in a robust panel of metabolic changes, mirrored by an alteration in the gut microbiome. Higher 

urinary concentrations of hippurate, phenylacetylglutamine and 4-cresyl sulphate, all gut 

microbial metabolites or bacterial-host co-metabolites have been associated with lean body 

mass and with weight loss (88, 99). Microbial modulation of dietary choline, specifically 

phosphatidylcholine to trimethylamine-N-oxide (TMAO) has been implicated in 

cardiovascular disease (100) and yet high levels of TMAO are found in urine samples obtained 

from Japanese populations originating from a diet rich in fish containing high levels of TMAO 

(88). Clearly heart disease is not overtly high in the Japanese, in fact quite the contrary, again 

pointing to the extreme complexity surrounding the microbe-host relationship in processing of 

foods and nutrients and pointing to conditional relationships of gene-environmental 

interactions in disease aetiology. 

One of the most credible pieces of evidence highlighting the interaction of diet and the 

microbiome in disease is that there are three distinct metabolic phenotypes of individuals found 

with respect to gut bacterial metabolism of the dietary soy component daidzein: individuals 

who metabolize daidzein to O-desmethylangolensin (ODMA), equol or both (101). Equol 

production is associated with beneficial effects of soy in cardiovascular disease. Individuals 

who produced ODMA and equol have been reported to have lower levels of the gut microbial 
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metabolite trimethylamine yet were associated with increased pro-inflammatory cytokines 

further underscoring the complexity of the metabolic interaction between man and his 

microbiome.  

Dietary impact on cancer risk also demands interrogation of the tripartite relationship between 

diet, inflammation and the microbiome. Unequivocal evidence has shown that migrant 

populations assume the colon cancer incidence of the host population after only one generation. 

A cross-over study in African Americans and rural Africans showing a switch of diet induces 

a rapid change in metrics of colon cancer risk (102). Other research programmes have shown 

clear links between bacterial and host modulation of dietary choline and cancer both in terms 

of risk and also prognosis (103, 104). 

It is widely accepted that short chain fatty acids (SCFA) play an important role in maintaining 

the epithelial integrity of the mucosa in inflammatory bowel disease. Acute studies in both 

animals and humans demonstrate that SCFA can have a favourable effect on inflammatory 

bowel disease activity markers. The challenge of using SCFAs as a mainstream therapy has 

been in developing a methodology that will increase colonic SCFAs over a prolonged period 

of time to assess disease remission. Recent research has produced a method of delivering short 

chain fatty acid to the colon over a prolonged (>6month) period of time based on SCFA inulin 

esters (105).  There are many potential metabolic intersections between the human host and 

their microbiome and this arena provides a broad landscape in which to develop nutriceuticals 

and health-promoting foods. 

 

3. Future of nutrimetabonomics 

3.1 -REIMS and DESI imaging technologies 

Several promising new MS-based methods for profiling and imaging of foods, and for profiling 

bacterial communities in foods are on the horizon. Mass spectrometric methods have been used 
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to differentiate and to phenotype bacteria for several decades based on the composition of their 

lipid coat and fatty acid profiling, beginning with pyrolysis MS (106, 107) and GC-MS (108) 

methods. Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry has also 

been applied to taxonomic characterization of bacteria (109), but is limited by the requirement 

for extensive sample preparation including embedding within a chemical matrix. Rapid 

Evaporative Ionisation Mass Spectrometry (REIMS) is a recently developed matrix 

independent method that can accurately speciate microorganisms based upon their species-

specific phospholipid fingerprint (110). The technique operates by applying a radiofrequency 

derived electrical current directly to the bacterial colony or biological sample and generating a 

vapour from the bacterial biomass, which contains ions that can be directly imported into a 

mass spectrometer. The technique is rapid and could be applied directly to foods to identify 

harmful microorganisms present in foodstuffs. 

In a similar manner the REIMS technology can be applied directly to foods to monitor 

composition directly. This has obvious application in food adulteration, and its major strength 

lies in the rapidity of the method allowing high throughput screening of food products. The 

best known exemplar for this technique is the differentiation of meat burgers according to the 

species the meat originated from, detecting horse, beef and venison and establishing the relative 

proportion of each (111) . 

The complexity of gene-environment interactions that drives the association between nutrition, 

metabolic phenotypes and disease is underpinned by vast interactive networks of signaling 

molecules that bridge the various layers of biomolecular organization in humans. Improved 

methods and systems biology frameworks for conducting analysis at the interface between 

epigenetics and molecular phenotypes (112). 

 

3.2- Nutrition in the intensive care setting 
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Metabolic phenotyping studies in the critical care setting are relatively sparse but have been 

used to characterise a wide range of patients from pneumonia and acute lung injury to trauma 

patients (113). There is growing recognition of the role of nutritional management in the 

intensive care setting and recent studies have shown the value of applying profiling studies to 

evaluate various nutritional management strategies. For example, recovery of mitochondrial 

function has been found to be predictive of recovery form multiple organ dysfunction. 

Metabolic phenotyping has been highlighted as a vehicle for patient stratification with respect 

to therapeutic management with respect to administration of potentially beneficial agents such 

as thiamine, ascorbic acid, tocopherol, selenium, zinc and potential metabolic resuscitators 

(coenzyme Q10 (CoQ10), cytochrome oxidase (CytOx), L-carnitine, melatonin) (114). Other 

metabolic profiling studies have identified altered plasma levels of sucrose, mannose, 3D-

hyroxybutyrate, lactate, methionine, arginine, and various acylcarnitines to be associated with 

sepsis (115). These molecules may provide a useful biomarker panel against which to measure 

nutritional and other therapeutic management strategies in intensive care patients. Further 

profiling studies have shown the association between nutritional status and prognosis in the 

clinical care setting. Mogensen et al reported a correlation between metabolic profiles in 

critical care patients with malnutrition and 28 day survival, with dysregulation of glutathione 

and purine metabolism being particularly important (116). The term metabolic resuscitation 

has become popular and is indicative of the growing recognition of the need for specific 

nutritional care in the Critical care patient. A recent study reported that amino acids fluctuate 

and that their levels correlated with prognosis as assessed by the APACHE and SOFA scores, 

with a particularly strong correlation between worsening prognosis and a decline in sulfur-

containing amino acids, such as taurine (117) .Thus, metabolic profiling technology has clear 

potential as a tool for nutritional support in sepsis patients. 
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3.3- Neonatal nutrition  

Pregnancy offers a window of opportunity to shape the health of both the mother and foetus, 

and good nutrition is considered a vital part of managing the pregnancy journey. Metabolic 

phenotyping applied to pregnant women has shown differential profiles between individuals 

undergoing a healthy pregnancy and those with intrauterine growth restriction (IUGR) which 

was characterized by lower levels of urinary acetate, trimethylamine, tyrosine and formate and 

higher levels of N-acetyl glycoproteins (118). These biomarkers of growth restriction also 

provide a panel of markers to target via nutritional management. Breast milk is generally 

considered to be healthier than formula milk and breast-feeding has been associated with lower 

risk of infants and children developing asthma, eczema and downstream obesity (119, 120). 

Several studies have examined early feeding regimens using metabolic phenotyping, some of 

these studies in preterm or intrauterine growth restriction infants. After just three days of 

formula nutrition urinary excretion of glucose, galactose, glycine and myo-inositol increased 

whilst breast bed babies had higher urinary levels of adipic acid, citric acid, homoserine and 

aminomalonic acid (121). 

The gut bacterial community, introduced at, or even before, birth undergoes dynamic 

colonization of the intestinal tract resulting in microbial communities that support our immune 

function, our ability to harvest calories from our food and perform chemical signaling functions 

between the gut and other organs and tissues. The gut microbiome is inextricably linked with 

dietary processing and is largely symbiotic with its human host. Dysfunction of the microbiome 

has been associated with multiple diseases ranging from inflammatory bowel disease to 

obesity-related conditions and even neurodevelopmental disorders such as autism (122-124). 

The transmissibility of microbiomes, be they beneficial or adverse, is a controversial subject, 

particularly in the case of their association with obesity and insulin resistance (125). Collado 

et al reported higher levels of fecal Bacteroides spp., Staphylococcus spp. and Clostridium 
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difficile counts in 6 month old babies from overweight mothers and also showed that weight 

gain during pregnancy impacted on the microbial composition (126). Preterm babies have been 

shown to have increased risk of metabolic syndrome and cardiovascular disease later on in life 

and are also at higher risk of neurodevelopmental complications (127, 128). One school of 

thought proposes that it is the nutritional management of preterm or low birth weight infants 

that is responsible for the downstream health implications rather than the phenomenon of being 

born with immature organs and systems. In a mouse model of feeding to achieve catch up 

growth in neonatal undernourished mice, the gut microbial metabolites phenyllactate (plasma) 

and 4-cresyl sulphate (urine) remained different from wither undernourished counterparts fed 

normally or from control mice (129) implicating a nutritionally modified microbiome.  

Human milk oligosaccharides, present in breast milk have been found to promote growth in 

models of infant undernutrition (130) and protect against pathodenic infections such as 

Campylobacter and Group B Streptococcus. Metabolic profiling methods for determining the 

glycomic profile have been developed for both nano-liquid chromatography chip time-of-flight 

mass spectrometry (131) and NMR platforms (132). The association between nutrition and 

cognitive development is intriguing and under researched. A few metabolic profiling studies 

have begun to probe the relationship between the diet and the gut-brain axis.  One such study 

in pigs has shown that early life supplementation with phospholipids and gangliosides alters 

the brain biochemistry and improves spatial learning in piglets (133). Several methodologies 

and strategies for profiling human breast milk have been developed and should prove useful in 

investigating the tripartite relationship between the early colonising microbiome, infant 

nutrition and the metabolic profiles (134, 135). 

 

3.4- Sports nutrition  
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Appropriate nutrition enhances physical performance and recovery (136-138). Athlete’s 

dietary choices, amounts and timing of food intake and supplements can help reduce the risk 

of injury whilst providing a more effective training (139). To date, the majority of exercise-

diet-metabolism studies rely on single targeted markers. On the other hand, metabolic 

phenotyping captures information of the athlete’s biochemistry that reflects, physiological 

status, genetic, microbiome and other environmental interactions such as dietary exposure and 

lifestyle (17, 140). This has the potential to provide personalized recommendations that will 

enhance the sportsman’s performance.  

Metabolic profiling studies have been applied to identify exercise-related metabolites (141), 

inter-individual variation in response to exercise(142) and to compare the effect of different 

exercise sessions and different levels of training exercises (143). Likewise, the use of metabolic 

profiling is essential to objectively monitor and assess athletes’ food intake at an individual 

level that allows accurate understanding of the impact of diet on performance and recovery. 

This will enable the development of optimised personalised food and training plans.  

Currently, there is growing interest in increasing our understanding of the impact of functional 

foods and supplements on athletes’ metabolic behaviour, before, during and after physical 

activity. Several metabolic profiling studies have evaluated the impact of formulated sports 

drinks, enriched with macronutrients and/or micronutrients or plant based extract to improve 

sportsman’s performance and recovery. Serum metabolic profiles revealed different systemic 

metabolic response in the early recovery phase post exercise when comparing the ingestion of 

water, low-carbohydrate beverages, high-carbohydrate beverages, and low-carbohydrate-

protein beverages, immediately after 90 min of ergometer-cycling (144). This suggests that the 

post exercise intake of low-carbohydrate-protein beverages improved the metabolic status of 

less fit subjects by increasing the serum levels of pseudouridine and decreasing levels of 3-

methyl histidine, a marker of muscle turnover. A similar study, evaluated the metabolic effect 
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of a green tea based sports drink, rich in polyphenols, in comparison to oligomineral water, 

which resulted in improving energy metabolism and glucose homeostasis (145). Post exercise 

serum and urinary metabolic profiles of rowing athletes revealed lower lactate and higher 

glucose and citrate plasma levels and an increment of urinary acetone and 3-hydroxybutyrate 

during rehydration.  

The benefit of phenolic ingestion during and post exercise on athletes’ performance and 

recovery was investigated by MS metabolic profiling strategies. The acute effect of banana 

intake compared to 6% carbohydrate drink during and after 75-km cycling performance and 

post exercise resulted in no detectable differences in performance, blood glucose levels, 

oxidative stress, inflammation and innate immune levels (146). However, further studies 

compared the effect of the ingestion of banana, water and pear before and during 75-km cycling 

indicated that banana and pear intake was associated with a meaningful performance 

enhancement, diminished inflammation, decreased fatty acid mobilization and oxidation and 

contributes unique phenolics that elevate antioxidant capacity (147).  

On the other hand, metabolic profiling strategies are well suited to investigate changes in gut 

microbial metabolites after supplements and/or food intake. Long distance runners were 

supplemented with blueberry and a green tea polyphenol rich soy protein-based product after 

3 days of intensified training which increased ketogenesis during recovery and a distinct gut-

derived phenolic signature (hippurate, 4-hydroxyhippurate, 4-methylcathecol sulphate) which 

the authors propose is mediated through increased gastrointestinal permeability (148).  

Nieman et al also investigated the influence of 2 weeks intake of pistachio nuts on cyclists’ 

performance and post exercise recovery. Although, traditional biomarkers for exercise-induced 

inflammation and oxidative stress did not showed differences between pistachio and non-

pistachio consumption, the metabolic profiling analysis revealed differences in 19 blood 

metabolites related to leukotoxic effects and oxidative stress. In addition, gut derived raffinose, 
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sucrose and myoinositol were present in the circulation of endurance athletes as a result of the 

prolonged and intense exertion and the 2-weeks pistachio intake (149). 

To summarise, the application of metabolic profiling strategies have the potential to 

revolutionise sports nutrition since they provide athletes with a personalised toolset to enhance 

their performance, reduce likelihood of muscle injury and potentially extend the working life 

of elite sportsmen.  

 

Concluding Remarks 

As the applications for metabolic phenotyping in nutrition expand, the analytical technologies 

for metabonomics and lipidomics are becoming more robust and compound libraries are 

growing, together with innovative methods of modelling and mining spectroscopic data. We 

are beginning to see the routine use of these technologies in food screening and sales of 

specialised products such as the FoodScreener, an automated NMR-based system for 

authenticity testing of fruit juices and wines are increasing. Newer technologies such as the 

rapid evaporative ionization mass spectrometry (REIMS) for direct MS-based testing of food 

provenance hold great promise for identifying food fraud in a matter of minutes, for example 

detecting adulteration of beef burgers with horse meat and have potential to revolutionise the 

food screening industry. MS libraries of bacteria present in foods also opens the door to 

interesting opportunities in food security.  

Scale up of metabolic profiling technology for profiling of biofluids opens the door to MWAS 

and MWAS-GWAS studies facilitating disease-diet correlations to be extracted from large 

cohorts with the ability to simultaneously address dietary reporting accuracy, adherence to diet 

and inter-individual differences in metabolism of foods and nutrients. For the first time 

personalised nutrition, informed by accurate phenotyping technology, is a tangible prospect 
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both in terms of achieving required sample throughput and economic viability. Realisation of 

this goal has the potential to significantly impact disease risk and drive improved health 

initiatives, particularly if the nutrition community joins forces to drive method standardisation 

and creation of shared databases. 
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Table 1    Dietary Biomarkers 

Dietary Interventions studies for detection of biomarkers using metabolic profiling approach 

Food Group Specific 

Group 

Biomarkers Biofluid Techniques N of 

participants 

References 

Dairy Casein and 

whey protein 

Blood:Methionine sulfoxide, N-

phenylacetyl-methionine, 

Urine: N-phenylacetyl-
Methionine sulfoxide, N-

phenylacetyl-methionine, β-

asp-Leu 

Blood LC-QTOF-MS. 11 Stanstrup et al, 

2014. 

 
 

 Cheese Tyramine sulfate, 
Isobutyrylglycine, Acylglycine, 

Xanthurenic acid, 

Isovalerylglycine, 4-
hydroxyphenylacetic acid, 

Urine 
 

UPLC-
MS/QTOF 

33 Bousgaard et al. 
2014 

 Cheese ↑  Prolinebetaíne, urea Urine  NMR 15 Zheng et al. 

2015 

 Semi 
Skimmed 

Milk 

↑  Citrate, creatinine, creatine, 
urea) in urine 

Urine 
 

UPLC-
MS/QTOF 

33 Zheng et al. 
2015 

Meat 

Products 

Meat 
Products 

Creatine, carnitine, acetyl- 
carnitine, and trimethylamine-

N-oxide (TMAO) 

Urine NMR 12 Stella et al. 
2006. 

 Salmon Anserine, 1-3-Methylhistidine, 

TMAO 

Urine FIE-MS and 

GC-tof-MS 

24 Lloyd et al. 

2011. 

 Red meat 1-methylhistidine and 3-

methylhistidine 

Urine Ion exchange 

chromatography 
17 Cross et al. 

2011 

 Fish TMAO Urine UPLC-TOF-MS 17 Andersen et al. 

2013 

 Meat protein 

(Beef, pork, 

chicken) 

Meat protein (Beef, pork, 

chicken) 

Urine LC – MS/MS 52 van der Kuil et 

al.2013. 

 Oily fish Methylhistidine Urine FIE- FTICR- 

MS 

68 Lloyd at al. 

2013 

 Cod Blood: TMAO, creatine, 

Proline Arsenobetaine 
1-Methyl-Histidine and 3-

Methyl- Histidine mixture 

1,2,3,4-Tetrahydro-β-carboline-
3- carboxylic acid 

Phenylalanine Taurine 

Docosahexaenoi acid 
Urine: TMAO, N6,N6,N6-

trimethyl-lysine,  

1,2,3,4-Tetrahydro-β-carboline-
3-carboxylic acid,   

Arsenobetaine, 1-Methyl-

Histidine and 3-Methyl- 
Histidine 

 mixture 

Blood and 

urine 

LC-QTOF-MS.  11 Stanstrup et al, 

2014. 
 

 

 Beef B-alanine, 4-hydroxyproline Blood GC- MS 17 Ross at al. 2015 

 Herring DHA and cetoleic acid Blood GC- MS 17 Ross at al. 2015 

Vegetables Broccoli and 

Brussel 

 sprouts 

SMCSO (S-methyl-L-cysteine 

sulfoxide) 

Urine  NMR 20 Edmands et al. 

2011 

 Isothiocyanat

e hydrolysis 

product from 
cruciferous 

vegetables 

Sulforaphane Urine LC – MS/MS 10 

 

May et al. 2013 

Fruits Orange and 

apple juice 

Proline betaine Blood HPLC 8 Atkinson et al. 

2007 
 

 Citrus fruits Proline betaine Urine FIE- ICR- MS 23 Lloyd et al. 

2011. 

 Raspberries Sulphonated caffeic acid and 
sulphonated methyl-epicatechin 

Urine FIE-MS and 
GC-TOF-MS 

24 Lloyd et al. 
2011. 

 Citrus fruits Proline betaine, hydroxyproline 

betaine, Hesperetin 3′-O-
glucuronide , naringenin 7-O-

glucuronide 

Urine MS 

 

24 Pujos-Guillot et 

al. 2013. 
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 Aronia-citrus 

juice 

Proline betaine, ferulic acid, 

and two unknown mercapturate 

derivatives 

Urine HPLC-QTOF 51 Llorach et al. 

2014 

 Grapes Tartaric acid Urine  MNR 25 García- Pérez et 

al. 2016. 

Grains and 

cereals 

Grain protein 
(Wheat 

protein, bran, 

rice and 
maize) 

Lysine, valine, threonine, a-
aminobutyric acid, proline, 

ornithine, arginine 

Blood LC – MS/MS 52 van der Kuil et 
al.2013 

 Whole grain 

bread (rye) 

Alkylresorcinol metabolites 

derivatives . 

.Hydroxyhydroxyphenyl 
acetamide sulfate, 3,5-

dihydroxyphenylpropionic acid 

sulfate, caffeic acid sulfate, 
hydroxyphenyl acetamide 

sulfate . 

Urine LC-MS 72 

 

Hanhineva et al. 

2015. 

Coffee and 

Cocoa 

Cocoa 
beverage with 

and without 

milk addition 

(Epi)catechin-O-sulfate (urine), 
(–)-Epicatechin-O-glucuronide 

(urine),     (Epi)catechin-O-

sulfate  (urine and plasma), O-

Methyl-(epi)catechin-O-sulfate 

(urine and plasma) 

Urine and 
Blood 

HPLC- MS 9 Mullen et al. 
2009 

 Coffee dihydrocaffeic acid-3-O-sulfate 

and feruloylglycine 

Urine and 

Blood 

HPLC-MS 11 Stalmach et al. 

2009 

 Coffee 2-furoylglycine (2-FG) Urine and 

Blood 

H NMR 8 Heinzmann et 

al. 2015 

Others Isoflavone in 
soya 

Genistein, Daidzein, Glycitein Urine LC – MS/MS 10 
 

May et al. 2013 

 Wine Tartaric Acid Urine LC–ESI-

MS/MS  

21 Regueiro et 

al.2014 

 

 Sucrose Fructose, Sucrose, Erythronic 

acid 

Urine and 

Blood 

MS (FIE-MS) 

and GC-TOF-

MS 

90 Beckman et al., 

2015 

LC: Liquid Chromatografy, QTOF: Quadrupole time of flight, MS: Mass spectrometry, UPLC: Ultra high performance liquid chromatography, 

NMR: Nuclear magnetic resonance, FIE: Flow infusion electrospray ionisation, FTICR: Fourier transform ion cyclotron resonance, HPLC: 

High performance liquid chromatography, ESI: Electrospray ionisation 
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