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Abstract. Rats were submitted to unsignalled and uncon- 

trolled electrical shocks. When re-exposed to the same situa- 

tion but not shocked, 24 h later, their locomotor activity 

was significantly reduced compared to that of controls. This 

conditioned suppression was associated with a significant 

decrease in p-octopamine (OA) in brain stem and hypotha- 

lamus. Shocks delivered just before brain fixation produced 

an even larger decrease in cerebral OA. Heart levels of OA 

were not affected. Cerebral and peripheral levels of dopa- 

mine and noradrenaline were not significantly or reliably 

affected. These results, as those of previous experiments, 

suggest that octopamine is involved in emotional, neurove- 

getative responses to stress. 
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- Conditioned suppression 

Octopamine (OA) was discovered in the posterior salivary 

gland of Octopus Vulgaris, about 30 years ago (Erspamer 

1952). This amine exists in large amounts in the nervous 

system of invertebrates, in which it seems to be a neu- 

rotransmitter or neuromodulator (Batelle 1980; Dymond 

and Evans 1979; Evans and O'Shea 1977; Livingstone et al. 

1981; Orchard and Loughton 1981; Robertson 1981). In 

vertebrates, the functions of OA have rarely been studied 

and are practically unknown, probably because of its very 

low concentration in the central nervous system (Buck et al. 

1977; Danielson et al. 1977; Molinoff and Axelrod 1972; 

Talamo 1980). However, some functional correlations sug- 

gest that OA has a role in emotional and neurovegative 

responses: its production is deficient in patients suffering 

from depression (Sandler et al. 1979); its brain levels are 

higher in a hypertensive strain of rats (SHR Kyoto) than 

in a normotensive strain (David 1979); and brain levels 

of OA are lower in the Roman Low Avoidance (RLA) 

strain of rats than in the Roman High Avoidance strain 

(David and Delacour 1980). Moreover, administration of 

OA significantly increases active avoidance of unselected 
Wistar rats (David et al. 1982) and RLA (Delacour et al. 

1983). Finally, OA administration decreases the suppressive 

effects of an inescapable stress on rat locomotor activity 

(Delacour and Guenaire 1983). 

The experiments reported here tried to confirm and give 

further information on the above evidence by showing a 
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direct connection between OA cerebral levels and emotional 

responses. A conditioned suppression technique was used 

for measuring an acquired emotional response. Immediately 

after the test of this response, the rat brain was fixed and 

amine levels measured. These measurements were then com- 

pared to those obtained in control rats and particularly 

in rats which did not acquire the emotional response. 

General methods 

Animals 

Fifty male Wistar rats weighing 200 g were used. During 

the entire experiment, they had free access to food and 

water. They were housed in individual cages and maintained 

on a 12:12 h light-dark cycle (0700-1900 hours). Ambient 

temperature was 23 ° C (__ 1). 

Apparatus 

The shuttle-box was a 60 x 30 × 50 (height) cm plexiglas 

cage divided into two compartements (30 × 30 cm) by a 

5-cm barrier. The floor and the barrier were made of brass 

bars, 4 mm in diameter, and 15 mm apart. The crossing 

of the barrier was detected by an infrared system. Each 

compartment was equipped with a 15 W bulb fastened to 

the end wall, 35 cm above the floor. The apparatus was 

placed in a sound-insulated cabinet measuring approxi- 
mately 1 m 3 in which sound insulation was aided by a mask- 

ing white noise of 70 dBs above the human threshold. A 

15 W bulb fastened to the ceiling of the cabinet provided 

constant illumination of 10 lux at the level of the floor of 

the shuttle-box. Programming and recording apparatus was 

located outside the cabinet and the animal was observed 

by means of closed-circuit television. Four identical shuttle- 

boxes located in four different cabinets permitted the simul- 
taneous testing of four animals. 

Neurochemical measurements 

Immediately after the last session, the rats were quickly 

decapited, their brains frozen to - 70 ° C and assayed within 

1 week for OA as well as for dopamine (DA) and noradren- 

aline (NA). Octopamine was determined by using a modifi- 

cation of the methods previously described. Tissues were 

homogeneized in 5 vol of ice-cold 0.5 M Tris-HC1 buffer 

[pH 8.6] containing 1 mM pargyline. Homogenates were 
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heated at 95°C for 3 min. After 5 min centrifugation at 

1000 g, 150 gl aliquots of supernatant were incubated with 

60 gl 0.05 M Tris-HC1 (pH 8.6) containing 40 t~l phenyl- 

ethanolamine-N-methyltransferase (PNMT) solution and 

0.04 nM (3H)-S-adenosylmethionine [(3H)-SAM; 13,5 Ci/ 

nM, Saclay]. The reaction was stopped after 45 rain by the 

addition of 200 gl 0.5 M borate buffer (pH 11), saturated 

with sodium chloride and containing 1 gtg each ofp-syneph- 

fine and N-methyl-phenylephrine. After extraction with 

ethyl-acetate and complete evaporation under nitrogen, the 

residues were dissolved in 1 ml saturated sodium carbonate 

and 0.5 ml acetone containing dansylchloride (8 mg/ml). 

They were allowed to react in the dark. The dansylated 

amines were separated with three successive and different 

TLC systems (Solvent I: chloroform-N-butylacetate 5:1 v/ 

v; solvent II:  toluene-triethylamine-methanol 50: 5:1 v/v; 

solvent III:  cyclohexane-ethyl-acetate 25:35, v/v). After the 

third separation, the spots revealed under UV light were 

scraped and their radioactivity was counted. Dopamine and 

noradrenaline were determined according to a previously 

described method (Robertson et al. 1977). 

Statistical analysis 

The number of barrier crossing in the shuttle-box on day 

5 and the levels of OA, NA and DA of the different groups 

of rats were compared by means of a one-way variance 

analysis. When the overall F was significant (P < 0.05), two- 

by-two comparisons were made according to Winer (1971). 

Experiment I 

Methods 

Behavioral testing was conducted for 5 consecutive days. 

The main behavioral measure was the number of barrier 

crossings in the shuttle-box taking place during a 24-min 

period on day 5. Shocks were pulsed, were 10 s long and 

had an intensity of 1 mA. 

Rats from a homogeneous batch were randomly as- 

cribed to five groups (n = 6 each). Group 1 was tested in 

the shuttle-boxes during 4 consecutive days according to 

the following schedule: each day the rats were subjected 

to two sessions of 24 min in the morning and two sessions 

of 24 min in the afternoon. This group never received a 

shock. On day 5, rats were put into the shuttle-boxes for 

48 min. The number of barrier crossings taking place during 

the last 24 min was measured. 

The experiment began for the other groups on day 4; 

on this day, they were put in the shuttle-boxes for 12 min. 

Groups 2 and 3 received no shock; groups 4 and 5 received 

ten inescapable and unsignalled shocks. The interval be- 
tween shocks varied from 40 to 90 s (mean 70 s). On the 

last day, day 5, group 3 received ten shocks under the same 

conditions as groups 4 and 5 on day 4. Groups 2, 4 and 
5 were put in the shuttle-boxes for 24 min and did not 

receive shocks. For group 5 only, the experimental situation 

was modified: the white noise and the ambient illumination 

were suppressed in the shuttle-box. 
The role of the different groups was as follows. Emo- 

tional response (suppression of locomotor activity) was 

principally measured by comparing group 4 (shocked on 
day 4) to group 2 (non-shocked). Group 5, shocked on 

day 4 and tested on day 5 in a modified experimental situa- 

tion, served to test the specificity of the association between 

the experimental situation of day 4 and the shocks received 

in that situation. Group 3 permitted the evaluation of the 

immediate effects of electric shocks on amine levels. Group 

1 was never shocked and was given a much longer habitua- 

tion to the situation than the other groups. Rats were sub- 

mitted to four 24-min sessions, on days 1-4 and on day 

5, locomotor activity was measured during a 24-rain period 

as for groups 2, 4 and 5, but this period was preceded 

by a 24-min habituation period. Due to this procedure, 

the animals in group 1, although never shocked, were as- 

sumed to have a low level of locomotor activity prior to 

brain fixation. Therefore, this group allowed the effects of 

electric chocks on amine levels to be dissociated from those 

of locomotor activity. 

Results 

Behavioral data. Table 1 gives the mean number of barrier 

crossings taking place during 24 rain for the different 

groups on day 5, except for group 3 which was subjected 

to a different condition. Since the overall analysis of vari- 

ance was significant (F30=14.51, P<0.001), the groups 

were compared two by two. These comparisons show that: 

1) The experimental procedure produced a significant 

suppressive effect on locomotor activity; group 4 (shocked 

on day 4) was significantly less active than group 2 (non- 

shocked). 

2) Group 5 also displayed a suppressive effect on day 

5, although tested in a situation different from day 4. The 

modification of the experimental situation was not suffi- 

cient to prevent generalization of the emotional response. 

3) The locomotor activity of group 1 animals during 

the 24 rnin preceding brain fixation was significantly lower 

than that of group 2 and not significantly different from 

that of group 4; therefore, the neurochemical data of group 

1 may serve to dissociate the effects of locomotor activity 

per se on the levels of the amines and the effects of emo- 

tional response. 

Neurochemical data. The more significant results were ob- 

tained with cerebral p-OA (Table 2). Analysis of overall 

variance was significant in the brain stem (F45= 191.86, 

P < 0.001) and hypothalamus (F245 = 103.65, P < 0.001). The 

two-by-two comparisons indicate that the shocks received 

by group 4 on day 4 induced a significant decrease in p-OA 

as compared to the measurements taken from group 2. Data 

from group 1 show that this effect is not the result of a 

change in locomotor activity, since group 1 showed a de- 

Table 1. Conditioned suppression of locomotor activity (expt. I). 
Mean numbers of barrier crossings_+ SEM taking place during 
24 min. Before this test, group l was never shocked and was sub- 
mitted to long habituation to the situation. Group 2 also was never 
shocked but was briefly habituated. Groups 4 and 5 received ten 
shocks the day before. Analysis of variance F= 14.51, df 3, 20, 
P < 0.001 

Groups (n = 6) 1 2 4 5 

9.t6 a 65.0 19.33 a 15.66 a 
___5.9 +8.37 _+5.67 -t-6.45 

a Significant difference from group 2 at 1% level 



Table 2. Mean levels ofp-octopamine in ng/g (experiment I). Before 

brain fixation, group 1 was never shocked and was submitted to 
long habituation to the situation; group 2 also was never shocked 

but was briefly habituated. Group 3 received ten shocks just before 

brain fixation. Groups 4 and 5 received ten shocks the day before. 
Analysis of variance F =  191.86, df4, 25, P<0.001 for brain stem, 

and F=  103.65, df4, 25, P<0.001 for hypothalamus 

Groups 

1 2 3 4 5 

Hypothalamus 5.95 5.65 0.90 a 2.81 a 2.33 a 
-+0.33 - + 0 . 2 4  - + 0 . 0 6  -+0.21 -+0.1 

Brain stem 1.69 1.58 0.35 b 0.89 b 0.83 b 

-+0.05 _+0.08 - + 0 . 0 3  -+0 .05  +0.03 

Heart 32.21 33.38 28.33 31.25 33.83 
-+ 1.78 ± 1.92 _+ 1.62 + 1.74 -+ 1.22 

a Significant differences from group 2 at 1% level 
b Significant difference from group 2 at 1% level 

Table 3. Mean levels of catecholamines in gg/g (experiment I). Be- 

fore brain fixation, group 1 was never shocked and was submitted 
to long habituation to the situation; group 2 also was never 
shocked but was briefly habituated. Group 3 received ten shocks 
just before brain fixation. Groups 4 and 5 received ten shocks the 
day before. Analyse of variance F=10.11, df4, 25, P<0.01 for 

NA hypothalamus 

Groups 

1 2 3 4 5 

NA Hypothalamus 1.33 ~ 1.46" 1.04 1.39 a 1.29 a 
_-t-0.03 +0.05 +0.02 _+0.05 _+0.06 

NA Brain stem 0.37 0.32 0.28 0.34 0.29 
-+0.03 _+0.03 +0.02 -+0.02 -+0.02 

NA Rest of brain 0.18 0.20 0.19 0.19 0.16 
±0.01 +0.02 ±0.01 +0.01 -+0.02 

NA Heart 0.35 0.41 0.40 0.36 0.41 
_+0.02 _+0.03 _+0.02 _+0.02 ___0.01 

DA Hypothalamus 0.27 0.26 0.28 0.24 0.29 
-+0.02 +_0.02 -+0.01 -+0.02 +0.03 

DA Brain stem 1.31 1.26 1.31 1.30 1.28 
-+0.02 -+0.04 -+0.04 -+0.06 -+0.03 

DA Rest of brain 0.52 0.51 0.44 0.36 0.46 

-+0.04 _+0.02 -+0.05 _+0.03 ___0.04 

DA Heart 1.43 1.39 1.51 1.54 1.56 
_+0.05 _+0.04 _+0.03 -+0.04 _+0.03 

" Significant difference at 1% level from group 3 

crease in locomotor activity similar to group 4 and had 

normal levels of OA. Conversely, locomotor activity levels 

of groups 1 and 2 were significantly different (see behavioral 

data) but  their OA levels were comparable. Thus the com- 

parisons of groups 1, 2 and 4 from a behavioral and neu- 

rochemical s tandpoint  show a double dissociation between 

OA levels and locomotor activity. The decrease in the level 

of OA was significant in group 5, where conditioned sup- 

pression was as pronounced as in group 4. In group 3, 

the immediate effect of ten inescapable and unsignalled 

shocks was a decrease in the level of cerebral OA that was 
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Table 4. Conditioned suppression of locomotor activity (expt. II). 

Mean numbers of barrier crossings -+ SEM taking place during 

24 min. Before this test, group 1 was never shocked and was sub- 
mitted to long habituation to the situation. Group 2 also was never 

shocked but was briefly habituated. Group 4 received ten shocks 
and group 5, only one shock, the day before. Analysis of variance 

F=23.57, df3, 12, P<0.001 

Groups (n = 4) 1 2 4 5 

10.75 a 59.0 7.5 a 20.25 a 
+1.63 +2.67 +3.3 ___8.77 

a Significant difference from group 2 at 1% level 

greater than that in groups 4 and 5. However, there was 

no significant difference between groups as to the level of 

OA in the heart. 

In  the case of catecholamines (Table 3), the only signifi- 

cant difference was obtained in the measurements of the 

hypothalamic level of N A  (F245 = 10.11, P <  0.01). The two- 

by-two comparisons showed that group 3, which was 

shocked just before brain fixation, had a significant de- 

crease in brain N A  levels as compared to non-shocked 

groups (1 and 2) and groups 4 and 5 that were shocked 

24 h before. Cerebral levels of NA were comparable in 

groups 1, 2, 4 and 5, which indicates that 24 h after their 

administration, the electric shocks had no effect on this 

amine. 

Exper iment  II  

Methods 

As in experiment I, the behavioral tasks were conducted 

during 5 consecutive days and the main behavioral mea- 

surement was the number  of crossings of the barrier taking 

place over 24 rain on day 5. Rats from a homogeneous 

batch were randomly ascribed to five groups (n = 4 each). 

Groups 1, 2, 3 and 4 were subjected to the same protocol 

as that used in experiment I. Group 5, on the contrary, 

was subjected to different treatment:  (1) on day 4, group 

5 of experiment II received only one shock whereas group 

5 of experiment I received ten shocks. (2) On day 5, group 

5 of experiment II was tested in exactly the same situation 

as on day 4, whereas group 5 of experiment I was tested 

in a different situation. Group 5 of this experiment was 

intended to test the sensitivity of cerebral OA levels to elec- 

tric shocks received 24 h before. This is why this group 

received only one shock, whereas group 4 received ten 

shocks in experiments I and II. 

As in experiment I, the behavioral dependent variable 

was the number  of barrier crossings taking place during 

24 rain on day 5. 

The neurochemical methods were the same as in experi- 

ment I. 

Resul ts  

Behavioral data. Table 4 gives the mean number  of barrier 

crossings for the different groups on day 5, except for group 

3 which was subjected to a different condition. Since the 

analysis of overall variance was significant (F~2 = 23.57, P < 

0.001), the groups were compared two by two. These corn- 
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Table 5. Mean levels of p-octopamine levels in ng/g (experiment 
II). Before brain fixation, group 1 was never shocked and was 
submitted to long habituation to the situation; group 2 also was 
never shocked but was briefly habituated. Group 3 received ten 
shocks just before brain fixation. Group 4 received ten shocks and 
group 5, only one shock, the day before. Analysis of variance F =  
33.62, df 4, 15, P<0.001 for hypothalamus and F=81.1, df 4, 
15, P<0.001 for brain stem 

Groups 

1 2 3 4 5 

Hypothalamus 5.25 5.93 0.87 a 2.17 a 6.13 
___0.49 -+0.55 _+0.05  _+0.12  _+0.45 

Brain stem 1.71 1.6 0.28 a 0.93 a 1.65 
_+0.07 _+0.11 -+0.02 -+0.04 -+0.05 

Heart 26.15 27.88 25.58 31.5 32.2 
-+4.06 _+2.18  _+1.29  _+0 .64  -+1.91 

" Significant difference from group 2 at 1% level 

Table 6. Mean levels of catecholamines in gg/g (experiment II). 
Before brain fixation, group 1 was never shocked and was submit- 
ted to long habituation ot the situation; group 2 also was never 
shocked but was briefly habituated. Group 3 received ten shocks 
just before brain fixation. Group 4 received ten shocks and 
group 5, only one shock the day before. Analysis of variance F =  

3.08, df4, 15, P<0.05 for DA hypothalamus 

Groups 

1 2 3 4 5 

NA Hypothalamus 1.31 1.34 1.44 1.4 1.38 
+ 0.05 ± 0.06 + 0.05 ± 0.07 ± 0.07 

NA Brain stern 0.46 0.45 0.53 0.43 0.47 
___0.03 +0.02 _+0.04 +0.03 _+0.05 

NA Rest of brain 0.24 0.24 0.27 0.23 0.22 
_+0.02 -+0.01 _+0.04 +0.02 _+0.01 

NA Heart 0.35 0.38 0.33 0.35 0.34 
+0.03 _0.01 +0.02 _+0.05 _+0.03 

DA Hypothalamus 0.29 a 0.31" 0.35 0.39 0.29 a 
_+0.02 +0.02 +0.03 -+0.03 _+0.01 

DA Brain stern 1.19 1.26 1.25 1.19 1.21 
±0.05 -t-0.02 ±0.04 _+0.03 +0.04 

DA Rest of brain 0.45 0.44 0.41 0.41 0.42 
_+0.03 _+0.04 +0.05 +0.02 -+0.05 

DA Heart 1.36 1.36 1.43 1.44 1.41 
-+0.06 _+0.03 _+0.07 -+0.05 -+0.05 

Significant difference from group 4 at 5% level 

parisons confirm the main  results of  experiment I : G r o u p  

4 shocked on day 4 was significantly less active than 

group 2. G r o u p  1, habi tua ted  for a long time to the experi- 

mental  si tuation, showed reduced locomotor  activity when 

compared  to group 2, but  did  not  differ significantly from 

group 4. Therefore, as in experiment I, this group may  serve 

to dissociate the effects on amine brain levels of  emot ional  

response from that  of  the locomotor  activity displayed jus t  

before bra in  fixation. These comparisons  also showed that  

one shock was sufficient to induce a suppressive effect on 

locomotor  activity, since the lat ter  was significantly lower 

in group 5 when compared  to group 2. This reduction was 

less impor tan t  than in group 4 which received ten shocks; 

however, the difference between groups 4 and 5 approached  

(P < 0.1) but  did not  reach the significance threshold (P = 

0.05). 

Neurochemical data. The main results of  experiment I were 

confirmed. Brain stem and hypothalamic  levels o f  OA were 

significantly lower in group 4 than in group 2. This effect 

was not  simply due to a decrease in locomotor  activity, 

since group 1 showed a normal  level of  OA. In rats shocked 

jus t  before brain fixation, the level of  O A  was more reduced 

than in group 4 (Table 5). The most  impor tan t  result was 

that  group 5 did not  show a significant decrease in cerebral  

OA level, even though its locomotor  activity was signifi- 

cantly reduced. 

As in experiment I, catecholamine levels were in most  

cases unsensitive to the different t reatments  (Table 6). One 

difference, however, should be stressed,: in experiment I, 

hypotha lamic  N A  levels showed a significant decrease in 

group 3, whereas D A  levels were not  affected in any group. 

In experiment II,  hypotha lamic  N A  levels were not  affected, 

but  the hypotha lamic  D A  level was significantly increased 

in group 4. 

Discuss ion 

The above experiments principally show that  the cerebral  

levels of  O A  are highly sensitive to stress. The level of  this 

amine was decreased in the hypotha lamus  as well as in 

the bra in  stem of  rats shocked either jus t  before bra in  fixa- 

t ion or 24 h before. This effect did not  depend on locomotor  

activity, as shown by the comparisons  of  groups 1, 2 and 

4, and  is p robab ly  not  the consequence o f  peripheral  modifi-  

cations, since the measurements  of  O A  levels in the heart  

were comparable  in all groups. 

On the other hand,  catecholamine levels were less sensi- 

tive to stress. In experiment I, D A  levels were not  affected 

and N A  levels were significantly reduced only in the hy- 

po tha lamus  of  recently shocked rats. These results agree 

with other  published da ta :  stresses more  intense than those 

used in our experiments did not  affect D A  levels (Herman 

et al. 1982; Weiss et al. 1981). The N A  levels are more sensi- 

tive but  only when the shocks are adminis tered immediate ly  

or shortly before bra in  fixation. In only one study (Weiss 

et al. 1980) was it repor ted  that  N A  levels were reduced 

24 h after stress, but  this stress was much more  severe than 

that  used in our experiments.  In experiment II,  shocks deliv- 

ered 24 h pr ior  to bra in  fixation significantly increased the 

level of  hypotha lamic  DA.  This unexpected finding cannot  

yet be explained. A control  neurochemical  experiment con- 

firmed the results of  experiment I:  24 h after adminis t ra t ion 

of  ten shocks, no modif icat ion of  N A  and D A  levels could 

be observed in the central nervous system or  in per ipheral  

tissues. In contrast ,  ten shocks administered jus t  before 

bra in  fixation elicited a significant decrease in hypotha lamic  

N A  level. 

The relative unsensitivity of  catecholamine levels does 

not  mean that  the role of  these amines in responses to stress 

is negligible. Perhaps their level is not  the adequate  variable.  

Other measurements,  such a those o f  the metaboli tes  of  

N A  and D A  (Cassens et al. 1981 ; Herman  et al. 1982; Tan- 

aka  et al. 1982) or  the rate of  turnover  (Lane et al. 1982), 

may  be more sensitive. 
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The meaning of the correlations between behavioral and 

neurochemical effects of stress is generally problematic. Are 

changes in the level or turnover of a neurotransmitter  a 

simple persistence of the effect of the stress, or rather a 

"condi t ioned"  response elicited by re-exposure to the stress 

situation? An increase in DOPAC in the frontal cortex has 

been observed in rats re-exposed to a stress situation 24 h 

after the stress (Herman et al. 1982). This increase was not  

present after the same delay in stressed rats which had not  

been reexposed to the situation where the stress was deliv- 

ered but  stayed in their home cages. This suggests that the 

DOPAC increase could be "cond i t ioned" ;  however, the 

reexposed and the non-reexposed groups were subjected, 

just before brain fixation, to quite different conditions with 

respect to locomotor activity, sensory stimulations, arousal 

state, etc. Consequently, the difference in DOPAC level 

is difficult to interpret. 

In experiment I, we attempted to check the conditioned 

character of the decrease in OA by exposing one group 

of rats before brain fixation (group 5) to a situation differ- 

ent but  comparable to the stress situation. Unfortunately,  

rats in this group showed a gneralization of their emotional 

response: their locomotor activity and their cerebral OA 

levels were decreased in the same proport ion as in group 4. 

Consequently, either the "persistence" or the "condi t ion-  

ing"  hypothesis may account for the OA decrease in 

group 4. The behavior of group 5 in experiment II showed 

that conditioned suppression of locomotor activity could 

be observed without a concomitant  change in OA levels. 

This result favors the persistence hypothesis - it is likely 

that the effect of one shock (the stress applied to group 5) 

persists less than that of ten shocks (the stress applied to 

group 4). 

Whatever that may be, our results suggest that OA plays 

an important  role in responses to stress. The exact nature 

of this role remains to be elucidated, particularly in relation 

to that of NA. OA may be a neuromodulator  of the nor- 

adrenergic system and as such, play a role in depression 

and/or in antidepressant treatments (Edwards 1982; Har- 

mar 1980). Another  possibility is that the changes in OA 

levels merely are a reflection of changes in the turnover 

of NA. The turnover of OA is much higher than that of 

catecholamines (Talamo 1980) and a small change in NA 

output  could lead to much larger increases in OA output. 

This hypothesis will be tested in further experiments. 
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