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Abstract

Recent experimental progress in laser technology has led to renewed interest in warm

dense matter. Found in the interiors of gas giants and in inertial confinement fusion

experiments, warm dense matter is relevant to problems of fundamental and technolog-

ical importance but is a challenge to create experimentally and describe theoretically.

Modern electronic structure theory, in the form of density functional theory coupled

with molecular dynamics, in principle offers a route to describing realistic warm dense

matter. However, until quite recently, no accurate exchange correlation free energy

functionals existed and the accuracy of existing fits was largely unknown. In this thesis

we extend the independent, systematically exact, density matrix quantum Monte Carlo

method, to address these issues. Focussing on the warm dense uniform electron gas, we

first outline how sampling issues present in the original formulation can be overcome and

how numerical basis set corrections can significantly reduce the computational burden

at high electronic temperatures. We next introduce a systematic approximation allow-

ing larger system sizes to be tackled. In the process we resolve a controversy present

between two competing path integral Monte Carlo methods, whose results for the ex-

change correlation energy of the uniform electron gas differ substantially in the warm

dense regime. Finally, we develop a general procedure for deriving analytic finite size

corrections in the warm dense regime, thus removing the final barrier to reaching the

thermodynamic limit.
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Introduction

We can begin by looking at the fundamental paradox of the many-body

problem; namely that people who do not know how to solve the three-body

problem are trying to solve the n-body problem.

– Harry J. Lipkin [1]

Many-body problems represent some of the most difficult and technologically relevant

problems which need to be solved. In such problems we hope to understand and predict

the properties of a system based solely off of a knowledge of its constituent components

and how they interact with one another. A prime example is the problem of solving the

many-electron Schrödinger equation for a collection of atoms and electrons, which gov-

erns the properties of most chemical, biological and physical systems on a microscopic

level [2]. Unsurprisingly, like most many-body problems, the equations are generally

impossible to solve analytically and we need to resort to approximate computer simu-

lations to make any progress. It is the goal of ab-initio electronic structure methods to

solve these equations.

Extensive algorithmic development, coupled with the rapid growth in computational

power which occurred in the latter half of the twentieth century, now allows us to the-

oretically predict the properties of simple materials on a personal computer relatively

accurately. However, the true power of electronic structure theory is in its potential

ability to design new materials which do not yet exist and reach regimes where experi-

ment is either currently impossible or extremely difficult. The latter of these points is

perhaps seen best in the application of electronic structure methods to the problem of

materials under extreme conditions, such as those found in the interiors of planets or

in astrophysical contexts. Here, fundamental geophysical questions still exist regarding,

e.g., the origin of the Earth’s magnetic dynamo [3], while in planetary physics, reliable

equations of state are required in order to constrain the ever increasing amount of ex-

oplanet data [4]. Since we cannot journey to the centre of the Earth and our nearest

neighbouring planets are many years away, reliable theoretical predictions are therefore

much sought after.

One of the most challenging extreme settings which has emerged of late is that of warm

dense matter (WDM) [5]. WDM is defined as matter existing at densities ranging from a

tenth to a thousand times that of normal solids and at temperatues of 104−106 K. WDM

is thought to be found in nature in the interiors of gas giants such as Jupiter [6], and can

be created in laboratory settings in inertial confinement fusion experiments [7] and in

13



laser irradiated solids [8]. Apart from its relevance to fundamental [9] and technological

problems [10], WDM also represent a significant challenge for theory. In these regimes,

matter is somewhere in between a degenerate, strongly coupled plasma, and a normal

solid and exhibits characteristics of both. As such, non-perturbative theoretical methods

capable of capturing strong coupling, quantum mechanical, many-body, thermal and

material effects are required to describe phases ranging from a crystalline solid to a

partially or fully ionised plasma.

Density functional theory (DFT) is the weapon of choice for ground state electronic

structure theory and has emerged as a useful tool, coupled with molecular dynamics,

in the description of WDM. At its heart lies an approximate form for the exchange

correlation free energy functional the quality of which is generally unknown and varies

from system to system. As DFT becomes more and more widely used in this field it

is important to have alternative methods which can benchmark the approximate DFT

results.

In this thesis we will outline how one such alternative method, called density Matrix

Quantum Monte Carlo (DMQMC), can be adapted to simulate WDM. Taking up the

challenge from the epigraph, we start from the 4-body problem before attempting to

solve the N -body one.

Chapter 1 sets out the basics of statistical mechanics of many-electron systems. We

then outline how conventional electronic structure methods need to be adapted to in-

clude the effects of temperature, highlighting some of the limitations and complications

which arise in the process.

In Chapter 2 we introduce various quantum Monte Carlo methods which offer a

stochastic approach to the solution of the many-electron Schrödinger equation. Begin-

ning with the more familiar path integral quantum Monte Carlo methods we then go

on to describe the origins and details of the DMQMC algorithm which grants access to

the full thermal density matrix.

In Chapter 3 we detail how DMQMC can be adapted to simulate WDM, focussing

on the warm dense uniform electron gas. We show why it is necessary to go beyond the

original formulation of the algorithm when simulation the warm dense electron gas and

how this new algorithm grants access to the evaluation of the Helmholtz free energy. We

also develop new finite basis set correction techniques which allow us to overcome the

prohibitively large plane wave bases required to converge the total energy at elevated

temperatures. Finally, we compare to some accurate benchmark results for a small

system of 4 spin-polarised electrons.

In Chapter 4 we discuss how a reliable, systematic approximation can be applied

to DMQMC so that larger system sizes can be simulated. Using this approximation

we resolve the significant disagreement present between exchange-correlation energies

calculated using two different path integral Monte Carlo methods [11, 12]. In the pro-
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cess we check, in some detail, the reliability of various approximations present in the

algorithm in different regimes. We provide new data in the intermediate density regime

for a spin polarised electron gas of N = 33 electrons which will be of use in future

parametrisations of exchange-correlation free energy functionals necessary for thermal

DFT.

Finally, in Chapter 5, we discuss how we can reach the thermodynamic limit using

DMQMC data. In analysing the origin of existing analytic finite-size corrections we

suggest an improved and general scheme of developing corrections which are valid in

the warm dense regime. By performing extensive DMQMC simulations, we demonstrate

the power of these corrections, before comparing to existing approximate functional fits

for the thermodynamic properties of the uniform electron gas.
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Chapter 1

Quantum Statistical Mechanics

This thesis is concerned with the description of matter far above the ground state. In

this regime we no longer seek a single wavefunction but rather a statistical mixture of

them, bringing us to the realm of quantum statistical mechanics [13–16]. In this chapter

we will not aim to cover the field in its entirety but rather give the basics required to

orient the reader and to provide a reference point for later discussion when certain

methods will be applied to specific problems.

1.1 The Many-Electron Hamiltonian

Although most of the methods outlined in this thesis are fairly generic and can in prin-

ciple be applied to a variety of model Hamiltonians, here we are interested in describing

realistic warm dense matter made up of electrons and nuclei. The non-relativistic,

many-particle Hamiltonian describing a system of electrons and nuclei interacting via

the Coulomb interaction is given (in Hartree atomic units) as

Ĥ = − 1

2

∑

i

∇̂2
i +

1

2

∑

i,j 6=i

1

|r̂i − r̂j |
−
∑

i,α

Zα

|r̂i − R̂α|

− 1

2mα

∑

α

∇̂2
α +

1

2

∑

α,β 6=α

ZαZβ

|R̂α − R̂β|

(1.1)

Ĥ = T̂ + V̂ee + V̂en + T̂n + V̂nn, (1.2)

where Zα and mα are the charge and mass of nucleus α and ri and Rα are the positions

of electron i and nucleus α respectively. Since the masses of the nuclei are roughly a

few thousand times greater than that of the electrons, we can further make the Born-

Oppenheimer approximation which allows us to effectively decouple the motion of the

electrons from the nuclei [17, 18]. We can then solve Eq. (1.2) using quantum mechanics

for a fixed set of nuclear coordinates, before moving the nuclei around, typically classi-

cally, in an external electronic potential energy landscape [19]. Thus, for the remainder

of this thesis, we want to find methods capable of simulating a system of electrons at
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fixed nuclear positions, {Rα}, governed by

Ĥ = T̂ + V̂ee + V̂en({Rα}) + constant, (1.3)

at non-zero temperature.

1.2 The Density Matrix

In the standard interpretation of quantum mechanics, an isolated system can be com-

pletely described by a state vector |ψ〉 which lives in an abstract vector space H called

the Hilbert space. Measurable observables are related to the eigenvalues, oj , of Hermi-

tian operators Ô, i.e., Ô|oj〉 = oj |oj〉, where |oj〉 are the eigenstates of Ô. If the system

is in such a pure state, then we can thus write the expectation value of any operator

as

O = 〈ψ|Ô|ψ〉 (1.4)

=
∑

j

oj |〈ψ|oj〉|2, (1.5)

which represents the average value of many measurements of O on the state |ψ〉. Since

the effects of temperature are unimportant in most experimental settings, it usually

suffices to find the lowest energy eigenstate of the Hamiltonian Ĥ to describe the static

properties of matter. Thus the problem is to find the wavefunction which minimises the

energy functional

E[ψ] = 〈ψ|Ĥ|ψ〉 − λ(〈ψ|ψ〉 − 1), (1.6)

where λ is a Lagrange multiplier imposing the constraint that the wavefunction is nor-

malised.

At T > 0 we can no longer describe the system by a single wavefunction (a pure

state) but rather need a statistical mixture of them. Such an ensemble of states can be

described using the density operator1

ρ̂ =
∑

i

pi|φi〉〈φi|, (1.7)

where the sum is over any complete, orthonormal set of states |φi〉, and pi is the prob-

ability the system is in state |φi〉 (
∑

i pi = 1). From Eq. (1.7) we have that ρ̂† = ρ̂,

Tr [ρ̂] = 1 and ρ̂ is positive semidefinite (its eigenvalues are greater than or equal to

zero). With this definition we can now calculate expectation values as

O = 〈Ô〉 =
∑

i

pi〈φi|Ô|φi〉 (1.8)

1 The name density matrix and density operator will often be used interchangeably throughout this
text.
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= Tr
[
ρ̂Ô
]
. (1.9)

To go any further we need to specify the probabilities of a particular state being

occupied in Eq. (1.7) which depends on the problem at hand. The canonical ensemble,

which describes a system of fixed density in thermal equilibrium at temperature T , is

well suited to describing warm dense matter. To determine the values of pi we can try

to find that ρ̂ of the form Eq. (1.7) which maximises the von-Neumann entropy

S ≡ −kB
∑

i

pi log pi (1.10)

= −kBTr [ρ̂ log ρ̂] , (1.11)

where kB is Boltzmann’s constant, subject to the constraints that the internal energy

U = Tr
[
ρ̂Ĥ
]
, (1.12)

is constant and ρ̂ has unit trace. Carrying this out, one finds the usual canonical density

operator

ρ̂ =
1

Z
e−βĤ , (1.13)

where β = 1/kBT is the inverse temperature and

Z = Tr
[
e−βĤ

]
, (1.14)

is called the partition function. If we work in the basis of eigenstates of Ĥ, {|ψi〉}, then

we can identify the usual Boltzmann factors pi = e−βEi/Z, where Ĥ|ψi〉 = Ei|ψi〉.
An important property of ρ̂ is that it minimises the Helmholtz free energy

F = U − TS, (1.15)

F [ρ̂] = Tr
[
ρ̂Ĥ
]

+
1

β
Tr [ρ̂ log ρ̂] . (1.16)

Thus, unlike at T = 0 where the internal energy is variational with respect to an

approximate wavefunction, here it is now the free energy which is variational with

respect to some trial density matrix ρ̂′, i.e.,

F [ρ̂] ≤ F [ρ̂′]. (1.17)

The goal is now to find ways of determining good approximate density matrices.

The most direct route to evaluating the matrix exponential appearing in Eq. (1.13)

requires us to first diagonalise Ĥ by finding all its eigenstates and eigenvalues before we
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can write ρ̂ as

ρ̂ =
∑

i

e−βEi

Z
|ψi〉〈ψi|. (1.18)

One generic way to diagonalise Ĥ is to expand |ψ〉 in a many-particle basis as

|ψ〉 =
∑

i

ci|Di〉, (1.19)

where i is the index associated with some many-particle configuration, ci are expansion

coefficients and |Di〉 are many-particle states (strictly N -particle states if we work in the

canonical ensemble). This allows us to write the eigenvalue problem in matrix form

∑

k

Hikck = Eci, (1.20)

which can then be diagonalised on a computer. To do this numerically we need to

define the many particle states appearing in Eq. (1.19), bringing us to the topic of

second quantisation.

1.3 Second Quantisation

Electrons are (to the best of our knowledge) elementary, charged and, most importantly

for the present discussion, spin-1/2 particles. It follows from the spin-statistics theorem

in relativistic quantum mechanics2 that they therefore obey Fermi-Dirac statistics and

that the many-electron wavefunction is antisymmetric under the exchange of any two

electrons. Electrons therefore obey the Pauli exclusion principle; i.e., any quantum state

can only be occupied with at most one electron. For fermionic systems, Slater determi-

nants form a basis of many-particle states which obey these two necessary conditions

Ψ(R) = 〈R|D〉 =
1√
N !

∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) · · ·
ϕ2(r1) ϕ2(r2) · · ·

...

∣∣∣∣∣∣∣∣
, (1.21)

where R = {ri} = {r1, r2, · · · } is a set of electronic coordinates and ϕi(r) are some one-

electron wavefunctions. The determinant structure ensures that Ψ(. . . , ri, rj , . . . ) =

−Ψ(. . . , rj , ri, . . . ) and Ψ(. . . , ri, rj = ri, . . . ) = 0.

Slater determinants are somewhat unwieldy beasts, so throughout this thesis we typ-

ically use the language of second quantisation, where we instead work with the occupa-

tion number representation and introduce the fermionic creation (ĉ†i ) and annihilation

(ĉi) operators which create or annihilate an electron in state i. Here i may label multi-

2 That this follows over to the non-relativistic theory used here is largely justified as being consistent
with observation.
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ple quantum numbers, for instance the state’s momentum k and spin σ. The fermionic

nature of an electron is encoded in the anticommutation relations

{ĉ†i , ĉj} = δij (1.22)

{ĉi , ĉj} = {ĉ†i , ĉ
†
j} = 0, (1.23)

where {Â, B̂} = ÂB̂ + B̂Â is the usual anti-commutator and δij is the Kronecker delta

symbol. We can then write

|Di〉 = |n0n1 · · · 〉 (1.24)

=
∏

i

(ĉ†i )
ni |0〉, (1.25)

where ni ∈ {0, 1} for fermions and |0〉 is the vacuum state with no particles. The action

of the creation and annihilation operators on a particular state can be expressed as

ĉ†i |n1, · · · , 0i, · · · 〉 = (−1)
∑
j<i nj |n1, · · · , 1i, · · · 〉 (1.26)

ĉi |n1, · · · , 1i, · · · 〉 = (−1)
∑
j<i nj |n1, · · · , 0i, · · · 〉 (1.27)

where the phase factor accounts for anticommuting the creation or annihilation oper-

ators through operators associated with occupied states before site i. Here we have

assumed that creation operators are ordered from left to right in increasing value of i,

although there are clearly other choices. The result of a creation (annihilation) operator

on an occupied (unoccupied) state is zero.

With all this machinery we can write the many-electron Hamiltonian in second quan-

tised form:

Ĥ =
∑

ij

tij ĉ
†
i ĉj +

1

2

∑

ijkl

vijklĉ
†
i ĉ
†
j ĉl ĉk, (1.28)

where

tij =

∫
dr ϕ∗i (r)

(
−1

2
∇̂2

r −
∑

α

Zα
|r−Rα|

)
ϕj(r), (1.29)

vijkl =

∫ ∫
dr dr′ ϕ∗i (r)ϕ∗j (r

′)
1

|r− r′|ϕk(r)ϕl(r
′), (1.30)

we have dropped any constant factors and the sums are over all ijkl in our single-

particle basis set. Note that Ĥ can be applied to a state with an arbitrary number of

electrons. All that remains is to work out the matrix elements appearing in Eq. (1.20).

As the Hamiltonian only contains one and two-body interactions we just need to consider

matrix elements between determinants which differ by at most two states. Keeping track

of sign changes when evaluating matrix elements of the Hamiltonian is a bit tricky so
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it helps to work out an explicit example.

Consider the matrix element 〈D|Ĥ|Dab
ij 〉, where |Dab

ij 〉 = ĉ†aĉ
†
bĉj ĉi |D〉, is a determinant

where the electrons in orbitals (ij) ∈ |D〉 have been excited to the unoccupied orbitals

(ab). Note that the ordering of creation and annihilation operators in this definition is

very important. In this case the matrix element of the one-body term is zero so that it

remains to work out

〈D|
(

1

2

∑

pqrs

vpqrsĉ
†
pĉ
†
q ĉsĉr

)
ĉ†aĉ
†
bĉj ĉi |D〉, (1.31)

where we have relabelled the indices in the sum for clarity. As we work with orthogonal

Slater determinants, the only terms in this sum which will yield a non-zero contribution

are those for which the long string of operators yields ±1. Inspecting the terms in

Eq. (1.31) the only possible candidates are:

〈D|1
2

(
vijabĉ

†
i ĉ
†
j ĉbĉa + vijbaĉ

†
i ĉ
†
j ĉaĉb+

vjiabĉ
†
j ĉ
†
i ĉbĉa + vjibaĉ

†
j ĉ
†
i ĉaĉb

)
ĉ†aĉ
†
bĉj ĉi |D〉.

(1.32)

Focussing on the first term we find that

vijabĉ
†
i ĉ
†
j ĉbĉaĉ

†
aĉ
†
bĉj ĉi |D〉 = (−1)6(−1)4vijabĉbĉaĉ

†
aĉ
†
bĉ
†
j ĉj ĉ

†
i ĉi |D〉 (1.33)

= (−1)2vijabĉaĉ
†
aĉbĉ

†
b|D〉 (1.34)

= vijab(1− ĉ†aĉa)(1− ĉ†bĉb)|D〉 (1.35)

= vijab|D〉, (1.36)

where we have use the fact that ĉ†aĉa|D〉 = n̂a|D〉 = 0 since a and b are unoccupied

in |D〉. Noting that vijab = vjiba, vijba = vjiab, ĉ
†
i ĉ
†
j ĉaĉb = −ĉ†i ĉ

†
j ĉbĉa and ĉ†j ĉ

†
i ĉaĉb =

(−1)2ĉ†i ĉ
†
j ĉbĉa, we find

〈D|Ĥ|Dab
ij 〉 = vijab − vijba. (1.37)

A similar analysis shows that

〈D|Ĥ|D〉 =
∑

i

tii +
∑

i<j

(vijij − vijji) , (1.38)

and

〈D|Ĥ|Da
i 〉 = tia +

∑

j

(vijaj − vijja) , (1.39)

where |Da
i 〉 = ĉ†aĉi |D〉 and the sums are over occupied states. Eqs. (1.37) to (1.39) are

the usual Slater-Condon rules [20, 21].
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So, given some set of one-electron orbitals ϕi(r), the challenge is then to work out

the necessary integrals and diagonalise Ĥ. From an implementation point of view,

the occupation number representation has the added benefit in that the action of the

creation and annihilation operators and the representation of the states themselves can

be achieved by exploiting the bit representation of integers [22].

While this direct, exact diagonalisation (or full configuration interaction (FCI) in

quantum chemistry [23]), route is extremely valuable for benchmarking purposes as

it gives the exact result for an N -particle system in a finite basis set, it is extremely

limited by system size. To see this, consider the expansion Eq. (1.19) for a system of N

spin-polarised electrons using a single-particle basis of size M which will contain
(
M
N

)

terms. So if we want to simulate, say, 20 electrons in a basis of 100 orbitals we would

need to store about 5× 1020 numbers to represent the wavefunction or roughly 7× 107

terabytes of data (assuming double precision floating numbers), a good deal outside

of current hard drive capacities. This exponentially scaling (in both M and N) brute

force approach is manifestly hopeless if we wish to reach the thermodynamic limit3 and

alternative, generally approximate methods are necessary.

1.4 Free Electrons

The simplest approximation we can make is to ignore the fact that the electrons in-

teract at all and study the free electron model which, despite its simplicity, is rather

informative. We can write the Hamiltonian describing a collection of non-interacting

electrons as

Ĥ0 =
∑

i

εiĉ
†
i ĉi (1.40)

=
∑

i

εin̂i, (1.41)

where εi is some single-particle eigenvalue. Using the language of the previous section

we can write the ideal (un-normalised) N -body density matrix in the canonical ensemble

as

ρ̂0 =
∑

i

e−βEi |Di(N)〉〈Di(N)|, (1.42)

which is now purely diagonal and where Ei = 〈Di|Ĥ0|Di〉 =
∑

iocc
εi. Eq. (1.42) is

actually quite a complicated expression: its evaluation requires us to enumerate all

possible
(
M
N

)
configurations and sum up their single particle eigenvalues to evaluate the

Boltzmann factors which soon becomes nontrivial.

It is normal to instead work in the grand canonical ensemble where now T and V are

3 The thermodynamic limit is defined as the limit N → ∞, V → ∞, where V is the system volume,
such that N/V → constant = n the system density.
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fixed but N is allowed to vary. This leads to the grand canonical density matrix

ρ̂GC = e−β(Ĥ−µN̂), (1.43)

where µ is the chemical potential and N̂ =
∑

i n̂i is the number operator. We can then

write

ρ̂0
GC =

∞∑

N=0

eβµN
∑

i

e−βEi(N)|Di(N)〉〈Di(N)|, (1.44)

which actually simplifies matters considerably so that the partition function can be

written as

Z0
GC =

∑

N

∑

i

e−β(Ei(N)−µN) (1.45)

=
∑

n1

∑

n2

∑

n3

. . . e−β(ε1−µ)n1e−β(ε2−µ)n2e−β(ε3−µ)n3 . . . (1.46)

=
∏

i

1∑

ni=0

(
e−β(εi−µ)

)ni
(1.47)

=
∏

i

(
1 + e−β(εi−µ)

)
, (1.48)

which is a simple product of contributions from the one-electron states. This simplifica-

tion is so considerable that most approximate theories we will discuss work in the grand

canonical ensemble as a result. Although observables calculated in either the canonical

or grand canonical ensemble will yield identical results in the thermodynamic limit, for

finite systems they will generally differ.

With Eq. (1.48) we can readily derive all of the thermodynamic properties of the

system, usually from the grand potential

Ω = −kBT logZGC (1.49)

= F − µN. (1.50)

The mean number of particles, N = 〈N̂〉, can be found from usual thermodynamic

relations [14] and Eq. (1.50) as

N(T, V, µ) = −
(
∂Ω

∂µ

)

TV

, (1.51)

which for the simple case of Eq. (1.48) yields

N =
∑

i

1

eβ(εi−µ) + 1
, (1.52)
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where we can identify the usual Fermi factor

fi =
1

eβ(εi−µ) + 1
. (1.53)

As we are normally interested in systems at a fixed density, it is typical to eliminate µ

in favour of the density n = N/V which requires inversion of Eq. (1.51). This is rather

simply done for the non-interacting case by finding the roots of Eq. (1.52), but is more

involved for systems of interacting particles [14, 24–27].

Two important limits can be investigated using Eq. (1.53). As T → 0, fi →
θ (EF − εi), where θ is the usual Heaviside step function and EF is the Fermi energy.

In the case of a three dimensional free electron gas we have4

EF =
1

2

(
9π

2(2− ζ)

)2/3 1

r2
s

, (1.54)

where ζ = (N↑ −N↓)/N is the spin polarisation, Nσ is the number of spin σ electrons

and we have introduced the Wigner-Seitz parameter

rs =

(
3

4πna3
0

)1/3

, (1.55)

as a measure of the mean interparticle spacing r̃s = rsa0 and a0 is the Bohr radius. Thus

at zero temperature all states below EF are occupied and those above it are unoccupied,

defining the usual Fermi surface. In this regime quantum effects are important and the

system is said to be degenerate.

In the opposite limit of T →∞ we have fi ≈ e−β(εi−µ) and the system obeys classical

Boltzmann statistics where quantum effects are no longer important. It is typical to

measure the degree of degeneracy in terms of the degeneracy temperature

Θ = T/TF , (1.56)

where TF = EF /kB is the Fermi temperature. Typical values of TF for normal metals

are about 104 K [29]. The degenerate and non-degenerate limits correspond to Θ � 1

and Θ� 1 respectively.

Apart from serving as a pedagogical tool, the free gas with Fermi-Dirac statistics

accounts for a number of important phenomena. A non-exhaustive list includes: the

stability of matter [30], the linear dependence at low temperature of the specific heat

capacity of normal metals and the existence of a non-zero ‘Fermi’ pressure which is

responsible for the stability of white dwarf stars [15]. What is even more remarkable is

that even in the presence of electron-electron interactions, most normal Fermi systems

4 Note that the factor (2−ζ) is understood to be valid for the fully spin polarised ζ = 1 and unpolarised
ζ = 0 gases only, since these are the only cases we will address in this thesis. The general case can
be found in Ref. [28].
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behave qualitatively like the ideal system, with even the concept of a Fermi surface

persisting [28, 31]. This Landau Fermi liquid theory [32, 33] has formed the bedrock of

most our attempts to describe realistic matter, which are generally based upon a one-

electron picture. Indeed, any metal which behaves other than a normal Fermi liquid

usually results in exotic physics.

Despite these successes in describing the qualitative features of the problem, electrons

do interact with one another and the electron-electron energy is typically the same order

of magnitude as the other terms in Eq. (1.3). We can measure the relative importance

of the Coulomb interaction in terms of the classical Coulomb coupling parameter5

Γ =
1

rsa0kBT
, (1.57)

which is the ratio of the classical Coulomb energy and kinetic energy of the electrons.

The system is said to be strongly coupled if Γ ≥ 1. (At T = 0, Γ becomes meaningless,

and here rs takes over as a measure of electron-electron interaction strength relative

to the quantum mechanical kinetic energy.) In the warm dense regime we have Θ ≈
Γ ≈ rs ≈ 1 so that quantum mechanical and interaction effects are important and no

small coupling parameter exists. Thus, if we want to have quantitative agreement with

experiment, we need methods capable of treating both thermal and electron-electron

effects.

1.5 Hartree–Fock Theory

Hartree–Fock theory is perhaps the simplest approach to treating interacting electronic

systems, and forms the basis of most sophisticated quantum chemical methods (which

are often described as ‘post Hartree–Fock’ methods). At T = 0 the problem is to find the

single Slater determinant, from a search over all possible candidates, which minimises

the total energy. In practice, the equations which result from this problem are non-local

integral equations which are not easy to solve, except in a few cases. The lesser known

thermal Hartree–Fock approximation [14, 35, 36] poses a similar challenge: given a trial

density matrix of the form of Eq. (1.44), find the one which minimises the Helmholtz

free energy (grand potential)6.

Inserting Eq. (1.44) into Eq. (1.16) with Ĥ given by Eq. (1.3) and carrying out

the variation one finds the self-consistency conditions for the eigenvalues and orbitals

5 There is a similar coupling parameter for the nuclei. A good discussion of the various regimes can be
found in Ref. [34].

6 The thermal Hartree–Fock equations can also be derived from a Green’s function picture [14] much
like for T = 0. Mermin showed in Ref. [35] that the two pictures were equivalent.
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(assuming they are eigenfunctions of σz)

εiσϕiσ(r) =

(
−1

2
∇2 + Ven(r)

)
ϕiσ(r) +

∑

j 6=i,σ′
fjσ′

∫
dr′
|ϕjσ′(r′)|2
|r− r′| ϕiσ(r)

−
∑

j 6=i,σ′
δσσ′fjσ′

∫
dr′

ϕ∗jσ′(r
′)ϕiσ(r′)

|r− r′| ϕjσ′(r),

(1.58)

where, to add to the complexity, the Fermi factors are evaluated using the thermal

Hartree–Fock eigenvalues. Note that both εiσ and ϕiσ(r) now depend on temperature.

Given the gross failings of Hartree–Fock theory for the ground state, there is not

much hope for T > 0. Nevertheless, its variational nature as the best possible single-

particle-like density matrix, marks it as a useful starting point for comparison purposes,

although its application to realistic systems is in its relative infancy [37, 38].

1.6 Density Functional Theory

Mean field theories, such as Hartree–Fock, are bound to exhibit shortcomings in describ-

ing the many-body nature of matter. One notable exception to this is density functional

theory (DFT), which is unusual in that, in principle, one can find the exact free energy

of the system by solving a mean field problem. Between 1965 and 1967 Hohenberg,

Kohn and Sham [39, 40] demonstrated how this is possible and in between Mermin [41]

generalised the procedure for T ≥ 0. Here, in keeping with the theme of this chapter, we

will only discuss the Mermin-Kohn-Sham (MKS) formalism of which T = 0 is a special

case7,8.

Following the Lieb-Levy constrained search route to thermal DFT [47–49] we begin

by defining the functional

O[n(r)] ≡ min
ρ̂→n(r)

Tr
[
Ôρ̂
]
, (1.59)

for any reasonable operator Ô and here the minimisation is carried out by searching

over all positive definite, unit trace, density operators ρ̂ which result in the density n(r).

Note that the density can be determined from

n(r) = Tr
[
ρ̂ψ̂†(r)ψ̂(r)

]
, (1.60)

7 Note that MKS DFT is often used when applying DFT to the problem of ground state metallic
systems. Although the system of interest is at T = 0, it is often easier to converge the DFT calculations
with respect to k-points by using a small, but finite value of T and then extrapolating the results to
T = 0 [42, 43].

8 For some recent theoretical developments in thermal DFT see Refs. [44–46].

26



the fermionic field operators are defined as

ψ̂(r) ≡
∑

i

ϕi(r)ĉi , (1.61)

and the trace over spin indices in Eq. (1.60) is implied. Mermin showed that from the

Gibbs variational principle Eq. (1.17), the grand potential functional9

Ω[n(r)] = min
ρ̂→n(r)

Tr

[
ρ̂

(
T̂ + V̂ee + V̂en +

1

β
log ρ̂− µN̂

)]
, (1.62)

is minimised when n(r) is equal to true density with the true grand canonical density

matrix determined with V̂en. It follows then that we can write

Ω[n(r)] = F [n(r)] +

∫
dr (Ven(r)− µ)n(r), (1.63)

where

F [n(r)] = min
ρ̂→n(r)

Tr

[
ρ̂

(
T̂ + V̂ee +

1

β
log ρ̂

)]
, (1.64)

is a universal functional of the density which does not (explicitly) depend on Ven(r).

This means that if F [n(r)] were known we could solve for the properties of any material

exactly just by varying the density, which is a function of 3 variables (rather than 6N

in the case of the many-electron density matrix).

Despite the profound nature of these theorems, they are not constructive as the

universal functional is unknown and determining it would require a full solution of the

many-electron problem which leaves us where we were. The power of density functional

theory comes from the fact that very simple approximations to the unknown functional

work remarkably well and, from a practical point of view, the problem can be recast as

a simple eigenvalue problem due to Kohn and Sham which can readily be solved on a

computer.

The crucial step in developing the MKS scheme is to first separate out bits of the

universal functional which are significant and straightforward to calculate in the hope

that what remains is small and can be approximated. To achieve this, note that we can

write

Ω[n(r, β)] =Fs[n(r)] + UH [n(r)] + Fxc[n(r)]

+

∫
dr (Ven(r)− µ)n(r),

(1.65)

where

Fxc[n(r)] = F [n(r)]− UH [n(r)]− Fs[n(r)], (1.66)

9 It is also possible to formulate thermal DFT in the canonical ensemble [47].
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is called the exchange-correlation free energy functional,

Fs[n(r)] = min
ρ̂→n(r)

Tr

[
ρ̂

(
T̂ +

1

β
log ρ̂

)]
, (1.67)

is the Helmholtz free energy of a non-interacting reference system with density n(r) and

UH [n(r)] =
1

2

∫ ∫
dr dr′

n(r)n(r′)
|r− r′| (1.68)

is the classical Hartree energy.

Carrying out the constrained minimisation of Fs[n(r)] amounts to determining when

Tr

[
ρ̂

(
T̂ +

1

β
log ρ̂

)]
−
∫
dr (Veff(r)− µ)n(r), (1.69)

is minimised. Here Veff(r) is the Lagrange multiplier imposing the constraint that n(r) is

the exact equilibrium density of the interacting system while µ fixes the average particle

number. Eq. (1.69) is of the form of the expression for the grand potential of a set of

non-interacting electrons in the presence of an effective external potential Veff(r). We

know from the discussion of a free electron gas that a functional of the form of Eq. (1.69)

is minimal when ρ̂ is of the form of the ideal grand canonical density matrix, so that

we can immediately write

ns(r) =
∑

i

fi|ϕi(r)|2, (1.70)

T [ns(r)] =
∑

i

fi

∫
drϕ∗i (r)

(
−1

2
∇2

rϕi(r)

)
, (1.71)

and

S[ns(r)] = −kB
∑

i

[fi log fi + (1− fi) log(1− fi)] , (1.72)

where the single-particle states are determined from the solving the Schrödinger-like

equation (
−1

2
∇2
i + Veff [n(r)]

)
ϕi(r) = εiϕi(r). (1.73)

Veff is determined by requiring δΩ = 0, and carrying this out one finds

Veff [n(r)] = VH [n(r)] + Ven(r)− µ+ Vxc[n(r)], (1.74)

where we have
δFxc[n(r)]

δn(r)
= Vxc[n(r)], (1.75)

and so on.

So, after all that, we arrive at the MKS scheme for thermal DFT, wherein we can

specify a guess for n(r), from which we can construct Veff [n(r)] from Eq. (1.74) insert

this into Eq. (1.73) and solve for the Kohn-Sham eigenvalues and eigenvectors before
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finally constructing the density via Eq. (1.70). This procedure can be repeated by using

this output density as a new input and iterating until self-consistency is reached.

One of the primary limitations of DFT is that the above all relies on a good approx-

imation for Fxc[n(r)] about which we know little. One of the earliest and still widely

used approaches at T = 0 was to assume this was given by the exchange correlation

energy of a uniform electron gas (UEG). This is the local density approximation (LDA)

where, at T ≥ 0, one has

Fxc[n(r)] =

∫
drfUEG

xc (n, β)n(r), (1.76)

where fUEG
xc is the exchange-correlation free energy per-electron of a uniform electron gas

(UEG) of the same density and temperature as the system we wish to study. Until quite

recently [11, 12, 50–55] no accurate data for fUEG
xc existed over the whole temperature-

density plane, so a common approximation was to replace fxc with a ground state

exchange-correlation functional where the only temperature dependence arrived through

the density. This amounts to an uncontrolled approximation10 which introduces errors

of unknown magnitude. For applications of DFT in most normal settings it is expected

that this approximation is of little or no importance. However, in the warm dense

regime, these electronic thermal contributions can grow significant relative to the total

free energy and the approximation is of questionable validity [59, 60].

Another, more practical, issue with MKS-DFT is that as the temperature increases,

the number of single-particle basis functions required to converge the density grows

rapidly which can render it impractical at very high temperatures, although progress is

being made in removing this limitation [61]. An alternative approach is orbital free DFT

(OFDFT), which, as the name suggests, does not require an explicit diagonalisation

of the Kohn-Sham Hamiltonian so that arbitrarily high temperatures can be treated.

Unfortunately, applications of OFDFT have been somewhat limited by a lack of accurate

kinetic energy density functionals. See Refs. [62, 63] for some recent developments.

1.7 Beyond Mean Field Theory

In this chapter we have attempted to outline some of the most familiar11 methods avail-

able at T > 0 which could in principle be applied to the problem of warm dense matter.

Going beyond mean field theories like DFT is difficult to do. One option is thermal

many-body perturbation theory (MBPT) which offers in principle a systematic12 route

10Note that this uncontrolled approximation is on top of another uncontrolled approximation in that
T = 0 DFT results can often depend quite strongly on which approximate functional is used [56–58].

11From an electronic structure theorist’s perspective.
12By systematic I mean that there is some complexity knob allowing us to tune how good the answer

we get is. For perturbation theory this is usually not the case if done in a brute force manner.
Systematically improvability is an appealing feature to have in a method, although breakthroughs in
physics usually come through insight rather than brute force.
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to higher accuracy and also grants access to spectral quantities which DFT cannot pro-

vide [64]. The basic idea is to systematically build up approximations (typically) to the

one-particle Green’s function which can in turn be related to the grand potential via

coupling constant integration [14].

While MBPT has been extremely important in the development of our understanding

of many-body quantum systems [24, 31, 65] it is fraught with complications. First, the

number of terms one has to sum at each order in the perturbation series grows increas-

ingly large and more complicated even with the help of Feynman diagrams leading one

to truncate the series at a certain order. Truncating the series amounts to assuming that

the electron-electron interaction represents a small perturbation to the non-interacting

Hamiltonian which is certainly not generally the case, particularly in the warm dense

regime.

Secondly, for metallic systems, one typically finds that certain terms appearing in the

series are highly divergent (even at second order) so any truncated series is of dubious

utility. The issue of divergences can be avoided by resumming certain classes of diagrams

to all orders to obtain contributions that cancel some of the divergent terms. Again,

however, this is possible analytically only in simple cases [65].

Finally, actually numerically evaluating the Green’s function for an arbitrary system

is rather an intricate process given the analytic structure of the Green’s function. Nev-

ertheless, the one-particle Green’s function allows one to determine spectral properties

of the system which are typically of the most interest to experimentalists [64]. With

the advent of new algorithms and computational power there has been a renewed in-

terest of late in applying perturbative techniques such as the random phase and GW

approximation [66] in solid-state and quantum chemical contexts [67–72].

Naturally, there are many other techniques out there which could be used, includ-

ing classical approximations such as Debye-Hückel theory valid at high T [14], dieletric

theories [73] which are related to MBPT, the thermal analogues of quantum chemical

approaches [74–77] and various other novel approaches [78, 79]. One of the main issues

with most of the semi-analytical methods is that they are perturbative in some parame-

ter. In the warm dense regime there is no small parameter so that none of these methods

are valid in all regimes (see Fig. 1.1). DFT, on the other hand, lacks accurate input for

reliable exchange-correlation free energy functionals. In the next chapter, we will discuss

Quantum Monte Carlo (QMC) methods which offer, in principle, a non-perturbative,

explicitly N -body approach to address both of these issues.
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Figure 1.1: Phases of matter in the temperature density-plane and a selection of methods
at our disposal. In the ground state there are a hierarchy of methods, starting from
quantum chemistry (QCHEM) which provide increasing levels of accuracy. For weak
coupling, but strong degeneracy, perturbation theories (such as the RPA) offer a good
description, while in the classical regime one has Debye-Hückel at weak coupling and
classical Monte Carlo simulations [80, 81] at strong coupling. In the warm dense regime
non-perturbative approaches such as DFT and QMC are required. The dashed lines are
values of constant Γ ∼ rs/Θ.

31



Chapter 2

Quantum Monte Carlo Methods

Monte Carlo methods encompass a wide variety of stochastic algorithms used in nearly

all areas of science to solve high dimensional, deterministic problems. In physics, we

are often interested in evaluating multidimensional integrals of the type

I =

∫
· · ·
∫
dpdq . . . dsw(p, . . . , s)f(p . . . s), (2.1)

for some weighting function w and some observable f . For instance, I could be the

classical ensemble average of some function with w = e−βH(p...s)/Z given some classical

Hamiltonian H, or a quantum mechanical expectation value with a normalised w =

|Ψ(R)|2. In both cases the dimensionality of the integral often renders it impossible to

evaluate exactly using conventional algorithms. The Monte Carlo method works instead

by randomly generating configurations according to the weight function w assuming it

can be interpreted in some way probabilistically. If the configurations generated sample

the probability distribution then, by the central limit theorem, the integral can be

estimated by the mean value of Ns samples

I ≈ Ī =
1

Ns

Ns∑

s

f(Xs), (2.2)

where Xs = (ps, · · · , ss). The virtue of Monte Carlo methods is that the estimate for

the standard error in Ī

σĪ =
σI√
Ns

=

√
1

Ns(Ns − 1)

∑

s

(f(Xs)− Ī)2 (2.3)

decays like 1√
Ns

and does not (explicitly) depend on the dimensionality of the problem,

unlike traditional quadrature methods.

Quantum Monte Carlo (QMC) methods utilise Monte Carlo sampling to attempt to

solve the many-body problem exactly. Many different algorithms exist (and they are

in some way related), but they are generally categorised as being either a variational

method, where we try to optimise the energy using a trial wave function [82, 83] or

density matrix [84]; a projector method, where we try to project out the ground state
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wavefunction [83]; or a path integral method, where we try to sample contributions to

the partition function [85].

In this chapter we will first discuss path integral Monte Carlo (PIMC), which is

perhaps the most natural way of developing a QMC method capable of simulating

matter at non-zero temperature before outlining how ideas from ground-state projector

Monte Carlo can be used in developing an approach to solving for the thermodynamic

properties of a system.

2.1 Path Integral methods

Consider the un-normalised N -body canonical density matrix in coordinate space

ρ(R,R′, β) = 〈R|e−βĤ |R′〉, (2.4)

where R = (r1, r2, . . . , rN ) is a set of electronic coordinates. Noting that

ρ̂ =
(
e−

β
P
Ĥ
)P

, (2.5)

we can write the density matrix as

ρ(R,R′, β) =

∫
dR1 dR2 . . .RP−1 ρ(R,R1, τ)ρ(R1,R2, τ) . . . ρ(RP−1,R

′, τ), (2.6)

where τ = β/P and we have inserted P − 1 complete sets of states
∫
dR|R〉〈R| = 1

to split the full density matrix into P − 1 short-time contributions. The idea here

is that these short-time density matrices can be evaluated using the Suzuki-Trotter

approximation [86, 87]

e−τĤ = e−τ(Ĥ0+Ĥ′) = e−τĤ
0
e−τĤ

′
+O

(
τ2
)
, (2.7)

so that we can write

ρ(Ri,Rj , τ) =

∫
dR′ 〈Ri|e−τĤ

0 |R′〉〈R′|e−τĤ′ |Rj〉. (2.8)

With Eq. (2.6), the partition function can then be evaluated as

Z =

∫
dR ρ(R,R, β) (2.9)

=

∫
dX w(X), (2.10)
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for a configuration X = (R,R1, . . . ,RP−1) and

w(X) =
P−1∏

i=0

ρ(Ri,Ri+1, τ), (2.11)

where R0 = RP = R. The closed nature of the partition function (state |R〉 appears

at either end of the expression) leads to the interpretation that Eq. (2.9) is an integral

over all closed paths running from imaginary τ = 0 to τ = β.

With ρ in this form we can now evaluate expectation values (for an operator Ô which

is diagonal in position space) as

〈Ô〉 =

∫
dXO(X)π(X), (2.12)

for π(X) = w(X)/Z. This 3PN dimensional integral is of the form of Eq. (2.1) so

we turn to the Monte Carlo method to evaluate it. Since determining Z is generally

impossible we use the Metropolis-Hastings algorithm, which provides a general way of

sampling a distribution without knowing its normalisation [88, 89].

The Metropolis algorithm works by generating a sequence of configurations X1 →
X2 → . . . in such a way that any new configuration only depends on the previous one

and no others. Such a sequence is called a Markov chain. One can show [90] that any

Markov chain which is ergodic and obeys the detailed balance condition1 is guaranteed

to converge to the equilibrium stationary distribution π(X). Here ergodicity means that

any configuration can be reached from any other in a finite number of steps, while the

detailed balance condition states that

π(Xi)P (Xi,Xj) = π(Xj)P (Xj ,Xi), (2.13)

where P (Xi,Xj) is the transition probability from state Xi to state Xj . Thus, by

choosing our transition probabilities carefully we can arrive at the desired canonical

distribution function. Writing the transition probability as

P (Xi,Xj) = T (Xi,Xj)×A(Xi,Xj), (2.14)

where T (Xi,Xj) is the probability of selecting the move Xi → Xj and A(Xi,Xj) is the

probability of accepting it, one can show that the choice of

A(Xi,Xj) = min

(
1,
π(Xj)T (Xj ,Xi)

π(Xi)T (Xi,Xj)

)
, (2.15)

satisfies the detailed balance condition and hence allows us to reach the desired distri-

bution. Importantly, only the ratio of values of the probability density π are required;

a knowledge of the normalisation is unnecessary.

1 The detailed balance criterion is sufficient to ensure convergence but not necessary.
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A PIMC simulation proceeds by specifying some initial configuration X0 =

(R(τ0),R(τ1), · · · ,R(τM )) and successively generating new configurations which are ac-

cepted or rejected with a probability proportional to the ratio of the short-time density

matrices given in Eq. (2.8). The choice of update scheme and short-time propagator

can significantly affect the efficiency of the algorithm and we refer the reader to the

literature for specific examples [85].

2.1.1 The Sign Problem

In the discussion so far we have not assumed that the particles obey any particular

statistics. To correctly account for Fermi statistics we have to explicitly sum over all

possible permutations of the N particles in the expression for the partition function

Z =
1

N !

∑

P∈SN
(−1)P

∫
dR〈R|e−βĤ |PR〉 (2.16)

=
∑

P∈SN

∫
dXw(X,P), (2.17)

where SN is the permutation group and paths are now β-periodic up to a permutation

of the end points. The above expression is problematic as negative weights can appear

so that we can no longer interpret the integrand as a probability measure. This issue is

avoided by taking the absolute values of the weights and then re-introducing the sign

when evaluating expectation values. To see this, note we can write

〈Ô〉 =

∑
P
∫
dXw(X,P)O(X,P)∑
P
∫
dXw(X,P)

(2.18)

=

∑
P
∫
dX|w(X,P)|O(X,P) w(X,P)

|w(X,P)|∑
P
∫
dX|w(X,P)| w(X,P)

|w(X,P)|
(2.19)

=
〈OS〉+
〈S〉+

, (2.20)

where the average is over the positive distribution function |w(X,P)| and

S =
w(X,P)

|w(X,P)| , (2.21)

is the sign of a given configuration (X,P).

The notorious fermion sign problem emerges when the number of positive and negative

contributions to the sum appearing above are comparable so that the average sign is

nearly zero. At higher temperatures the particles’ statistics become less important and

we would expect that the average sign is not much different from one. However, as

β →∞, or as N →∞, permutations become more likely, and thus 〈S〉+ tends to zero.
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In fact, one can show that for fermions the average sign decays exponentially as

〈S〉+ ∝ e−βN(fF−fB), (2.22)

where fF/B is the free energy per particle of the Fermi/Bose system. Given that the

statistical error decays like N
−1/2
s , we see that directly simulating interacting fermions

is restricted to very small systems and relatively high temperatures.

2.1.2 Restricted Paths

One way to avoid the sign problem is to use the restricted path approximation to PIMC

(RPIMC) [91]. The basic idea is to split configuration space into ‘nodal cells’ inside

of which the fermion density matrix is always of the same sign before stitching these

pockets together to form the full solution. Since the nodes of the true density matrix

are unknown, one usually resorts to replacing them with the nodes of some trial density

matrix, most typically with the nodes of a collection of free electrons, although success

with other choices has recently been achieved [92]. The simulation proceeds as normal

except now moves which cross the nodes of the trial density matrix are rejected.

RPIMC with free-particle nodes has been applied to many different problems but the

restriction amounts to an uncontrolled approximation the quality of which is not well

known. Indeed, the author of Ref. [93] suggests that RPIMC cannot reproduce the

exact solution for a system of non-interacting electrons and that the quality of RPIMC

results should degrade as the density of the system increases.

2.1.3 Other approaches

Real-space RPIMC has to date been the most successful and widely used path-integral

approach for studying continuum fermion systems, but has some limitations including

the uncontrolled nodal approximation. Two very different and promising approaches,

namely permutation-blocking [94] and configuration PIMC [95, 96], have emerged re-

cently which address some of these limitations.

Permutation-blocking (PB-PIMC) is essentially conventional PIMC in coordinate

space but uses a high-order Trotter-decomposition, incorporates exchange directly us-

ing determinantal density matrices and uses more efficient Metropolis sampling. The

combination of these developments leads to a significant improvement over conventional

PIMC in treating fermions without resorting to uncontrolled approximations but, this

approach is still limited by the fermion sign problem at low temperatures.

Configuration path integral Monte Carlo (CPIMC) takes quite a different route and

instead uses the perturbative expansion for the canonical density operator (see, for
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example, Ref. [14])

ρ̂ = e−βĤ
0
∞∑

K=0

(−1)K
∫ β

0
dτ1

∫ β

τ1

dτ2· · ·
∫ β

τK−1

dτKĤ
′
I(τK) . . . Ĥ ′I(τ1), (2.23)

where

ÔI(τ) = eτĤ
0
Ôe−τĤ

0
, (2.24)

is the definition of an operator in the interaction picture. With this form, an analo-

gous path integral formulation can be built up, except now the trace in the partition

function is carried out using a basis of many-particle Slater determinants. This yields

a continuous time algorithm free from time step errors very similar to diagrammatic

Monte Carlo approaches which have been successful in treating lattice models [97–99].

Working in the space of explicitly anti-symmetric Slater determinants allows exchange

processes to be incorporated naturally, which is otherwise difficult to achieve using real

space methods. CPIMC is thus best suited at high densities (low rs) where quantum

degeneracy effects are most important. Much like conventional PIMC, CPIMC suffers

from the sign problem at low temperatures which can be seen immediately from the

factors of (−1)K appearing in Eq. (2.23). One can attempt to restrict the expansion

order K (also called the number of ‘kinks’) to alleviate the sign problem and then try

to extrapolate the residual bias [12]. However, this can only be achieved up to a point

[53].

While promising, the sign problem still restricts all approaches which seek an exact

solution at low temperatures, while RPIMC results in biases of unknown magnitude.

Recently, a very promising approach emerged in the context of quantum chemistry

called full configuration interaction QMC (FCIQMC), which allowed for the simulation

of larger systems than would otherwise have been possible without introducing uncon-

trolled approximations. In the last sections of this chapter we will discuss how ideas

from the ground state theory can be incorporated into an independent approach for

simulating systems at non-zero temperatures.

2.2 Projector Methods

One way to find the ground state of the many-electron Hamiltonian is via the imaginary

time Schrödinger equation

− d

dτ
|Ψ〉 = Ĥ|Ψ〉, (2.25)

the formal solution of which is given as

|Ψ(τ)〉 = e−Ĥτ |Ψ(0)〉. (2.26)
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Writing |Ψ(0)〉 in a basis of eigenstates of Ĥ as

|Ψ(0)〉 =
∑

i

ci|Ei〉, (2.27)

it follows that in the limit τ →∞,

|Ψ(τ →∞)〉 ≈ c0e
−E0τ |E0〉, (2.28)

since all higher excited states will decay exponentially faster. Splitting the exponential

into P short time operators as in Section 2.1 we can write Eq. (2.26) as

|Ψ(τ)〉 =
(
e−∆τĤ

)P
|Ψ(0)〉, (2.29)

where ∆τ = τ/P . Thus, by repeatedly applying the evolution operator e−∆τĤ we can

project out the ground state as in Eq. (2.28), provided 〈E0|Ψ(0)〉 6= 0.

This is the basis for projector QMC methods of which many variants exist, such as

Green’s function [82], auxiliary field [100, 101] and diffusion QMC [83]. As in the case

of PIMC, projector QMC methods also suffer from the sign problem. To overcome these

issues, various uncontrolled approximations are employed to ensure the positivity of the

weights. For example, the fixed node approximation is used in DMC [83] while the

phaseless or constrained path approximation is used in AFQMC [100–102]. While the

biases introduced using these constraints are typically thought to be small [103], the

lack of a systematic way to release the constraints and converge to the correct answer

can represent a barrier when very high accuracy results are sought. This is particularly

a problem when multiple uncontrolled approximations are made as is the case when

using pseudopotentials.

In 2009, a new projector approach, known as full configuration interaction QMC

(FCIQMC) [104], was developed which can treat correlated systems larger than pre-

viously possible without uncontrolled approximations. Since we cannot evaluate the

short time propagators appearing in Eq. (2.29), here we instead use the first order

approximation

|Ψ(τ)〉 = (1̂−∆τĤ)P |Ψ(0)〉, (2.30)

and expand the wave function in a discrete basis of Slater determinants as

|Ψ(0)〉 =
∑

i

ci(0)|Di〉. (2.31)

This allows us to rewrite Eq. (2.30) as an iterative equation for the expansion coefficients,

ci, as

ci(τ + ∆τ) = ci(τ)−∆τ
∑

j

Hijcj(τ), (2.32)
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where Hij = 〈Di|Ĥ|Dj〉. Solving Eq. (2.32) leaves us with the problem that the nor-

malisation of |E0〉 constantly changes with τ due to the final decaying exponential in

Eq. (2.28). We could remove this by shifting the our energy scale so that E0 = 0.

However, since we do not know E0 in advance we instead iterate

ci(τ + ∆τ) = ci(τ) + ∆τ
∑

j

Tijcj(τ), (2.33)

where Tij = −(Hij − δijS), and S is a variable shift which is adjusted during the sim-

ulation to control the population of walkers and approximately fix the normalisation

of the wavefunction. Another concern with Eq. (2.33) is that in using the short-time

propagator we would introduce a time step error. However, it turns out that this is not

an issue provided ∆τ < 2/(Emax − E0), where Emax is the maximal eigenvalue of Ĥ in

our basis [105].

Of course, Eq. (2.33) is not very useful since we usually can store neither |Ψ〉 nor Ĥ.

The genius of FCIQMC is that we can instead use a Monte Carlo method to sample

the application of the projector and also the wavefunction, thus removing this memory

bottleneck. To see this, note that we can interpret Eq. (2.33) as a rate equation for

the coefficients of the wave function expansion. We can solve this by stochastically by

evolving a set of signed walkers2 according to Eq. (2.33). A simulation normally begins

by specifying some initial distribution of walkers (typically one walker is placed on the

Hartree–Fock determinant) after which each walker performs the following set of moves

for each time step [104]:

1. A walker wi attempts to spawn from a determinant |Di〉 to another |Dj〉 with

probability ps(i→ j) = ∆τ
pgen(ij) |Tji|. The sign of the spawned walker is sign(Tij)×

sign(wi). To be clear, ‘with probability’ means that if ps > r, where r ∈ [0, 1)

is a uniformly chosen random number, then we spawn a walker onto |Di〉. If

ps ≥ 1 then we spawn bpsc walkers3 with probability 1 and another walker with

probability ps−bpsc.4 We also have introduced the generation probability, pgen(ij),

which is the probability of generating the move i → j in the first place. This

accounts for the fact that it is far more efficient to only attempt one spawning

move per walker rather than trying to attempt spawn to all possible connected

determinants. The choice of how to generate excited determinants can greatly

affect the efficiency of the algorithm and we refer the reader to Ref. [104] for more

details. This spawning step simulates the terms like cj(τ+∆τ) = ∆τ
∑

j6=i Tjici(τ)

in Eq. (2.33).

2. A walker wi may die and disappear from the simulation or clone a new walker with

2 Since strictly speaking the walkers do not move, a better name for the walkers might be psi-particles
or ‘psips’ [106]. However, walker is now standard in the literature.

3 Here the floor operation means, e.g., b2.3999c = 2
4 We are assuming we represent the walkers using integers. One could just as well use real numbers,

and this choice often leads to better statistical error bars [107, 108].
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probability pd(i) = ∆τ |Tii|. If sign(Tii) < 0 then we remove the walker from the

simulation if sign(Tii) > 0 we clone that walker. We account for multiple cloning

events as in step 1. The death/cloning step simulates ci(τ+∆τ) = (1+∆τTii)ci(τ).

3. Walkers of the opposite sign on the same determinant are annihilated and removed

from the simulation so that all walkers remaining on a particular determinant have

the same sign.

Thus, walkers undergo birth and death processes stochastically, with low weight con-

tributions flitting in and out of existence so that only a snapshot of the wavefunction

is stored at each time step. It is only in the long-time limit that the average number

of walkers appearing on a given determinant, n̄wk , is proportional to the corresponding

ground-state wavefunction expansion coefficient cgs
k .

During a simulation, a very distinctive walker dynamics emerges, as shown in the top

panel of Fig. 2.1. First, there is an initial exponential increase in the walker population

followed by a plateau region where the population stabilises. After a certain amount

of time the population will begin to increase exponentially again, although at a slower

rate. It is after the plateau stage that the sign structure of the ground state wave-

function emerges and correct results for the energy can be found (see the bottom panel

of Fig. 2.1). To combat this further rise in population, which only serves to improve

statistics, Booth et al. introduced a variable shift, adapted from DMC [109], which is

designed to dampen this population rise as

S(τ + ∆τ) = S(τ) +
ζ

A∆τ

Nw(τ +A∆τ)

Nw(τ)
, (2.34)

where ζ is a damping parameter, A is the number of time steps between which the shift

is held constant, and Nw(τ) is the total number of walkers at imaginary time τ . Typical

values of ζ and A are 0.1 and 20 respectively. The form of Eq. (2.34) is chosen so that

the shift approaches E0 once the ground state has been projected out. Both the shift

Eq. (2.34) and the projected energy5,

Eproj(τ) ≡ 〈D0|Ĥ|Ψ(τ)〉
〈D0|Ψ(τ)〉 (2.35)

=

∑
kH0kn

w
k (τ)

nw0 (τ)
, (2.36)

can then be used as estimators for the energy although care must be taken to account

for serial correlations between neighbouring data points [110]. Here nwi (τ) is the total

number of walkers on |Di〉 at time τ . The behaviour of both of these estimators is also

shown in Fig. 2.1.

5 If limτ→∞ |Ψ(τ)〉 = |E0〉 =
∑

i c
gs
i |Di〉, then we have limτ→∞Eproj(τ) =

E0c
gs
0

c
gs
0

.
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Figure 2.1: Example of the observed population dynamics in an FCIQMC calculation
for Ne in an aug-cc-pVDZ basis with 8 electrons correlated in 22 spin orbitals. Note
the plateau emerging for Nw ≈ 2.3 × 105 between τ ≈ 2 − 10 Ha−1. Once we exit
the plateau phase the shift is allowed to vary and we see, from the bottom panel, that
both the shift estimator, and the projected energy estimator converge to the exact FCI
correlation energy [111]. This is a reproduction of a similar calculation carried out in
Ref. [104], here using the HANDE QMC package [112, 113].

2.2.1 The Sign Problem

FCIQMC naturally suffers from the sign problem since walkers of both positive and

negative weight can be spawned. In contrast to PIMC methods, in FCIQMC the severity

of the sign problem is measured by the critical number of walkers required to reach

the plateau phase of the simulation [104]. To understand the link between the walker

dynamics and the sign problem, we follow Spencer et al. [114] and write the transition

matrix T = T+−T−, where T+ and T− contain the absolute values of the positive and

negative elements of T respectively. The decoupled equations of motion for the positive

(n+
i ) and negative (n−i ) walkers without annihilation can then be shown to read

d(n+
i + n−i )

dτ
=
∑

j

(T+
ij + T−ij )(n+

j + n−j ), (2.37)

d(n+
i − n−i )

dτ
=
∑

j

(T+
ij − T−ij )(n+

j − n−j ). (2.38)

One can show that the maximum eigenvalue of T+ + T− is always greater than the

maximum eigenvalue value of T+ −T− [114]. Thus we see that, in the long time limit,

the first solution dominates over the desired second solution, leading to an exponential

increase in noise. The inclusion of annihilation serves to dampen the unphysical first
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solution without affecting the desired second solution. Thus, once a critical concentra-

tion of walkers is reached, the physical solution will win out. This crucial annihilation

process is enhanced in a discrete Hilbert space [115] as walkers are more likely to meet

and cancel than in the continuous real space. Provided the critical population is small

enough to allow for storage on a computer, the FCIQMC algorithm finds the ground

state without requiring any uncontrolled approximations.

2.3 Density Matrix Quantum Monte Carlo

In the last section we saw how working in a discrete Hilbert space allows for a more

efficient treatment of the sign problem than is usually possible with real space methods.

FCIQMC has since been applied to a wide variety of ground state problems in quantum

chemistry [116, 117] and physics [118–120] and the ideas have even been adapted to

alternative quantum chemistry methods [121–124]. Significant progress has also been

made in terms of algorithmic development, such as the use of semi-stochastic projec-

tion [107, 108] and more optimal selection probabilities [125], improving the parallel

efficiency [126]6 and also understanding the efficiency of the algorithm itself [127, 128].

Alongside these developments, breakthroughs have been made in calculating properties

other than the total energy, which has historically been a drawback of many QMC

methods. Examples of these include the sampling of reduced density matrices [129], the

calculation of unbiased nuclear forces [130] and also spectral properties [131, 132]. The

problem of carrying these ideas over to T > 0 was addressed by Blunt and coworkers

with the development of the density matrix QMC (DMQMC) method [133]7.

To begin, note that the unnormalized density matrix, ρ̂ = e−βĤ , obeys the sym-

metrized Bloch equation8

dρ̂

dβ
= −1

2

(
Ĥρ̂+ ρ̂Ĥ

)
, (2.39)

which can be solved using a simple Euler update scheme:

ρ̂(β + ∆β) = ρ̂(β)− ∆β

2

(
Ĥρ̂(β) + ρ̂(β)Ĥ

)
+O(∆β2). (2.40)

As in FCIQMC we can attempt to solve Eq. (2.40) stochastically by evolving a popu-

lation of signed walkers, where now the walkers live in a discrete operator space made

6 For more information on the parallel implementation of FCIQMC and some potential optimisations
see Appendix A.

7 We note an alternative way of calculating thermal properties from FCIQMC was presented in Ref.
[131].

8 Here we symmetrise the Bloch equation in anticipation of arriving at a FCIQMC-like algorithm. The
advantage of this symmetric form is that walkers will be allowed to spawn along both rows and
columns of the density matrix. This allows for better sampling at lower temperature. See Ref. [133]

for further discussion. The density matrix trivially obeys the Bloch equation d
dβ
e−βĤ = Ĥe−βĤ ; to

symmetrise the equation we just use the fact that Ĥ commutes with ρ̂.
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up of outer products of Slater determinants |Di〉〈Dj|. The density matrix can then be

written as

ρ̂(β) =
∑

ij

ρij(β)|Di〉〈Dj|, (2.41)

and the walkers sample the expansion coefficients ρij(β). The iterative equation for the

expansion coefficients is then

ρij(β + ∆β) = ρij(β)− ∆β

2

∑

k

[(Hik − Sδik)ρkj−
ρik(Hkj − Sδkj)]

(2.42)

= ρij(β) +
∆β

2

∑

k

(Tikρkj + ρikTkj), (2.43)

where again we have introduced the variable shift S to control the total population

of walkers. The rules for evolving the walkers are entirely analogous to those from

FCIQMC and follow from Eq. (2.43):

1. A walker can spawn from a density matrix element ρik to ρij with probability

ps(ik → ij) =
∆β|Tkj|

2pgen(kj) , with sign(ρij) = sign(ρik) × sign(Tkj); a similar spawn-

ing process takes place from ρkj to ρij. The definitions of pgen and excitaition

generation is exactly the same as in the case of FCIQMC.

2. A walker on the density matrix element ρij clones or dies with probability pd(ij) =
∆β
2 |Tii + Tjj|. Cloning occurs if sign(Tii + Tjj) × sign(ρij) > 0 and the walker is

removed from the simulation otherwise.

3. Walkers of opposite sign on the same density matrix element are annihilated and

removed from the simulation.

Unlike FCIQMC where we are only interested in the long time solution, here the inter-

mediate dynamics of the walkers is important to get the correct physical results.

The Bloch equation is a first order linear differential equation whose solution is

uniquely defined by the initial condition. The simplest place to begin a simulation

is at β = 0, where the density matrix is the identity matrix and can be sampled by

occupying diagonal density matrix elements with uniform probability. A simulation

then consists of propagating the initial distribution of walkers with the rules described

above to a desired value of β. Estimates for thermodynamic quantities can be found by

averaging over many such simulations. Some care needs to be taken when evaluating

expectation values as we need to estimate the average of a ratio of two quantities. One

way to do this is to average the numerator and denominator separately before taking

the ratio:

〈Ô〉 ≈
1
Ns

∑
s

∑
ij n

(s)
ij Oji

1
Ns

∑
s

∑
i n

(s)
ii

, (2.44)

and here n
(s)
ij is the number of walkers on density matrix element |Di〉〈Dj| at a specific
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temperature β in simulation s from a total of Ns. This estimator still suffers from a

population bias although it is typically small and vanishes like N−1
s . As the walker

distributions are completely independent of each other from simulation to simulation

the variance is simply given by standard error propagation. Writing

Ō =
Ā

B̄
=

1
Ns

∑
sA

(s)

1
Ns

∑
sB

(s)
(2.45)

and with σĀ calculated as in Eq. (2.3), then we can calculate the standard error in Ō

using

σŌ ≈ Ō
√((σĀ

Ā

)2
+
(σB̄
B̄

)2
− 2

Cov(A,B)

NsĀB̄

)
(2.46)

where the sample covariance is given as

Cov(A,B) =
1

(Ns − 1)

∑

s

(A(s) − Ā)(B(s) − B̄). (2.47)

An issue DMQMC runs into in large Hilbert spaces is that (for of a fixed population

of walkers) the number of walkers on the diagonal of the density matrix can decay to

zero rendering Eq. (2.44) a poor estimator. This is perhaps unsurprising given that the

number of off-diagonal elements relative to the number of diagonal elements increases

exponentially with system size. Additionally, since most of the weight contributing to

the evaluation of a given estimator is determined by walkers on the diagonal, or at most

a few excitation levels9 away, a method to improve the sampling of these important parts

of Hilbert space seems like a good idea. Problems such as these are usually overcome

using importance sampling [82], which was adapted to DMQMC in Ref. [133]. To begin

we write the importance sampled density matrix as

ρ̃ij = ρTijρij, (2.48)

where element-wise multiplication is assumed and ρT is some trial density matrix. In-

serting Eq. (2.48) into Eq. (2.39) we find

dρ̃ij
dβ

=
dρTij
dβ

ρij + ρTij
dρij
dβ

(2.49)

=
dρTij
dβ

ρij +
1

2
ρTij
∑

k

(Tikρkj + ρikTkj) (2.50)

=
d log ρTij
dβ

ρ̃ij +
1

2

∑

k

((
ρTijTik

1

ρTkj

)
(
ρTkjρkj

)
+
(
ρTikρik

)(
ρTijTkj

1

ρTik

))
(2.51)

which is nearly identical to the usual equation we solve with DMQMC except now

9 The excitation level (nex) is defined such that the bra and ket of a density matrix element differ by
nex particle-hole pairs.
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the transition rates between states are modified by the importance function. Thus,

by choosing ρT appropriately, we can encourage walkers to stay near the diagonal (or

wherever we want them to be). These re-weighting factors can be determined dynam-

ically through the simulation and are usually arbitrarily chosen so that the weight of

walkers on each excitation level is roughly uniform [133]. In larger systems the weights

necessary for constructing ρT can become quite large. This can restrict spawning and

introduce potential population biases if the weights are used from the beginning of the

simulation [133]. To overcome this, the weights can instead be gradually introduced

as β increases. The first term on the right hand side of Eq. (2.51) accounts for this

temperature dependence.

Finally, given that the space we sample using DMQMC is the square of that in

FCIQMC one might think that the number of walkers required for the ground-state to

emerge may be square of that required for an FCIQMC simulation of the same system.

This was indeed found to be the case in the first application of DMQMC to the strongly-

correlated Heisenberg model [133], but it remained to be seen how bad this would be

for other systems.

2.4 Summary

In this chapter we introduced some quantum Monte Carlo methods which could in

principle be applied to studying warm dense matter. The primary limitation of all of

these methods is the sign problem, which arises due to Fermionic statistics. DMQMC

is a promising new method that should be able to build on the successes of FCIQMC

in treating systems with sign problems in an unbiased fashion. In the next chapter we

will see to what extent this hope is fulfilled.
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Chapter 3

The Uniform Electron Gas

Solving the many-electron Hamiltonian (Eq. (1.3)) directly using any of the methods

described so far is complicated significantly by the presence of the nuclear potential

felt by the electrons. A simpler approach to understanding the importance of electron-

electron interactions is to first neglect the presence of the nuclei and smear out the

charge so that the electrons only interact with themselves and a positive uniform back-

ground. In this way one arrives at the uniform electron gas (UEG) model1 the first and

simplest attempts to describe a realistic metallic system. Despite the simplification of

homogeneity, the UEG has been of fundamental importance in the development of our

modern understanding of correlated electron systems. Concepts such as Fermi liquid

theory [32], collective excitations and quasiparticles [134, 135], the BCS theory of su-

perconductivity [136], screening [28], and Hohenberg-Kohn-Sham DFT [39, 40], were all

built on our understanding of the low temperature properties of the UEG.

The UEG is also of central importance for the quantitative accuracy of DFT. Most

DFT exchange-correlation functionals are built, in some way, on the local density ap-

proximation (see Section 1.6), which relies on an accurate fit of the exchange-correlation

energy of the UEG as a function of density [137–140]. As DFT results are sensitive to

the approximate functional used, these fits are in turn based on Ceperley and Alder’s

highly accurate QMC results for the UEG [141]. For thermal DFT we likewise need

an accurate fit for the exchange-correlation free energy of the UEG across the whole

density-temperature plane, which should again be based on accurate QMC results.

The first step towards providing this much needed data was taken by Brown et al.,

who they applied restricted path-integral Monte Carlo (RPIMC) to the warm dense

UEG [11]. Unfortunately, subsequent configuration path-integral Monte Carlo (CPIMC)

simulations disagreed substantially with the RPIMC results in the high density regime

[12]. As these QMC data are already being incorporated into exchange-correlation free

energy functionals [50, 51, 142] it is important to have an alternative method capable

of resolving this disagreement.

In this chapter we will outline how we can adapt DMQMC to treat the warm dense

UEG and discuss some of the complications which arise in the process. In overcoming

1 Also known as the homogeneous electron gas or one-component plasma.
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these difficulties we present an alternative formalism analogous to working in the inter-

action picture (see Eq. (2.24)). This interaction-picture DMQMC algorithm enables us

to perform some initial proof-of-principle benchmark studies against CPIMC and also

provides a direct route to evaluating the free energy.

3.1 The Hamiltonian

The UEG describes a system N electrons in a cubic box of volume V = L3 where

the charge distribution of the nuclei is now uniformly distributed throughout space

as n(r) = n = N/V so that the whole system is charge neutral. Writing down the

many-electron Hamiltonian as in Eq. (1.28) is complicated by the long-range Coulomb

interaction. Here we will first discuss the thermodynamic limit result which is a bit

simpler [14], before discussing the problem of simulating a finite number of electrons in

Section 3.1.1.

Let us first assume we are in a very large box so that the error resulting from replacing

summations with integrals is small, and we can further extend the domain of integration

to all space. One finds immediately that the electron-background, electron-electron

and background-background contributions all individually diverge. Since the system

is physical, all of these divergences must cancel and it is usual to first regularise the

Coulomb interaction by including factors of e−λr so that intermediate results remain

finite. The limit of λ→ 0 will then be taken at the end of the calculation.

With these points in mind we can write

V̂en → V̂e−bg = −
∑

i

∫
dR

ne−λ|ri−R|

|ri −R| (3.1)

= −Nn4π

λ2
, (3.2)

and

V̂nn → V̂bg−bg =
1

2

∫
dR′

∫
dR

n2e−λ|R
′−R|

|R′ −R| (3.3)

=
1

2
Nn

4π

λ2
. (3.4)

All that now remains of the many-body Hamiltonian are terms including only the elec-

trons. To make further progress we need to evaluate the matrix elements of the kinetic

and electron-electron interaction. The most natural single-particle basis we can use for

the UEG are plane waves, where we have

ϕi(r)→ 〈r|kiσi〉 = ϕkiσi(r) =
1√
V
eiki·rχσi , (3.5)
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with k ∈
{

2π
L n
}

where n is a vector of integers and the spin functions are given as

χ↑ =

(
1

0

)
, (3.6)

χ↓ =

(
0

1

)
. (3.7)

The matrix elements necessary to construct the Hamiltonian can now be calculated as

(see Ref. [14] for the details)

tij → 〈kiσi| −
1

2
∇2|kjσj〉 (3.8)

=
1

V
δσiσj

∫
dre−iki·r

(
−1

2
∇2eikj ·r

)
(3.9)

=
1

2
k2
jδσiσjδkikj , (3.10)

and

vijkl → 〈kiσikjσj |
e−λ|r−r

′|

|r− r′| |kkσkklσl〉 (3.11)

=
1

V 2
δσiσkδσjσl

∫
dr

∫
dr′e−iki·re−kj ·r

′ e−λ|r−r
′|

|r− r′| e
ikk·reikl·r

′
(3.12)

=
1

V

4π

(ki − kk)2 + λ2
δσiσkδσjσlδki+kj ,kk+kl . (3.13)

We can use the momentum conservation Kronecker delta above to simplify the potential

term by writing ki − kk = q = kl − kj . Collecting all the terms together we have

Ĥ =
∑

kσ

1

2
k2ĉ†kσ ĉkσ +

1

2V

∑

q6=0

∑

kpσσ′

4π

q2 + λ2
ĉ†k+qσ ĉ

†
p−qσ′ ĉpσ′ ĉkσ

+
1

2V

4π

λ2
(N̂2 − N̂) +

1

2
Nn

4π

λ2
−Nn4π

λ2
,

(3.14)

where we have separated the q = 0 contribution from the electron-electron interaction

and, to tidy things up, we dropped the extra Latin index of the k-points. The remaining

divergent terms in Eq. (3.14) vanish in the thermodynamic limit since

lim
N,V→∞

N−1

〈
1

2V

4π

λ2
(N̂2 − N̂) +

1

2
Nn

4π

λ2
−Nn4π

λ2

〉
(3.15)

= lim
N,V→∞

−1

2

4π

λ2

n

N
= 0. (3.16)

Only now can we safely set λ = 0 and hence

Ĥ =
∑

kσ

1

2
k2ĉ†kσ ĉkσ +

1

2V

∑

q 6=0

∑

kpσσ′
vqĉ
†
k+qσ ĉ

†
p−qσ′ ĉpσ′ ĉkσ, (3.17)
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where vq = 4π
q2 .

Inspecting the powers of L−1 appearing in Eq. (3.17) we see that the kinetic energy

goes like r−2
s , while the potential term goes like r−1

s (see Eq. (1.55)). Thus, at T = 0,

and in the thermodynamic limit2, the only free parameter for the UEG is rs, which

measures the relative strength of these two interactions. For rs � 1 (high density) the

kinetic term dominates and the system behaves nearly like an ideal gas. For rs � 1

(low density) the potential term dominates and it is thought the system should form

a Wigner crystal [28]. Most metals lie in between these regimes, and since there is no

small coupling parameter, we usually need to resort to accurate quantum Monte Carlo

simulations for quantitatively accurate results.

3.1.1 Finite System Sizes

Of course, most QMC methods work far away from the thermodynamic limit, only ex-

plicitly simulating a handful of electrons. This complicates the discussion of the electron-

electron interaction considerably3. From a classical perspective, the total Coulombic

energy in a periodic box is

Vee =
1

2

∑

i,j 6=i

∑

R

1

|ri − rj −R| , (3.18)

where R =
∑

i niai are a set of translation vectors, and ai are the primitive lattice

vectors of the (here) cubic system. Unfortunately, Eq. (3.19) is an ill-defined sum which

converges only conditionally. The conventional solution to this problem is to instead

use the Ewald summation technique which leads to a well defined result [143, 144].

We first note that another way to calculate the electrostatic energy is from

Vee =
1

2

∑

i

φ̄(ri), (3.19)

where

φ̄(ri) = lim
r→ri

(
φ(r)− 1

|r− ri|

)
, (3.20)

is the electrostatic potential at ri due to all the other electrons except itself. φ(r) is

the full electrostatic potential due to all the electrons, including ri, and can be found

solving by Poisson’s equation:

∇2φ(r) = −4πρ(r). (3.21)

2 For a finite system we usually specify rs and N which then determines the box size L. At T > 0 we
also require Θ = T/TF , where the warm dense regime corresponds to rs ≈ Θ ≈ 1.

3 The kinetic energy remains unaffected since we have the identity δkk′ = 1
V

∫
V
drei(k−k′)·r for a periodic

system.
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For a collection of periodically repeated point-charges in a cancelling uniform back-

ground we have

ρ(r) =
∑

R

δ(r− ri −R)− ρbg, (3.22)

where the background density, ρbg, is chosen so that the cell is charge neutral. The

idea behind Ewald’s method is to first add and subtract a periodic array of Gaussians

to Eq. (3.22) so that we can write

ρ(r) = ρ1(r) + ρ2(r), (3.23)

where

ρ1(r) =
∑

R

(
δ(r− ri −R)− κ√

π
e−κ

2|r−ri−R|2
)
, (3.24)

and

ρ2(r) =
κ√
π

∑

R

e−κ
2|r−ri−R|2 − ρbg. (3.25)

We can then solve Poisson’s equation twice, once with ρ1(r) and once with ρ2(r), before

adding the two potentials together at the end. Solving for the potential generated by

ρ1(r) is most easily done in real space, where we can use the fact that the potential

associated with a Gaussian charge distribution is related to the error function. The

potential associated with ρ2(r) is most easily solved for in reciprocal space as the Fourier

transform of a Gaussian is again a Gaussian.

Solving these equations and adding the two solutions together we can now express

φ(r) in terms of two rapidly converging sums:

φ(r− r′) =
4π

V

∑

k 6=0

exp
(
−k2/4κ2 − ik · (r− r′)

)

k2

+
∑

R

erfc(κ|r− r′ −R|)
|r− r′ −R| − π

κ2V
,

(3.26)

where k is a reciprocal lattice vector. The value of κ is arbitrary but can be chosen to

speed up the convergence of the real or reciprocal space sum [145].

The total electrostatic energy of the electrons can then be written as

Vee =
1

2

N∑

i=1

N∑

j=1
j 6=i

φ(ri − rj) +
Nξ

2
, (3.27)

where

ξ = lim
ri→rj

(
φ(ri − rj)−

1

|ri − rj |

)
(3.28)
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=
4π

V

∑

k 6=0

exp
(
−k2/4κ2

)

k2
− π

κ2V
+
∑

R

erfc(κ|R|)
|R| − 2κ√

π
, (3.29)

accounts for the interaction of a point charge at ri with all its periodic images.

We can now calculate the matrix elements necessary for Eq. (3.17). Replacing 1
|ri−rj |

by φ(ri − rj) in Eq. (3.13) and ignoring spin indices we have

〈kikj |φ(r− r′)|kkkl〉 = δki+kj ,kk+kl

1

V

∫

V
dxφ(x)ei(ki−kk)·x (3.30)

= −δki+kj ,kk+kl

1

V

∫

V
dx∇2φ(x)

1

(ki − kk)2
ei(ki−kk)·x (3.31)

= δki+kj ,kk+kl

1

V

4π

(ki − kk)2
(1− ρbgδki−kk,0) . (3.32)

In going from the first to the second line we integrated by parts twice; the boundary

terms vanish because φ(r) and eik·r are periodic functions. The Fourier components

necessary for Eq. (3.17) are then

vq =





4π
q2 if q 6= 0

0 if q = 0
, (3.33)

where the q = 0 term can be set to zero because we chose ρbg so that φ(r) averages

to zero over our simulation cell (the average of a function over a volume corresponds

to the k = 0 Fourier component of that function). Thus we find, practically speaking,

the only modification to the electron-electron term in Eq. (3.17) is that the constant

Madelung contribution of 1
2Nξ needs to be added.

3.2 Applying DMQMC

In principle, all that is required to simulate a model Hamiltonian using DMQMC is

a knowledge of the Hamiltonian matrix elements and some way to sample the initial

condition4. If we define |Dka
ki
〉 = ĉ†ka ĉki |D〉, and |Dkakb

kikj
〉 = ĉ†ka ĉ

†
kb
ĉkj ĉki |D〉, and to

simplify the notation we have written ki = (kiσi), then from Section 1.3 we have

〈D|Ĥ|D〉 =
∑

ki

1

2
k2
i −

1

2V

∑

ki

∑

kj 6=ki

4π

(ki − kj)2
δσiσj , (3.34)

〈D|Ĥ|Dka
ki
〉 = 0, (3.35)

4 The implementation of the Slater-Condon rules and excitation generators for the UEG was done origi-
nally in HANDE [112, 113] by Dr. James Spencer. The original DMQMC algorithm was implemented
by Dr. Nick Blunt and Tom Rogers [133].
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and

〈D|Ĥ|Dkakb
kikj
〉 =





4π
V

(
1

(ki−ka)2
δσiσaδσjσb − 1

(ki−kb)2 δσiσbδσjσa
)

if ki + kj = ka + kb

0 otherwise
,

(3.36)

where the summations are over occupied states ki ∈ |D〉, we have neglected the constant

terms as they do not effect the dynamics and the box length is given as L =
(

4πN
3

)1/3
rs.

Note again that Eq. (3.36) is for a very particular choice of excited determinant. In

general we need to work out an additional phase factor which can arise when reordering

the creation operators [112]. Since the Hamiltonian only couples Slater determinants of

the same total momentum (momentum is conserved), K =
∑

kocc
k, we see that there

are no single-particle excitations allowed.

At T = 0 we can use momentum conservation to write the Hamiltonian matrix in block

diagonal form and only solve for the ground state of the total momentum symmetry

sector which yields the lowest energy. For a closed shell, finite-particle, UEG this will

be the K = 0 sector of the Hamiltonian. We can no longer use this saving at T > 0 and

we instead need to average results over all symmetry sectors at once.

For the UEG, we can write the density matrix explicitly as

ρ̂ =
∑

ζ

∑

K

∑

i,j

ρij|Di(ζ,K)〉〈Dj(ζ,K)|, (3.37)

where we used the fact that the Hamiltonian conserves total momentum and spin, and

the configurational index i is understood to be for a given K and ζ. It is typical to

restrict the sum over spin polarisations in Eq. (3.37) to either the unpolarised ζ = 0 or

fully polarised ζ = 1 case. Thus, to sample the initial condition of β = 0 we distribute

Nw walkers along the diagonal by randomly occupying N↑ and N↓ of the M plane

waves states which lie within a sphere of cutoff radius kc as shown in Fig. 3.1. If we

wish to average over spin polarisation we allocate a fraction of the walkers to each spin

polarisation sector of the Hilbert space, where the fraction is determined by the spin

sector’s size relative to the total size of the Hilbert space given as5

Dim(H) =
∑

N↑,N↓
{N↑+N↓=N}

(
M

N↑

)
×
(
M

N↓

)
. (3.38)

A simulation then proceeds using the steps outlined in Section 2.3. Unfortunately,

we find that a direct application of the DMQMC algorithm as outlined in Section 2.3

5 One can use Monte Carlo to estimate the relative sizes of the Hilbert spaces when this formula becomes
unstable [112].
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Figure 3.1: Allowed single particle states in a cubic simulation cell. Slater determinants
are constructed by occupying any combination of N states inside the spherical cutoff of
radius kc.

to the UEG fails catastrophically. In Fig. 3.2 we show the internal energy per particle6

evaluated using DMQMC with various walker numbers in a seven electron system in a

small basis set of 81 plane waves. We see an unphysical knee region in the graph in the

intermediate temperature regime followed by a slow decay to the ground state FCIQMC

result.

To investigate this further we can try to reproduce this behaviour in an even smaller

system where exact results are possible. In Fig. 3.3(a) we reduce M to 19 and restrict

ourselves to the total momentum K = 0 symmetry sector of the Hilbert space. Even here

DMQMC can result in estimates for the internal that are too high in the intermediate

temperature range. The source of this can be understood by considering the initial

condition of infinite temperature. Here, we uniformly occupy any of the possible
(
M
N

)

determinants so that the probability of selecting the Hartree–Fock determinant rapidly

approaches zero. On those rare occasions when the Hartree-Fock determinant or another

low-energy determinant is sampled at β = 0, the population of walkers arising from that

low-energy determinant will dominate the simulation, but most simulations miss the

low-energy part of the Hilbert space altogether. As shown in Fig. 3.3(b), this sampling

problem reduces as the number of simulations (Ns) (or the population of walkers per

simulation) increases, thus increasing the chance of sampling the low-energy space;

however, this brute force sampling approach soon becomes impractical. For instance,

even with the modest basis set size used to obtain Fig. 3.2,the computational cost to get

the wrong answer increases to roughly 24 hours on 48 cores. Given that the accurate

results we discuss later in this thesis require 1000s of plane waves to get accurate results,

this brute force approach is doomed to fail.

6 Throughout this thesis we use the convention that quantities per electron use a lower case letter.
Thus, the internal energy per particle is u = U/N , the kinetic energy per particle is t = T/N etc.
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Figure 3.2: Internal energy per particle calculated using the conventional DMQMC
algorithm for a UEG with N = 7, ζ = 1 UEG with M = 81. The knee occurs roughly
at 2.1 Ha, which is close to the first excited state for this system, suggesting the DMQMC
settles down to the wrong ground state before further projection slowly brings it to the
ground state.

3.2.1 Moving to the Interaction Picture

There are two sampling issues present in the original DMQMC algorithm; the distribu-

tion of weight in the density matrix changes rapidly as a function of β and important

determinants are rarely present in our initial configurations. Feynman points out in

Ref. [16] that if we write Ĥ = Ĥ0 + Ĥ ′, where Ĥ ′ is small compared to Ĥ0, then the

quantity eβĤ
0
ρ̂ will be a slowly-varying function of β. Building on this idea, we can

define a new operator

f̂(τ) = e−(β−τ)Ĥ0
e−τĤ , (3.39)

with the properties

f̂(τ = 0) = e−βĤ
0
, (3.40)

f̂(τ = β) = e−βĤ = ρ̂(β). (3.41)

From Eq. (3.40) above we see that, by working with the operator f̂ , we can start the

simulation from e−βĤ
0

instead of the identity. For weakly-correlated systems this should

provide a good first approximation to the distribution of weight in the fully interacting

density matrix.
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Figure 3.3: Panel (a) shows the energy calculated for a seven-electron spin-polarized
electron gas at rs = 1 with M = 33 plane waves in the total momentum K = 0 subspace
using DMQMC and an initial walker population Nw = 104. Increasing the number, Ns,
of simulations over which averages are taken from 102 (squares) to 103 (circles) results
in a more accurate answer being reproduced. We also see that the error bars do not
reflect the true errors for Ns = 102 in the intermediate β regime. Panel (b) shows that
the average occupation on the Hartree-Fock density matrix element (|D0〉〈D0|) is too
small in the intermediate temperature range. Reproduced with permission from Ref.
[146].

Differentiating Eq. (3.39) with respect to τ we find

df̂

dτ
= Ĥ0e−(β−τ)Ĥ0

e−τĤ − e−(β−τ)Ĥ0
Ĥe−τĤ (3.42)

= Ĥ0f̂ − f̂ Ĥ (3.43)

We can write the derivative in a different way starting from Eq. (3.42) and inserting the

identity operator e−(β−τ)Ĥ0
e(β−τ)Ĥ0

after Ĥ and Ĥ0 to find

df̂

dτ
= Ĥ0e−(β−τ)Ĥ0

e(β−τ)Ĥ0
f̂ − e−(β−τ)Ĥ0

Ĥe(β−τ)Ĥ0
e−(β−τ)Ĥ0

e−τĤ (3.44)

= e−(β−τ)Ĥ0
(
Ĥ0 − Ĥ

)
e(β−τ)Ĥ0

f̂ (3.45)

= −Ĥ ′I(−(β − τ))f̂ , (3.46)

where we have used the definition

ÔI(α) = eαĤ
0
Ôe−αĤ

0
, (3.47)
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for α ≥ 0 and noted that Ĥ0 commutes with e−(β−τ)Ĥ0
. We call this the interaction-

picture version of DMQMC (IP-DMQMC) and, as it is used exclusively throughout

the rest of this thesis, we will drop the IP- prefix. In practice the exponential factors

appearing in Eq. (3.46) are time-consuming to evaluate and so Eq. (3.43) is easier to

work with. Since we choose Ĥ0 to be diagonal in our basis set, the only modifications to

the original DMQMC algorithm are that pd(ij) = ∆τ |H0
ii −Hjj| and that now walkers

only spawn along columns of the density matrix. We find this simple modification

drastically increases the range of applicability of DMQMC in the case of the UEG

as will be demonstrated in Section 3.4. Note, however, that by Eq. (3.41), only one

temperature value specified by β is now available in a given simulation in contrast to

the conventional DMQMC algorithm where all temperatures up to a given βmax are

available. In principal it is possible to reweight estimators using the new technique to

remove the factors of e−(β−τ)Ĥ0
; however this is usually only possible for short β− τ as

the required factors of e(β−τ)Ĥ0
can grow quite large resulting in noisy estimators.

3.2.2 Symmetric Form

Note that Eq. (3.46) is in an asymmetrical form as walkers can only spawn along columns

of the density matrix. While formally there is nothing wrong with this algorithm, we

have found that it can lead to sampling problems at low temperatures when attempting

to evaluate properties which do not commute with the Hamiltonian (see Fig. 3.4). To

understand this note that at low temperatures and in small systems most of the walkers

at τ = 0 are placed on the Hartree–Fock determinant, which are then propagated only

along columns of the density matrix. Generally speaking, the true density matrix will

be smeared out along the diagonal in our Hartree–Fock basis, but walkers can never

reach these states due to being restricted initially. With increased sampling this problem

should go away, but the convergence is slow as we need to resolve e−β(E0
HF−E0

i ) where

Ĥ0|Di〉 = E0
i |Di〉 for large β. An algorithm which allows walkers to move along rows or

columns (similar to the original DMQMC algorithm) therefore seems like a good idea.

We can write such a symmetrised form as

f̂ = e−αĤ
0
e−τĤe−αĤ

0
, , (3.48)

for α = 1
2(β − τ), so that

∂f̂

∂τ
=

1

2
{Ĥ0, f̂} − 1

2
(ĤI(−α)f̂ + f̂ ĤI(α)). (3.49)

The spawning probabilities are now given as

ps(ik→ ij) =
∆τ

2pgen
|Hkj|e−α(E0

j −E0
k) (3.50)
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Figure 3.4: Deviation of the internal, kinetic and potential energy from exact (FCI)
values for the symmetric (blue squares) and asymmetric (orange triangles and green
circles) equations of motion. For the asymmetric equations we fixed the number of sim-
ulations and increased the walker population from Nw = 103 (green circles) to Nw = 104

(orange triangles). We see that better sampling slowly yields more accurate results for
the potential and kinetic energy calculated using the asymmetric form. Note that both
methods produce exact results for observables which commute with the Hamiltonian.
The system shown here is for N = 7, M = 19 and ζ = 1.

ps(kj→ ij) =
∆τ

2pgen
|Hki|e−α(E0

i −E0
k) (3.51)

We see above that spawning from low energy to high energy states (Ek − Ej > 0)

is suppressed while spawning from high to low energy configurations (Ej − Ek < 0) is

greatly enhanced. This enhancement and suppression is diminished as α → 0. These

large exponential factors can result in large blooming events (multiple walkers spawned

onto a single determinant) near the beginning of the simulation, but do not affect results

when τ = β. In principle it should be possible to generate moves with probability

pgen(ik→ ij) ∝ e−α(E0
j −E0

k), (3.52)

so that the large exponential factors do not need to be explicitly evaluated, but this

is quite complicated to achieve exactly and we did not attempt it. In practice, since

we are normally only interested in results at τ = β, this turns out to be not such a

big problem. We see from Fig. 3.4 that using the symmetric algorithm vastly improves

estimates of observables other than the internal energy, although at an added cost

in terms of simulation time (roughly a factor of 2). Often, if it is only the internal

energy we want to calculate, the asymmetrical form is preferred, particularly at low

temperatures where the time required to complete a single run from τ = 0 to τ = β can

be significant.
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3.2.3 Sampling the initial condition

The choice of Ĥ0 is somewhat arbitrary, but it should allow for an efficient sampling of

f̂(τ = 0) and this is most easily achieved if Ĥ0 is diagonal in our many-particle basis. In

principle, any initial density matrix can be sampled using the Metropolis algorithm [88],

but due to the sensitivity of our method to the initial conditions, we have found this

approach problematic. This is particularly an issue at lower temperatures and larger

basis sets due to the longer equilibration times required for the Metropolis algorithm. A

different route, which is free from such issues, is to sample the grand canonical density

matrix corresponding to Ĥ0 in such a way that the desired, canonical, distribution is

reached.

The probability of selecting a particular determinant |Di〉 in the grand canonical

ensemble is

PGC(|Di〉) =
1

ZGC

∏

i∈|Di〉
e−β(εi−µ), (3.53)

where we are assuming that we can write

Ĥ0 =
∑

i

εiĉ
†
i ĉi , (3.54)

and µ can be determined from Eq. (1.52). However, we wish to generate determinants

in the canonical ensemble where the correct probability is

PC(|Di〉) =
1

ZC

∏

i∈|Di〉
e−β(εi−µ). (3.55)

The constant factor of eβµN appearing in the canonical probabilities is accounted for in

ZC .

We see that PC(|Di〉) ∝ PGC(|Di〉) and so, by independently occupying orbitals with

probability given by the Fermi factors fi (Eq. (1.53)) and then discarding those configu-

rations with 〈N̂〉 6= N , we attain the correct proportionality factor ZGC/ZC . Averaging

over spin sectors using this technique is also simpler since we can simply relax the con-

straint of N↑ = N↓. This method is slightly inefficient in the sense that only about

one in
√
N of the configurations sampled has the right value of N . However, this is

really never an issue given the system sizes we can realistically sample using QMC. The

chemical potential can be obtained by numerically inverting Eq. (1.52) in the appropri-

ate finite basis set using, for example, the bisection or Newton-Raphson method [147].

A demonstration of the whole procedure is given in Fig. 3.5, where we see that 〈Ĥ〉 is

indeed a slowly varying function of τ and that the correct estimate is reproduced at

τ = β.

Finally, we note that any diagonal density matrix can be obtained by reweighting the
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Figure 3.5: Variation of 〈Ĥ〉 with τ using Ĥ0 = T̂ . The grand canonical procedure
described in Section 3.2.3 was used. The system shown is a four-electron, spin polarized
gas at rs = 1 with M = 81 and β = 1. To obtain these results we used approximately
103 walkers and averaged over 100 simulations. The dashed line represents the exact
FCI result, which DMQMC reproduces at τ = β as expected. For comparison, at
β = 0, 〈Ĥ〉/N = 12.687(1) Ha from the original DMQMC algorithm. Reproduced with
permission from Ref. [146].

configurations which result from the above sampling procedure as

Pnew(|Di〉) = Pold(|Di〉)e−β(E0
new−E0

old), (3.56)

where Enew and Eold are the new and old total energies of a given configuration |Di〉,
respectively.

3.2.4 Free Energies

Directly calculating free energies in QMC is a difficult task as one needs to evaluate the

entropy S = −kBTr[(ρ̂/Z) log(ρ̂/Z)], which requires all the eigenstates and eigenvalues

of Ĥ to be known. One typically resorts to coupling constant integration, which increases

the computational effort and leads to potential additional sources of error. It turns

out that the interaction picture formalism allows the exchange-correlation free energy7

Fxc = F − F0 to be calculated nearly for free.

To see this, we define

F̃ (τ) = −kBT logZ(τ) (3.57)

= −kBT log Tr
[
f̂(τ)

]
, (3.58)

7 This is the appropriate definition for the UEG since there is no Hartree term.
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for f̂ defined as in Eq. (3.48) with F̃ (τ = 0) = F0 and F̃ (τ = β) = F . Differentiating

Eq. (3.58) with respect to τ we find

∂F̃

∂τ
= −kBTZ(τ)−1Tr

[
∂f̂

∂τ

]
, (3.59)

= −kBTZ(τ)−1Tr
[
(Ĥ0 − ĤI(−α))f̂

]
, (3.60)

= kBT 〈V̂I(−α)〉τ , (3.61)

where we have inserted Eq. (3.49) for ∂f̂
∂τ and used the cyclicity of the trace and the

definition of V̂I(−α) = e−αĤ
0
V̂ eαĤ

0
= e−αĤ

0
(Ĥ− Ĥ0)eαĤ

0
= ĤI(−α)− Ĥ0 in arriving

at Eq. (3.61). Finally, integrating Eq. (3.61) we find

Fxc = kBT

∫ β

0
〈V̂I(−α)〉τ dτ, (3.62)

which is the integral of a simple estimator over the course of the simulation.

Of course, nothing in life is free and there are some added complications. Consider

evaluating the integral Eq. (3.62) using the simplest possible integration rule8. We can

then write

I = β−1∆τ
∑

τi

f̄(τi), (3.63)

=
1

Nτ

∑

τi

1
Ns

∑
s a

s(τi)
1
Ns

∑
s b
s(τi)

, (3.64)

where Nτ is the number of points at which the integrand is evaluated and in taking the

average of the integrand we have again noted that
(
a
b

)
6= ā

b̄
and have therefore refrained

from interchanging the order of the summation over time steps and simulations. This

form of Eq. (3.64) renders the estimation of the standard error in Eq. (3.62) quite tricky.

Since points at neighbouring points in imaginary time are serially correlated we can not

simply sum the variances for f̄(τi), but instead we need to evaluate

σ2
Ī ≈

∑

τi

σ2
f̄(τi)

+
2

Ns

∑

i<j

Cov[f(τi), f(τj)]. (3.65)

We can use standard error propagation [148] to evaluate Cov[f(τi), f(τj)] to find a

(biased) estimate as

Cov[f(τi), f(τj)] ≈
ā(τi)ā(τj)

b̄(τi)b̄(τj)

[
Cov[a(τi), a(τj)]

ā(τi)ā(τj)
+

Cov[b(τi), b(τj)]

b̄(τi)b̄(τj)

−
(
ā(τi)b̄(τi)Cov[a(τi), b(τj)] + ā(τj)b̄(τj)Cov[b(τi), a(τj)]

ā(τi)ā(τj)b̄(τi)b̄(τj)

)]
,

(3.66)

8 The error arising from numerical integration is typically a few orders of magnitude smaller than that
of the statistical error so that this is usually a safe thing to do.

60



but this estimator is not numerically stable and is rather complicated. A simpler, albeit

approximate, estimate for the error can be found by assuming that the value of the

integral for a particular simulation is not too bad an estimate for the mean and instead

evaluate the error as

σ2
Ī =

1

Ns(Ns − 1)

∑

s

(Is − Ī ′)2, (3.67)

where

Ī ′ =
1

Ns

∑

s

Is, (3.68)

and Is is the estimate for the integral from a single simulation which are completely

independent from one another. In other words, we have interchanged the order of

summations which is something we said we should not do. As a rough measure of how

good this error bar is, we can check if the difference between the true mean and the

biased mean Eq. (3.68) is significant (usually within an order of magnitude of the error)

and flag this point as not being reliable if it falls outside this threshold. To summarise,

we evaluate the mean using Eq. (3.64) and the variance using Eq. (3.67) under the

restriction that the biased mean is not too biased.

The second, more serious, issue is that in using the symmetric form of the density ma-

trix given in Eq. (3.49) to overcome the sampling issue present in evaluating 〈V̂I(−α)〉τ
we have, ironically, introduced another sampling problem. Ignoring normalisation, the

integrand is

〈V̂I(−α)〉τ = ρij(τ)Vjie
−α(E0

j −E0
i ), (3.69)

which can be very large if (E0
j − E0

i ) < 0 and lead to noisy estimators for large α

(small τ) (see Fig. 3.6). Using the asymmetric formulation leads to a more stable

estimator for the free energy, but leaves us with the original sampling problem discussed

in Section 3.2.29.

In Fig. 3.7 we investigate these two issues by comparing to exact digitalisation re-

sults. We see that the approximate calculation of the error works very well at most

temperatures, giving us confidence that this is a good approach. At lower temperatures

we see a systematic bias that can be understood in light of the preceding discussion

and Fig. 3.6. Unfortunately we have not found a good solution to the latter problem

but, since the free energy approaches the internal energy at lower temperatures, it is

not that significant and can be monitored by investigating the quality of the integrand

as in Fig. 3.6.

9 In other words, there is a ‘conservation of pain’ - W.M.C. Foulkes.
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Figure 3.6: The noise in estimator for 〈V̂ (−α)〉 at low τ . Here τF = E−1
F . Note that

improving the sampling generally leads to better convergence. System shown is N = 7,
ζ = 1, rs = 1 and M = 19 at Θ = 0.0625.
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Figure 3.7: Deviation of the exchange correlation free energy from the exact FCI result
for N = 7, ζ = 1, rs = 1 and M = 19 with various walker numbers Nw.
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Ideal Free Energy

The evaluation of the total free energy, F = F0 + Fxc, requires the ideal contribution

evaluated in the canonical ensemble, which is again a non-trivial task10. Thankfully,

Monte Carlo saves us again and we can reuse the ideas developed in Section 3.2.3.

Let Naccept be the number of N -particle states generated during a grand-canonical

Monte Carlo run of Nattempts, then define

δ ≡ Naccept

Nattempt
=
eβµ0NZ0

C(N)

Z0
GC

. (3.70)

If follows then that

−kBT log δ = −µ0N + F0 − Ω0, (3.71)

F0 = Ω0 + µ0N − kBT log δ, (3.72)

which corrects the usual Legendre transform of Eq. (1.50) for the case of finite system

sizes. Thus, we can calculate F0 simply using

Ω0 = −kBT
kc∑

kσ

log
(

1 + e−β(εkσ−µ)
)
, (3.73)

and we can determine δ directly from the Monte Carlo run. The validity of this approach

is demonstrated in Fig. 3.8.

10See, e.g., Ref. [149] for recent semi-analytic work.
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Figure 3.8: Relative deviation in the ideal free energy evaluated using Eq. (3.72) from
exact results found by enumerating all ideal total energies and directly constructing ZC .
The system shown is for N = 7, ζ = 1, rs = 1 and M = 19. Note that the ideal free
energy passes through zero between Θ = 0.5 and Θ = 1 which causes the error bars to
grow in this region.

3.3 Basis Sets

The discussion so far has assumed that we are working in a finite basis set of M plane

waves; to remove basis set incompleteness errors we need to extrapolate to the M →∞
limit. It is useful to understand how different parts of the internal energy converge

with M so that reliable extrapolations can be performed. For the UEG at T > 0

there are essentially two contributions. The first is the convergence of the interacting

kinetic energy, which can be mostly understood on a single-particle level. The second is

the convergence of the potential energy where one needs to resolve cusps in the many-

electron wavefunction. These cusps arise when electrons coalesce and are a many-body

effect.

We will begin by trying to understand the convergence of the cusp, which is most easily

done at T = 0. Previous work has shown that the correlation energy, Ec = E − EHF,

converges like M−1 for the unpolarised (ζ = 0) case [103, 150, 151]. The fully polarised

case (ζ = 1) has not had as much attention, but is important as some of the largest

deviations between CPIMC and RPIMC occurred for the polarised gas [12] and some

early CPIMC results [152] assumed a M−1 convergence when extrapolating11. Results

from the RPA suggest that the cusp error should converge like M−5/3 [153, 154], and

from a physical point of view, this faster convergence for the polarised gas can be

understood in terms of the Pauli exclusion principle. Like spins are repelled and cannot

exist in the same point in space, which reduces the strength of the Coulomb interaction

11Practically speaking this is of little importance if the error from extrapolation is small.
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felt by any pair of electrons. A relatively straightforward way to arrive at the limiting

behaviour is to use second order perturbation theory [151]12,13, which is the simplest

non-trivial theory capturing the relevant physics.

Consider the conventional second order expression for the correlation energy of the

UEG

E(2)
c = −

∑

i6=0

|〈Di|V̂ |D0〉|2
〈Di|T̂ |Di〉 − 〈D0|T̂ |D0〉

(3.74)

= −1

4

∑

ij∈|D0〉

∑

ab

|vijab − vijba|2
εa + εb − εi − εj

. (3.75)

Let us pick a particular ij → ab pair and investigate Eq. (3.76) further. We can use the

Slater-Condon rules (Eq. (3.36)) to find

|vijab − vijba|2
εa + εb − εi − εj

∝

(
1

(ki−ka)2
δσiσaδσjσb − 1

(ki−kb)2 δσiσbδσjσa
)2

k2
a + k2

b − k2
i − k2

j

. (3.76)

Using momentum conservation and writing the momentum transfer q = ki − ka, we

find that the term of the right hand side of Eq. (3.76) is

1

∆
×
(

1

q2
δσiσaδσjσb −

1

(q + kj − ki)2
δσiσbδσj ,σa

)2

, (3.77)

where ∆ = k2
a + k2

b − k2
i − k2

j . Splitting the terms into ↑↑ and ↑↓ interactions we have

E(2)
c (ij → ab) ∝ 1

∆
×





(
2q·(kj−ki)+(kj−ki)2

q2(q+kj−ki)2
)2

for ↑↑
(

1
q2

)2
or
(

1
(q+kj−ki)2

)2
for ↑↓

. (3.78)

Next we rewrite the summation over a and b in Eq. (3.75) as one over q and look at the

residual q contributions beyond the cutoff wavevector kc. If we then assume the large

q limit, so that |q| � |ki|, |q| � |kj | and ∆ ≈ q2, then we find the basis set error,

∆E
(2)
c = E

(2)
c (M =∞)− E(2)

c (M), goes like

∆E(2)
c =

∞∑

q>kc

E(2)
c ≈

∫ ∞

kc

dqE(2)
c

∝





∫
dq q

2

q8
= k−5

c ∝ E−5/2
c ∝

(
M
V

)−5/3
for ↑↑

∫
dq q

2

q6
= k−3

c ∝ E−3/2
c ∝

(
M
V

)−1
for ↑↓

,

(3.79)

where M =
4π
3
k3c
ρk
∝ k3

cV and ρk = (2π)3

V is the density of states. Thus, we arrive at the

12This argument for T = 0, particularly the ζ = 1 case, is due to Dr. James Shepherd.
13Of course, second-order perturbation theory diverges for the thermodynamic limit UEG, but provides

well defined results in a finite box. In this case the UEG is effectively an insulator with a small band
gap at the Fermi level.
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proposed limiting behaviour for the fully polarised gas where only ↑↑ interactions are

allowed. For the unpolarised case the ↑↓ interactions dominate.

At T > 0 there is a competition between the convergence of the kinetic and potential

energies with the basis set size. Strictly speaking 〈V̂ 〉 also converges differently at T > 0,

often in a non-monotonic fashion. This might seem surprising at first as we might expect

the potential energy to always become more negative with increasing M . To understand

why this happens, consider the expression for the exchange (free) energy in the grand

canonical ensemble

Fx = 〈V̂ 〉GC
0 = − 1

2V

kc∑

ij

4π

(ki − kj)2
fkifkjδσiσj , (3.80)

where the sum runs over all i and j in our basis set. As the basis set size increases (at

a fixed temperature) higher energy states are more likely to become occupied. Since

larger momentum transfers yield smaller contributions to exchange energy the exchange

energy can therefore become less negative. This is demonstrated in Fig. 3.9 where we

plot the evolution of the Fermi factor with increasing M . We see that the distribution

of weight in Eq. (3.80) shifts from low k to higher k making the exchange energy less

negative. The discussion of the convergence of the correlation energy at T > 0 is more

complicated (not least because there is still some debate about what form it should take

[74, 77]), but we expect the limiting behaviour to be the same as at T = 0.

To investigate this further we plot in Fig. 3.10 the total energy of a two-electron

spin-polarized system, which can be solved using exactly diagonalization in large basis

sets. We see that the total energy initially increases rapidly with basis-set size before

appearing to saturate. From the inset of Fig. 3.10 we see that as the size of the basis set

is further increased, a slight reduction in the total energy is observed, with the residual

error apparently proportional to M−5/3.

The initial increase of the total energy with respect to M at non-zero temperatures

can be understood largely by looking at the non-interacting kinetic energy as a function

of basis-set size, which is most easily analyzed in the grand canonical ensemble. The

non-interacting basis-set error is purely kinetic and given as

∆T0(M) = T0(∞)− T0(M) (3.81)

=
∑

k>kc

εkfk. (3.82)

For εc = 1
2k

2
c � 1, this can be approximated as

∆T0 ≈
∫ ∞

εc

ε3/2e−β(ε−µ)dε (3.83)

66



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

k/kF

0.0

0.2

0.4

0.6

0.8

f k

M = 93

M = 179

M = 389

M = 1045

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

M−1

−0.50

−0.45

−0.40

−0.35

〈V̂
〉G

C
0
/N

(H
a)

Figure 3.9: Evolution of the single-particle occupations and exchange free energy in the
grand canonical ensemble with increasing basis set size. The system here is a N = 66,
rs = 1, ζ = 0 spin-polarised UEG at Θ = 1. The top panel shows the evolution of
the Fermi factor fk with increasing basis size M . Note that for a finite system only
certain discrete values of k are allowed, which explains the non-smooth nature of the
trend lines. The bottom panel shows the convergence of the exchange energy with basis
set size, demonstrating that it does become less negative.
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Figure 3.10: Behavior of the FCI internal energy per-particle with basis-set size for an
N = 2, rs = 1 spin-polarized system at Θ = 0.5. Here we see the competition between
the exponential convergence of the total energy at low M (main plot) and the M−5/3

behaviour for high M (inset). Reproduced with permission from Ref. [146]
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where we have used fk ≈ e−β(εk−µ) for εk � µ. Hence

∆T0(M) ≈
∫ ∞

0
(εc + x)3/2e−β(εc+x−µ)dx (3.84)

≈ ε3/2
c e−β(εc−µ)

∫ ∞

0
e−βxdx, (3.85)

if εc � β−1 so that (εc + x)3/2 ≈ ε
3/2
c everywhere e−βx is significant. It then follows

that the leading-order correction is

∆T0(M) ≈ β−1ε3/2
c e−β(εc−µ). (3.86)

From Eq. (3.86) we see, unsurprisingly, that the kinetic energy begins to converge ex-

ponentially once εc ≈ kBT or

M ≈ V
(

Θ

r2
s

)3/2

≈ NΘ3/2. (3.87)

Thus, we see that for large Θ the kinetic energy and hence the total energy converge

quite slowly as functions of M . This is an issue for DMQMC simulations as the cost of

a calculation currently increases roughly linearly with basis-set size.

We can overcome this problem by instead extrapolating the temperature-dependent

correlation energy, Uc(β,M) = U(β,M)− UHF(β,M). Here the ‘Hartree–Fock’ energy

can be calculated from UHF = 〈Ĥ〉HF, using the density matrix14,

ρ̂HF =
∑

i

e−βE
HF
i |Di〉〈Di|, (3.88)

where EHF
i = 〈Di|Ĥ|Di〉 and the sum runs over all determinants in the basis set. The

infinite basis-set total energy can then be reconstructed as

U(β,M =∞) = UHF(β,M =∞) + Uc(β,M =∞), (3.89)

with the hope that Uc(β,M) is small and converges more rapdily as is often the case with

energy differences. The problem remains to calculate UHF(β) in the canonical ensemble.

Fortunately we can again use the sampling procedure outlined in Section 3.2.3, i.e.,

UHF =
1

ZHF

∑

i

EHF
i e−βE

HF
i (3.90)

=
1

ZHF

∑

i

EHF
i e−β(EHF

i −E0
i )eβE

0
i (3.91)

=

∑
iE

HF
i w(i)p(i)∑
iw(i)p(i)

, (3.92)

14This is not the usual thermal Hartree–Fock approach discussed in Section 1.5.
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Figure 3.11: Exponential convergence of different estimates for the internal energy per
particle with basis-set size for N = 4, rs = 1 and Θ = 4. See main text for definitions.
Note that no Madelung contribution is included for the Hartree-Fock estimates in this
figure. The infinite basis-set limit for UHF is estimated as 17.6980(2) Ha. Reproduced
with permission from Ref. [146].

where w(i) = e−β(EHF
i −E0

i ) and p(i) = Z−1
0 e−βE

0
i . Thus, by generating determinants

as described in Section 3.2.3 and reweighting them using w(i), we can instead sample

ρ̂HF and, as a result, estimate UHF as desired. In Fig. 3.11 we show the convergence

of UHF(β,M) as a function of basis set for a four-electron, spin-polarized system at

rs = 1 and Θ = 4. Note the large basis-set sizes required to converge the total energy

to within statistical error bars. Fig. 3.11 also shows the kinetic (t0 = 〈T̂ 〉0/N) and ideal

exchange plus kinetic energy (u0 = 〈Ĥ〉0/N) calculated in the ideal canonical ensemble

as functions of M . Any of these could in principle be subtracted from U(β,M) to de-

fine a (exchange-)correlation energy, but the quantity defined by subtracting UHF(β,M)

extrapolates most smoothly to the infinite M limit. The non-interacting grand canon-

ical energy (tGC
0 = 〈T̂ 〉GC

0 /N , see Eq. (3.82)) is significantly larger than the canonical

estimates.

Fig. 3.12 shows how Uc(β,M) depends on M at a number of different temperatures.

For small basis sets Uc shows a power-law decay with M , but this ceases for large enough

M and the energies begin to increase again. The increase is due to kinetic effects that

are not captured in the non-interacting expression we subtract and depends on the

definition of the correlation energy. Given that it is the free energy which is variational

at T > 0, it is not surprising that the internal energy converges non-monotonically with

M .
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Figure 3.12: Comparison of the convergence of uc with basis-set size calculated using
exact diagonalization for a two-electron spin-polarized system at rs = 1 for different val-
ues of Θ. The Θ = 2 data has been shifted down by 0.0002 Ha for visibility. Reproduced
with permission from Ref. [146].

We can estimate the infinite basis set result from the largest basis set Mmax as

U(β,M =∞) = U(β,Mmax) + UHF(β,M =∞)− UHF(β,M = Mmax) (3.93)

= U(β,Mmax) + ∆UHF(β,M =∞,Mmax), (3.94)

where in practice we replace M = ∞ by a finite value which can be estimated with

the help of Eq. (3.87). This will in general over estimate Uc (it will be too negative

as we may miss slight upturn in the correlation energy at very high temperature as in

Fig. 3.12), but the remaining discrepancy is typically smaller than the statistical error

bar.

3.4 Results

Following all this development we are now in a position to carry out some preliminary

benchmarking studies to convince ourselves of our implementation. We will focus on the

simple case of four spin-polarized electrons, a small but non-trivial system and one for

which there already exist benchmark CPIMC calculations [152]. We will only consider

evaluating the internal energy as that was the only estimator presented in [152]. As a

first step we compare our four-electron DMQMC results to FCI results in small basis

sets and see perfect agreement across the whole temperature range (Fig. 3.13); and also

that basis set errors are still significant.

Next we extend these results to basis sets far beyond the reach of conventional FCI; the
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Figure 3.13: Comparison of DMQMC results (markers) with FCI results (dashed-lines)
for the internal energy per-particle of the UEG with N = 4 and rs = 1 in two different
basis-sets. The inset shows the low T behavior where we see increasing the basis-set
size serves to decrease the total energy in contrast to the high T behavior, where the
opposite occurs. Reproduced with permission from Ref. [146].

largest density matrix sampled contains approximately 1022 matrix elements. We used

the asymmetric formulation and the initialization procedure outlined in Section 3.2.3

and the free-electron Hamiltonian for Ĥ0 for rs ≤ 1; for rs > 1 we found it advantageous

to use the Hartree-Fock density matrix defined in Eq. (3.88). The calculations were

initialized with 103–107 walkers and the results averaged over 100–5000 simulations, each

using a different random number seed. No population control was used, although since

population control these effects are typically small (since we use such large populations

of walkers), population control should generally be used as it allows for a more efficient

simulation. Time steps ∆τ ranging from 0.01/EF to 0.001/EF were used, with a smaller

time-step required at lower rs; the values chosen were small enough that we could resolve

no time-step error within the statistical errors. Each (rs,Θ,M) calculation was typically

run for 2 hours on 48 cores with a total computational cost of approximately 80000 core

hours. The separate calculations of UHF required 9000 core hours.

In Figs. 3.14 and 3.15 we show the convergence of the DMQMC results with basis

set at low and high temperatures, respectively. We find that, for this system, a direct

extrapolation of the total energy with respect to M is best for Θ ≤ 0.25; the non-

interacting kinetic energy contributions are minimal in this regime and there is a clear

cusp-related trend in the total energy. The basis set correction procedure outlined in

Section 3.3 is best suited for temperatures above this, becoming increasingly useful

above Θ = 2 as more highly excited states become accessible. In between these too

regimes both methods produce statistically identical results. Fig. 3.16 summarizes our
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Figure 3.14: Total energy of a four-electron spin-polarized system at rs = 1 and
Θ = 0.0625, showing a convergence with M−5/3. The dashed line represents an ex-
trapolation to the infinite-basis-set limit carried out using a weighted least-squares fit
as implemented in Scipy [155]. Reproduced with permission from Ref. [146].

results and shows perfect agreement with the available CPIMC data from Ref. 152.

Further results at higher temperatures and other rs values are available in tabular form

in the supplementary material of Ref. [146] and again agree with the available CPIMC

results.
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Figure 3.16: (a) Extrapolated DMQMC (blue circles) total energies per particle for the
four-electron system at rs = 1, 2, 4 showing exact agreement with the CPIMC results
(green squares) of Ref. ??. Dashed lines are meant as guides to the eye. (b) Relative
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Reproduced with permission from Ref. [146].
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3.5 Summary

In this chapter we have shown how DMQMC can be adapted to treat the UEG. In

overcoming sampling problems present in the original algorithm we have vastly extended

the range of applicability of the method. This new formulation has the added benefit of

granting direct access to the exchange-correlation free energy. By developing numerical

basis-set corrections we have further reduced the computational cost in reaching the

infinite basis set limit. These corrections are particularly useful at higher temperatures

due to the significant thermal occupation of highly energetic one-electron states. Using

these developments we have found exact agreement with CPIMC results for a small

benchmark system across the whole temperature and density range, suggesting that

both our approaches are sound. Of course, the systems treated here are too small

to draw any conclusions regarding the disagreement between RPIMC and CPIMC for

larger systems. To accomplish this we require the ‘initiator’ approximation investigated

in the next chapter.
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Chapter 4

The Initiator Approximation

The fundamental limitation on the system sizes and temperatures accessible to any QMC

method is the sign problem. For systems without a sign problem, nearly arbitrarily

large systems can be treated [156], whereas this number is reduced to about 10 spin

polarised electrons for the case of the electron gas at T = 0 and rs = 1 in FCIQMC. In

the previous chapter we saw that, given a sufficient population of walkers, statistically

exact results for nearly any estimator can in principle be attained using DMQMC for

very small numbers of electrons. For DMQMC to be useful as something more than

a benchmarking tool, much larger systems need to be treated. In this chapter we will

test the application of the ‘initiator’ approximation (adapted from FCIQMC [157]) to

DMQMC. In the process we will show that even given the limitations of the initiator

approximation, useful and sufficiently accurate results can be attained for surprisingly

large systems. Using this approximation we resolve the large disagreement between

internal energies calculated using RPIMC and CPIMC [11, 12] at high densities and

low temperatures and provide additional data in the intermediate density regime where

none existed before. At higher temperatures we again find exact agreement with CPIMC

and provide some of the first free energy QMC data for the UEG for finite particle

numbers.

4.1 Origins

On the face of it, attempting to solve the many-electron Schrödinger equation using the

linear expansion of the many-electron wavefunction in the space of Slater determinants

is a hopeless thing to do. The memory required to store the expansion coefficients will

never be available and even if it were the computational cost of doing anything with

it does not bear thinking. For relatively weakly-correlated systems where mean-field

theory is not such a bad approximation, the linear expansion can however become dom-

inated by a handful of determinants with vanishingly small weight on highly excited

determinants. We might be tempted to simply discard these low weight determinants

and truncate the FCI expansions. However, doing this leads to results which are not

size extensive and thus we cannot reach the macroscopic limit. FCIQMC is a very clever
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algorithm as it provides a way to exploit the sparsity of the Hilbert space and instead

sample these low-weight coefficients; and yet, since every determinant remains acces-

sible, the results obtained remain size consistent. Unfortunately, for larger systems, it

becomes harder to maintain the concentration of walkers required to maintain a healthy

annihilation rate to overcome the sign problem and sample the wavefunction exactly

[114]. To overcome this, Cleland et al. [157] introduced the initiator approximation for

FCIQMC, which imposes some survival of the fittest criteria on the walkers and thus

accelerates convergence with walker number.

The initiator approximation to FCIQMC (i-FCIQMC) amounts to imposing the fol-

lowing heuristic spawning criteria:

• spawning to unoccupied determinants is only permitted from a set of (initiator)

determinants whose total walker population is above a user defined threshold

called nadd;

• spawning events from non-initiator determinants to unoccupied determinants are

only permitted if the event is ‘sign coherent’, i.e., if multiple non-initiator deter-

minants attempt to spawn onto the same unoccupied determinant with the same

sign at the same time step;

• spawning to already occupied determinants is unaffected.

The origin of these rules can be understood by noting that that determinants that con-

tribute most to the eventual solution originate from spawning events where the spawning

probabilities ps(j→ i) ∝ ∆τ |Hij|cj are largest so these should be favoured. Due to the

vastness of the Hilbert space, walkers tend to proliferate in low weight areas and es-

sentially get ‘lost’ which prevents the definite sign structure of the wavefunction from

emerging. Somehow biasing walkers to stay in important areas of the Hilbert space

should therefore help convergence. Restricting the spawning in this way naturally in-

troduces a bias but this can be monitored by increasing the number of walkers, Nw,

with the original algorithm recovered in the Nw →∞ limit (see Fig. 4.1). This approx-

imation has met with considerable success and has been used in a variety of chemical

[116, 117, 119], model [103, 150] and solid-state FCIQMC simulations [118]; it has also

been applied to UEG systems of up to 54 unpolarised electrons at zero temperature

[103, 150].
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Figure 4.1: Demonstration of the convergence of the correlation energy (Ec) with walker
number Nw of a UEG with N = 14, ζ = 0 UEG at rs = 0.5. Note that the projected
energy estimator used to obtain this data is not a variational, so some care needs to be
taken to ensure convergence. This calculation would not have been possible using the
regular FCIQMC algorithm.

4.2 Adaptation to DMQMC

Given the success of i-FCIQMC and the promise from the initial DMQMC results for

small electron gas systems, it is not unreasonable to hope that an analogous implemen-

tation if i-DMQMC would be equally as successful. Unfortunately, this turns out to be

only partially true.

In DMQMC, a direct application of the initiator approximation can lead to incorrect

averages at higher temperature as shown in Fig. 4.2. We can understand these biases

by considering the evolution of the ‘shape’ of the density matrix as a function of tem-

perature (see Fig. 4.3). Note we assume we are using the interaction-picture DMQMC

algorithm throughout. At very high temperatures, the density matrix at τ = 0 is close

to the identity matrix, so that initially the likelihood of any given determinant having

a population greater than nadd is very small. This significantly biases results as seen

inFig. 4.2 (a) since effectively no spawning can occur. The exception here is for very low

temperatures, where we approach an algorithm very similar to i-FCIQMC, and most of

the walker distribution is initially located on the reference Hartree–Fock determinant.

Thus, an obvious step to make is to set all diagonal elements of the density matrix

to be automatically, and permanently, to be initiator determinants, free to spawn in

an unrestricted way regardless of their occupation. We see from Fig. 4.2 (b) that this

improves results at high temperatures, while at low temperatures results remain unaf-

fected. There are, however, still significant deviations in the intermediate temperature
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regime, which turns out to be the most difficult to sample using i-DMQMC1. Here,

thermally excited states are important, so the walker distribution spreads up the diag-

onal, while off-diagonal elements become relatively more important due to the decrease

in temperature. Allowing diagonal elements to spawn helps initially, but there is insuf-

ficient imaginary time available for the walkers to ‘find’ the important parts of Hilbert

space dynamically, which leads to a much slower convergence with Nw. To overcome

this issue, we have found that setting all walkers at excitation level less than or equal to

2 (from the diagonal) yields much better results (see Fig. 4.2 (c)). Here the excitation

level, nex, is defined as the number of particle-hole excitations the bra and ket of a

density matrix element differ by. Note that the use of a larger initiator space often

leads to larger statistical errors as now more walkers end up away from the diagonal so

that, for a fixed population, the weight on the diagonal is reduced.
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0.1
(a)

−0.1

0.0

0.1
(b)

10−2 10−1 100 101
−0.1

0.0

0.1
(c)Nw = 1× 104

Nw = 1× 105

Nw = 1× 106

Θ

∆
U

(H
a)

Figure 4.2: Deviation of i-DMQMC internal energies from exact diagonalisation for
N = 7, rs = 1, ζ = 1 and M = 19. Here we used the asymmetric formulation of
DMQMC, but similar behaviour is found for the symmetric case. We see that imposing
either no initiator space (panel (a)), or just the diagonal (panel (b)) leads to biases
in the intermediate temperature regime by effectively truncating the density matrix
expansion. Panel (c) shows that setting all determinants at nex ≤ 2 leads to much
better convergence.

4.2.1 Other Properties

So far we have largely been concerned with determining the internal energy using

DMQMC as this was usually the quantity which was compared in previous previous

PIMC studies [11, 12]. One of the most appealing features of DMQMC is that we can

1 Which is perhaps unsurprising given that it corresponds to the warm dense regime.
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Figure 4.3: Schematic of the evolution of the distribution of weight in the density matrix
with imaginary time in the interaction-picture formalism. The intermediate temperature
regime is difficult to sample due to the relative weight on and off the diagonal being
comparable.

determine the expectation value of nearly arbitrarily complicated operators and even

the free energy in a simple and unbiased fashion. Unfortunately, we have found that

the initiator approximation tends to bias expectation values of operators which do not

commute with the Hamiltonian. Evidence of this is shown in Fig. 4.4, where we see that

the convergence with walker number is much slower than for the case of the internal

energy, and impractically large walker numbers are required, even for modest system

sizes. For smaller systems where exact diagonalisation is possible, we do generally find

convergence.

The origin of this slower convergence can be understood, in part, on variational

grounds. At zero temperature there is a variational principle for the total energy. If

we try to estimate the energy using some trial wave function ψT , then the errors in the

energy are of the order δψ2 = (ψ0−ψT )2, where ψ0 is the true ground state wavefunction.

Expectation values of operators which do not commute with the Hamiltonian suffer from

errors on the order of δψ leading to slower convergence, so Fig. 4.4 may not come as

such a surprise

At T > 0 the variational principle is for the Helmholtz free energy as calculated using

Eq. (1.16). Note, however, that in DMQMC we calculate the free energy from F =

−kBT logZ via thermodynamic integration, which in turns depends on the expectation

value of the potential energy. Thus we cannot hope (and we do not find) that our

estimate for fxc fares any better. If we could evaluate F using the functional form of

Eq. (1.16) it is likely we would find a better estimate but this is hampered by the virtual
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Figure 4.4: Absolute relative deviation of the i-DMQMC potential energy from the
DMQMC values for N = 7, rs = 1, ζ = 1 and M = 256 calculated using the symmetric
algorithm.

impossibility of determining the entropy.

The initiator approximation is, in some sense, a very strange approximation to make.

We can interpret it as replacing the actual Hamiltonian with a modified operator which

depends on the distribution of walkers at the same point in simulation time, such that

the equations we now iterate are

ρ′ij(τ + ∆τ) = ρ′ij(τ)−∆τ
∑

k

Hinit(ρ
′; τ)ikρ

′
kj(τ), (4.1)

where we have used the original, asymmetric, DMQMC algorithm for simplicity. With

this interpretation, ρ̂ is not necessarily of the form of e−βĤ
′
, and moreover, the differen-

tial equation obeyed by this modified density matrix is not simply the Bloch equation.

Perhaps an alternative perturbative approach along using the expansion of Eq. (2.23)

might lead to a more accurate estimator for the free energy, or at to a better under-

standing of the limitations of the current method. However, going beyond the initiator

approximation is difficult to do and we have not found any useful solution to this prob-

lem thus far.

4.3 Results for larger system sizes

From these initial test cases we see that i-DMQMC can potentially allow us to resolve the

disagreement between RPIMC and CPIMC, at least for the internal energy. To reach
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these system sizes requires pushing i-DMQMC to its limits and carefully monitoring

basis set, initiator and potential time step errors.

4.3.1 Convergence checks

Converging all the parameters in a DMQMC calculation is a computationally demand-

ing challenge. Basis set and initiator errors may change with rs and certainly change

with temperature. Extensive investigation at T = 0 [150] has shown that typically

the initiator error does not increase dramatically with basis set. Furthermore, while

converging the wavefunction gets harder as rs increases, this is not such a problem at

the values of rs accessible to DMQMC. Thus, in principle, we just need to converge the

energy with respect to basis set size at a single rs and then monitor convergence with

Nw and rs.

To check some of these assumptions we pick the relatively easy case of rs = 0.6,

N = 33 and ζ = 1. In Fig. 4.5 we show the convergence of the i-DMQMC internal

energy with walker number for different basis sizes. We see that the convergence is

in general non-monotonic and that care needs to be taken to ensure convergence is

achieved. For this low temperature of Θ = 0.0625, we find that a basis set size of

M ≈ 1045 is sufficiently accurate for comparison to the CPIMC data. From the CPIMC

results of Ref. [12] and additional DMQMC simulations we find this basis-set size is

sufficient for all temperatures Θ < 0.5 at this particle number.

In Fig. 4.6 we compare the internal energy calculated using the symmetric and asym-

metric formulations. We see that in both cases very similar results are achieved, but

the symmetric form leads to larger error bars for the same amount of computational

effort. We thus stick to the asymmetric formulation at lower temperatures.

We find that the initiator error converges at a comparable rate in the intermediate

temperature regime as shown in Fig. 4.7, which is consistent with Fig. 4.2. At higher

temperatures, any obvious trend is masked by the naturally larger error bars as the

temperature is increased, so care must be taken.

In Table 4.1 we test the convergence of the initiator error with rs at the lowest tem-

peratue of Θ = 0.0625, where one expects the sign problem to be most severe. As

expected, the initiator error grows with rs but any bias is essentially negligible (esti-

mated at less than 1%) for Nw > 106 and much smaller than kBT . Pushing DMQMC

to even lower densities is a challenge. We have found that, in certain cases, we can

reach these regimes by extrapolating results obtained from a lower basis set, where the

simulations are less demanding. This approach is illustrated in Fig. 4.8 for the case of

rs = 4 and Θ = 0.0625. We see that the results are beginning to converge for the larger

walker numbers and we can estimate the remaining systematic error as the difference

between the extrapolated value for the two largest walker numbers.
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Figure 4.5: Convergence of the i-DMQMC internal energy with basis set size (M) for
various different target walker populations (Nw) for N = 33, rs = 0.6, Θ = 0.0625. Here
the asymmetric equations of motion were used and we ran with a fixed population. Also
plotted is the CPIMC energy (solid line) and 1-σ error bars (dashed lines).

rs
Nw 0.6 1 2

1× 104 3.8894(2) 1.1458(2) 0.12491(5)
1× 105 3.8899(1) 1.1460(2) 0.12423(9)
1× 106 3.8893(2) 1.1455(2) 0.12223(7)
5× 106 3.8893(2) 1.1452(2) 0.1211(5)

Table 4.1: Convergence of the i-DMQMC internal energy per particle with the target
walker number, Nw, for Θ = 0.0625, N = 33 and M = 1045 at a variety of rs values
with nadd = 3. For rs = 2 we used nex = 0 and grew the population past Nw = 105,
whilst for rs = 0.6, 1 we used nex = 2 and kept the population fixed at Nw. The initiator
error is smaller than 1 milli-Hartree per particle at Nw > 106.

Finally, since we are using a simple Euler update scheme propagate the density matrix,

we can run into time-step errors. Fortunately, these tend to be small as shown in Fig. 4.9

and not distinguishable from statistical error for typical values of the time step ∆τ we

use in this work.

4.3.2 Higher Temperatures

For Θ ≥ 1 and rs ≤ 1 for N = 33 we find that no initiator approximation is required

so that in principle exact results can be found straightforwardly. At the highest tem-
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Figure 4.6: Convergence of the i-DMQMC internal energy with target population (Nw)
for N = 33, rs = 0.6, Θ = 0.0625. We see that the convergence of initiator error dif-
fers when using the symmetric (squares) and asymmetric (circles) equations of motion.
However, both methods produce identical results in the large Nw limit. The shift was
varied throughout. Also plotted is the CPIMC energy (solid line) and 1-σ error bars
(dashed lines) from Ref [12].

peratures we can use the basis set corrections developed in Section 3.3 to reduce the

computational effort. In Fig. 4.10 we demonstrate the usefulness of these corrections

for rs = 0.6 and the hardest case of Θ = 8. We see that applying the Hartree–Fock-like

correction ∆uHF(M,Θ) calculated using Eq. (3.88) dramatically speeds up convergence

so that relatively modest basis sets can be used. For comparison, the direct convergence

carried out in Ref. [12] required M ≈ 40000 plane waves, which would represent a sig-

nificant overhead for a DMQMC simulation, whose computational cost rises linearly

with M for a fixed number of walkers.

In Figs. 4.11 and 4.12 we investigate the performance of the basis corrections for the

free energy. First, in Fig. 4.11, we plot the total free energy for the interacting and ideal

system, which exhibit a very similar behaviour. This suggests that an ideal contribution

of ∆F 0(M,Θ) = F 0(∞,Θ) − F 0(M,Θ) based on the free energy of the ideal system

should accelerate convergence, which, as we see, is indeed the case. Of course, this

is just a statement that the exchange-correlation free energy converges more rapidly

than the total free energy. However, we see in Fig. 4.12 that the residual basis set

error for fxc can be significant. Using the same logic as before, we can attempt to

accelerate the convergence by adding a first-order (in the potential) correction to fxc.

This amounts to removing the contribution from fx, i.e., we add ∆f0
x = f0

x (∞)−f0
x (M)

where f0
x = N−1〈V̂ 〉0 is the first order exchange contribution to the free energy per
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Figure 4.7: Convergence of i-DMQMC internal energy with target walker population
(Nw) for N = 33, rs = 0.6, Θ = 0.5, M = 1045 and ζ = 1. We also demonstrate that
the choice of population control does not affect results (fixing the population at Nw and
growing the population to Nw). Also plotted is the CPIMC result from Ref. [12] (solid
line) and the corresponding error bar (dashed line).

electron. We see in Fig. 4.12 that the residual correlation free energy can be extrapolated

more easily and we can estimate the remaining systematic basis set error as the difference

between the linear extrapolation and the result in the largest basis set.
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Figure 4.9: Variation of internal energy with time step ∆τ for N = 33, ζ = 1 and
rs = 0.6 at Θ = 0.5 with M = 751.
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Figure 4.10: Top Panel: Slow convergence of the DMQMC energy as a function of basis-
set size for rs = 0.6 and Θ = 8. Adding the Hartree–Fock (∆uHF(M,Θ)) correction
leads to a much smaller (relative) basis set error. Bottom Panel: The correlation internal
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with the CPIMC data from [12]. There is no particular significance to plotting against
M−1 here.
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Figure 4.12: Basis set corrections applied to DMQMC data for fxc for N = 33, ζ =
1, rs = 0.1 and Θ = 4, showing the reduction in overall basis set error when corrections
are applied. Here we reach an accuracy of ≈ 2 mHa per electron based on the differ-
ence between the maximum DMQMC data point considered at M = 4169 plane waves
(horizontal line) and the extrapolated value (dot-dashed line). The extrapolation was
performed using a weighted least squares fit [155] assuming an M−5/3 behaviour to the
last 3 points.
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4.3.3 Resolving the Disagreement

We are now in a position to provide results for the N = 33, ζ = 1 UEG. We first focus

on the region 0.6 ≤ rs ≤ 2 and 0.0625 ≤ Θ ≤ 0.5, where the differences between the

CPIMC and RPIMC results are largest and no other data are available [12].

All simulations used real amplitudes to represent the walkers in order to improve the

stochastic efficiency [107, 108] and fixed nadd = 3. In most simulations we initialised the

density matrix with Nw walkers and allowed the shift to vary throughout. For higher

densities and the largest walker numbers we instead grew the total population to its

target value. The results are averages over values from between 20 and a few thousand

independent runs, depending on the temperature and target population considered.

Typical values for the parameters used in our simulations can be found in Table 4.2.

rs Nw M ∆τ × EF
< 1 1× 106 1045 1× 10−3

1 5× 106 1045 0.5× 10−3

2 5× 106 1045 0.25× 10−3

> 2 1× 107 extrap Fig. 4.8 0.25× 10−3

Table 4.2: Typical parameters used in our i-DMQMC simulations. For rs ≥ 2, Θ ≤ 0.125
we set nex = 0, i.e., only diagonal elements were permanently set to be initiators. For
Θ ≥ 0.125 we used the same parameters except with M = 1503 and 5 × 106 ≤ Nw ≤
1× 107.

The i-DMQMC results for the exchange-correlation energy per particle presented in

Fig. 4.13 are in very good agreement with the CPIMC results at all values of rs up to

the maximum of rs = 1 considered by Schoof et al. [12]. (The sign problem prohibited

the use of configuration PIMC at higher rs for the temperatures considered.) The

agreement is even better at lower rs values. In particular, our results confirm that the

kink-potential approximation used by Schoof [12] for rs ≥ 0.6 is well controlled and that

the RPIMC results are significantly too low at rs = 1. Our additional points in the

physically important range 1 ≤ rs ≤ 2 (1 ≤ rs ≤ 4 at low temperatures) further suggest

that the RPIMC results are unreliable for all rs ≤ 4. We find a slight, apparently

systematic, disagreement with CPIMC at Θ = 0.5, although all points remain within

error bars. The origin of this discrepancy is likely due to the slower convergence of the

initiator error at higher temperature. This is combined with a slight tendency of the

extrapolation with the number of kinks in CPIMC to underestimate the total energy.

The true value of the total energy probably lies in the upper half of the CPIMC error

bar, which is systematic in nature and not statistical.

To further confirm the accuracy of our results, we have carried out independent i-

FCIQMC calculations of the internal energy at zero temperature. In Fig. 4.14 we check

the convergence of the i-FCIQMC correlation energy with basis set size and walker

number, where we see that any remaining systematic error is essentially negligible for
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Figure 4.13: Exchange-correlation energy per particle (times rs) as a function of rs,
showing excellent agreement between i-DMQMC and CPIMC for rs ≤ 1 and differences
between i-DMQMC and RPIMC for 1 ≤ rs ≤ 4. The dashed lines are weighted third-
order polynomial interpolations [158] between the i-DMQMC data and the restricted
PIMC data for rs > 4 and are meant as guides to the eye. Reproduced with permission
from Ref. [54].

the accuracy considered here. Assuming that the energy varies like T 2 for small T , we

can attempt to extrapolate the i-DMQMC and RPIMC results to zero temperature and

compare them with the ground state result. Figure 4.15 shows that the extrapolated i-

DMQMC energy agrees with the ground state result, but that the extrapolated restricted

PIMC energy is too low. This is in contrast to the seemingly reliable extrapolation of

the size-corrected restricted PIMC data performed in [11], which agreed well with the

Perdew-Zunger parametrization of the T = 0 correlation energy of the UEG [138]. Also

plotted in Fig. 4.15 is uHF which which is seen to perform relatively well. In fact, it is

no more inaccurate than the RPIMC result.

Above Θ = 0.5 we found essentially identical results to CPIMC so we instead only

present new data for fxc in Fig. 4.16 where we also plot the exchange-correlation entropy

(sxc = T−1(uxc − fxc)). As expected, interactions tend to lower the entropy for this

uniform system (S ≤ S0) by an amount that increases with rs and vanishes in the high

T limit. As limT→0 sxc = 0 and given the behaviour of fxc, we expect sxc to reach a

minimum in the warm dense regime which tends to counteract a similar minimum found

in uxc [11, 53].
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Figure 4.14: Convergence of the i-FCIQMC correlation energy (per particle) with basis-
set size, M , and walker number, Nw, for N = 33, rs = 1 and ζ = 1. The dot-dashed
line is a weighted least squares fit [155] of the last four (Nw = 107) points assuming a
M−5/3 dependence.
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Figure 4.15: Extrapolation of the internal energy to Θ = 0 for the N = 33, ζ = 1,
rs = 1 system. The RPIMC energies are systematically too low and extrapolate to
a value considerably below the i-FCIQMC ground-state energy. The i-DMQMC (and
by extension CPIMC) results fare significantly better. This discrepancy cannot be
explained by finite-size effects alone. Although two data points is not enough to perform
a reliable extrapolation, we see from the Hartree–Fock extrapolation (uHF see Eq. (3.88))
which is also carried out using only the Θ = 0.125 and Θ = 0.0625 points, that a linear
fit between these is accurate. Reproduced with permission from Ref. [54].
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x = N−1〈V̂ 〉0, the first-order exchange contribution to the free
energy evaluated in the canonical ensemble. Bottom panel: The exchange-correlation
entropy for the same system. Reproduced with permission from Ref. [54].
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4.4 Summary

In this chapter we adapted the initiator approximation to DMQMC. This allowed us to

resolve the significant disagreement between the published RPIMC and CPIMC results

for the exchange correlation energy. The initiator approximation dramatically extends

the scope of the DMQMC method and is particularly useful at low temperatures where

errors in the internal energy converge more rapidly due to the variational principle.

Worryingly, the errors due to the initiator approximation affect expectation values of

operators that do not commute with the Hamiltonian much more severely than they

affect the energy itself and converge very slowly with walker number. This makes

accurate initiator results for the free energy difficult to obtain.
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Chapter 5

The Thermodynamic Limit

In the previous chapters we showed how DMQMC could be adapted to treat the UEG

and how the initiator approximation could significantly extend the system sizes we could

tackle using it. These developments allowed us to attain highly accurate benchmark

results for finite UEG systems which are important in their own right, particularly in

the development of approximate methods. However, for the purposes of developing a

DFT functional, we really need results in the thermodynamic limit and thus need to

perform some extrapolation with electron number. In this chapter we will investigate

to what extent we can reliably approach the thermodynamic limit using DMQMC. In

particular, we will focus on the use of analytic finite size corrections in QMC simulations

and suggest an improved scheme of particular use in the high temperature and high

density regimes, comparing where possible to existing theories1.

5.1 Finite Size effects

5.1.1 Single-particle size effects

All of the QMC calculations presented in this work were carried out in a cubic simulation

cell of length L with N particles subject to periodic boundary conditions. The use of

periodic boundary conditions serves to mimic an infinite solid but leads to two sources

of finite size errors. The first is that the allowed k-points that define our single particle

basis are spaced evenly (for a cubic box) at intervals of ∆k = 2π/L. This means

that expectation values, which would otherwise be evaluated as integrals over k in the

thermodynamic limit, are replaced by discrete sums. This leads to an integration error

similar to that found in ground state mean field electronic structure methods when

integrating over the Brillouin zone. Numerous methods exist to aid in the removal of

this error, including the use of special k-points [159] for insulators or cleverly chosen

grids of k-points [160] that allow accurate results to be obtained with significantly

coarser k-point meshes.

1 Parts of this work (particularly concerning the analytic corrections to the potential energy) were
developed independently by Tobias Dornheim and Simon Groth. Our results were published jointly
in Ref. [55].
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In many-body simulations, the density of k-points is determined entirely by the num-

ber of electrons in the simulation cell. By increasing the number of electrons (and

keeping the electron density fixed) we can increase the k-point density and thus re-

duce these integration errors. Some issues with this approach are that we are usually

restricted to simulating a handful of electrons, and also that the QMC energy can dis-

play significant ‘shell’-effects where the energy exhibits jumps as the electron number

changes, rendering a direct extrapolation difficult [161]. In the case of the UEG one

can choose so-called ‘magic’ numbers of electrons so that a complete shell of k-points is

occupied at T = 0 (for the corresponding ideal system). For example, N = 7, 19, 33, . . . ,

all represent magic numbers for the spin polarised 3D UEG. The use of closed shell sys-

tems generally produces total energies closer to the thermodynamic limit value, but the

issue of extrapolating the residual error remains [161]. A more general way to reduce

these shell effects is instead to perform twist averaging [161].

Recall that the many-electron Hamiltonian is invariant under the translation of any

electron by a simulation cell translation vector Rs. This implies that translating any

single electron by Rs can only change the many-electron wavefunction by a phase factor:

Ψ(r1, r2, · · · , ri + Rs, · · · , rN ) = eiks·RsΨ(r1, r2, · · · , ri, · · · , rN ), (5.1)

where ks can take any value in the simulation cell Brillouin zone, and ks = 0 corre-

sponds to the usual case of periodic boundary conditions. Twist averaging exploits this

symmetry and averages results over different values of ks while keeping the number of

electrons fixed2. For metallic systems this helps resolve the sharp discontinuity in the

electronic occupations at the Fermi energy. For DMQMC, twist averaging amounts to

evaluating

〈Ô〉ks =
1

(2π)3

∫

BZ
dks Z(ks)

−1Tr
[
ρ̂(ks)Ô

]
. (5.2)

Eq. (5.2) can be evaluated approximately using Monte Carlo integration where twist

vectors are generated randomly so that we can estimate the integral as

〈Ô〉ks ≈ Ō =
1

Nks

∑

ks

Ō(ks), (5.3)

where Ō(ks) is the QMC result for 〈Ô〉 at a particular ks. An estimate for the standard

error can be found from

σ2
〈O〉ks ≈ σ

2
QMC + σ2

Integration (5.4)

≈ 1

N2
ks

∑

ks

σ2
Ō(ks)

+
1

Nks(Nks − 1)

∑

ks

(Ō(ks)− Ō)2, (5.5)

where the first term accounts for the statistical errors in the individual QMC estimates

2 Twist averaging in the grand canonical ensemble is also possible [161] but we will not discuss this
here.
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at different ks (which are statistically independent), and the second term accounts for

the error in the Monte Carlo integration. We see, therefore, that twist averaging should

not significantly affect the computational load of a DMQMC simulation as we need

to perform many independent simulations anyway. This is of course only true if the

error from the Monte Carlo integral converges rapidly, which is not always the case

[161, 162].

Twist averaging is ubiquitous for T = 0 QMC simulations of UEG systems and in real

solid-state applications [163, 164] but its application at T > 0 has not been as widely

reported. The RPIMC simulations of Ref. [11] did not perform twist averaging at all

but used magic numbers of N = 33 and 66, whilst Schoof et al. [12] found that the use of

twist averaging did not significantly affect results for Θ ' 0.5. This can be understood

by noting that at the high temperatures considered here, the electron occupations no

longer exhibit a sharp discontinuity at the Fermi energy but are smoothly spread out

to higher energy states, as in the case of the usual Fermi factor in a non-interacting

picture.

To investigate this further we plot in Fig. 5.1 twist averaged results for the non-

interacting kinetic energies calculated in the canonical ensemble relative to their ther-

modynamic limit values. We look at the ideal case as the shell effects for the non-

interacting and interacting system are roughly proportional to one another [162] and it

is much less computationally demanding to obtain results for the ideal system. In the

thermodynamic limit we can evaluate the kinetic energy per-particle as

t0 = (2− ζ)
23/2

3π
r3
sβ
−5/2I3/2(η0), (5.6)

(5.7)

where η0 = βµ0,

Iν(η) =

∫ ∞

0
dx

xν

1 + ex−η
, (5.8)

is the usual Fermi integral, and we can determine the chemical potential from

n = (2− ζ)

√
2

2π2
β−3/2I1/2(η0). (5.9)

Note that here, and for remainder of this thesis, the prefactor of (2− ζ) is understood

to be valid for the fully spin polarised and unpolarised systems only. We see in Fig. 5.1

that, as expected [161, 162], at low temperatures the twist averaged result is generally

above that of the infinite system size and that the number of twists needed to converge

the average is rather large [12, 162]. The number of twists can be reduced by using better

choices of twist vectors, but we have not investigated this here. At higher temperatures,

we find that the twist averaged kinetic energy is generally lower that the thermodynamic

limit result, with the effect of twist averaging diminishing with increasing Θ. Indeed, for
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Figure 5.1: Variation of the twist averaged ideal kinetic energy per particle of an N = 14,
ζ = 0, rs = 1 UEG calculated in the canonical ensemble as a function of the number
of twists, Nks . Energies are relative to the corresponding result in the thermodynamic
limit. The shaded region around the lines represents the error bar calculated from
Eq. (5.5).

Θ ≥ 1, for this system, the twist averaged results are practically indistinguishable from

the ks = 0 result. We also see that residual one-electron effects can remain significant

in the canonical ensemble and that some extrapolation is necessary. We find that size

corrections to the ideal part of the free energy are typically larger than the internal

energy, particularly at higher temperatures [149], and again become less sensitive to

twist averaging as the temperature increases.

In Fig. 5.2 we plot the convergence of the twist averaged i-DMQMC internal energy

with the number of twists at for a N = 14 UEG at rs = 1 and Θ = 0.0625. As was

the case for the ideal system, we see that the convergence of the intergral with Nks is

slow. One way to accelerate the convergence of the twist averaging procedure is to use

a control variate [165] and instead average

Ũ(ks) = U(ks)− (T0(ks)− 〈T̂ 〉0,ks), (5.10)

or

Ũ(ks) = U(ks)− (UHF(ks)− 〈Ĥ〉HF,ks), (5.11)

where 〈T̂ 〉0,ks denotes the twist averaged ideal kinetic energy. Averaging either of these

quantities uses the fact that the kinetic energy and QMC energy for a given ks are

usually highly correlated and that the term in brackets on the right hand side vanishes

in the limit of perfect twist averaging. Using this control variate technique we see from

Fig. 5.2 that the total energy converges much more smoothly with Nks and thus reduces
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Figure 5.2: Variation of the twist averaged i-DMQMC internal energy per particle of
with and without using a control variate. Here we used Eq. (5.10) in calculating the
average. The system shown here is an N = 14, ζ = 0, rs = 1 UEG with M = 1045 and
Nw = 7 × 106 at Θ = 0.0625. The shaded region around the lines represents the error
bar calculated from Eq. (5.5).

the computational overhead of twist averaging, here by about a factor of 30.3

5.1.2 Many-particle size effects

The second type of finite size error is fundamentally many-body in nature and does not

have an analogue in mean-field methods. Converging these residual size errors, which

manifest themselves in the expectation values of both one- and two-body operators, can

be slow and usually represents the largest remaining source of systematic error in any

QMC simulation of a bulk system. One of the most successful approaches to reducing

these sources of error, particularly for the UEG, has been with the development of

analytic size corrections usually derived from approximate many-body theories [162,

166, 167].

Consider the exact expression for the finite size correction to the (electron-electron)

potential energy calculated in a QMC simulation. This is defined as the difference

between the potential energy evaluated in the infinite and the N -particle system, i.e.,

∆V = 〈V̂ 〉∞ − 〈V̂Ew〉N (5.12)

= V∞ − VQMC. (5.13)

3 Another recent development which could further reduce this burden is to use ‘special’ twist vectors
[164]; these use the fact that for certain values of k̃s, t

N
0 (k̃s) = t∞0 .

99



To allow for a clearer analysis of the sources of error in Eq. (5.12), it is helpful to rewrite

Eq. (5.12) in terms of the static structure factor. The static structure factor is defined

as

S(q) = N−1〈ρ̂−qρ̂q〉, (5.14)

where

ρ̂q =
∑

kσ

ĉ†k+qσ ĉkσ, (5.15)

is the density fluctuation operator. Inserting Eq. (5.15) into Eq. (5.14) we can write

S(q) =
∑

σσ′
Sσσ′(q), (5.16)

where the spin-resolved structure factor can be written as

Sσσ′(q) =
Nσ

N
δσσ′ +

1

N

∑

kp

〈
ĉ†k+qσ ĉ

†
p−qσ′ ĉpσ′ ĉkσ

〉
, (5.17)

which is quite clearly related to the potential energy. We can now write the size correc-

tion as

∆V =
N

2(2π)3

∫
dq vq(S∞(q)− 1)−


 N

2L3

∑

q 6=0

vq(SN (q)− 1) +
1

2
Nξ


 , (5.18)

where S∞(q) and SN (q) are the structure factors for the infinite and finite systems,

respectively.

We can identify three contributions to the error in Eq. (5.18):

1. the discretisation errors from the replacement of an integral with a sum;

2. the omission of the q = 0 term in the sum;

3. the fact that SN (q) 6= S∞(q).

Previous work by Chiesa et al. [166] proposed accounting for these errors by first noting

that the structure factor converges remarkably fast as N increases, so that the resid-

ual errors must come from effects 1 and 2. They further suggested that the dominant

remaining contribution comes from point 2. The size correction can then be approx-

imated using the behaviour of the static structure factor in the low q limit, which in

turn is known exactly from the RPA [28]. The generalisation of these ideas for finite

temperatures was first attempted by Brown et al. [11] who found that the appropriate

size correction for finite temperatures is given by

∆V =
ωp
4

coth

(
βωp

2

)
, (5.19)
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where ωp =
√

3/r3
s =

√
4πn is the plasma frequency. Subsequently it was found by

Schoof [12] that this size correction was very inaccurate for low rs and also higher tem-

peratures. To address the reasons for this we need to go back to basics and understand

the origin of Eq. (5.19).

5.2 Improved Finite Size Corrections for Warm Dense

Matter

The static structure factor can be calculated exactly from the fluctuation-dissipation

theorem as

S(q) = − 1

2πn

∫ ∞

−∞
dω Im[χ(q, ω)] coth

(
βω

2

)
, (5.20)

where χ(q, ω) is the density-density response function of the system [28, 168]. To derive

the size correction given by Eq. (5.19) we first need to determine the low q limit of

Eq. (5.20) within the RPA, which is exact in this regime. The RPA expression for the

susceptibility is [28]

χRPA(q, ω) =
χ0(q, ω)

1− vq χ0(q, ω)
(5.21)

=
χ0(q, ω)

εRPA(q, ω)
, (5.22)

where

χ0(q, ω) =
1

L3

∑

kσ

fkσ − fk+qσ

ω + εkσ − εk+qσ
, (5.23)

is the usual Lindhard function and here ω is a complex number. One can show by

analysing the behaviour of Eq. (5.22) [28], that Im
[
χRPA(q, ω + iη)

]
is dominated by

the plasmon-pole contribution below some critical wavevector qc(rs,Θ) determined when

εRPA(q, ω + iη) = 0, (5.24)

for η an infinitesimally small positive constant. This simplifies matters considerably as

we can replace the imaginary part of the RPA dielectric function by a delta function

centred on the (q-dependent) plasma frequency Ωp(q). To find the plasma frequency

we can solve Eq. (5.24) for Ωp(q) and then determine the plasmon oscillator strength

(the weight of the delta function) as outlined in Ref. [28]. The result is (for q ≤ qc)

− 1

π
Im[χRPA(q, ω + iη)] ≈ Ωp(q)

2vq
δ(ω − Ωp(q)), (5.25)

and we have the property that limq→0 Ωp(q) = ωp [28]. Inserting Eq. (5.25) into

Eq. (5.20) we find

lim
q→0

SRPA(q) ≈ q2

2ωp
coth

(
βωp

2

)
. (5.26)
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With the low q behaviour of the static structure factor at hand we can now derive

the required size correction. We first replace S∞ and SN by SRPA
∞ in Eq. (5.18):

∆V ≈ N

2(2π)3

∫
dq vq(SRPA

∞ (q)− 1)e−δq
2 − N

2L3

∑

q 6=0

vq(SRPA
∞ (q)− 1)e−δq

2
, (5.27)

where we can introduce the convergence factors of e−δq
2

because both the sum and the

integral in Eq. (5.18) converge [162]. It is convenient to further write the size corrections

as ∆V = ∆V1 + ∆V2 where

∆V1 =
N

2(2π)3

∫
dq vqS

RPA
∞ (q)e−δq

2 − N

2L3

∑

q6=0

vqS
RPA
∞ (q)e−δq

2
(5.28)

and

∆V2 = − N

2(2π)3

∫
dq vqe

−δq2 +
N

2L3

∑

q 6=0

vqe
−δq2 . (5.29)

We will now show that ∆V1 gives the desired size correction while ∆V2 is related to the

Madelung constant.

To work out the difference between the sum and the integral in Eq. (5.28) we use the

Poisson summation formula [166]

∑

Rs

f(Rs) =
1

L3

∑

k

f̃(k), (5.30)

=
1

L3
f̃(0) +

1

L3

∑

k 6=0

f̃(k), (5.31)

where f(r) is a smooth and rapidly decaying function of r, and

f̃(k) =

∫
dr eik·rf(r), (5.32)

is its Fourier transform. Setting f̃(q) = vqS
RPA
∞ (q)e−δq

2
we can write

∆V1 =
N

2
f(Rs = 0)− N

2

(
− 1

L3
lim
q→0

f̃(q) +
∑

Rs

f(Rs)

)
(5.33)

=
N

2


 1

L3
lim
q→0

f̃(q)−
∑

Rs 6=0

f(Rs)


 (5.34)

where we have used

f(Rs) =
1

(2π)3

∫
dq e−iq·Rs f̃(q). (5.35)
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For ∆V2 we have

∆V2 =
N

2L3

∑

q 6=0

vqe
−δq2 − N

(2π)3

∫
dq vqe

−δq2 (5.36)

=
N

2


 1

L3

∑

q 6=0

vqe
−δq2 − 1√

πδ


 (5.37)

≈ N

2
ξ, (5.38)

where we have used the definition of the Madelung constant from ??, set κ = 1/(2
√
δ)

and assumed δ is small.

If we now incorporate ∆V2 into our definition of VQMC, insert Eq. (5.26) into

Eq. (5.34), drop the convergence factors and assume that the real space term in

Eq. (5.34) is negligible [162], we arrive at

∆V =
N

2L3
lim
q→0

vqS
RPA
∞ (q) (5.39)

=
ωp
4

coth

(
βωp

2

)
(5.40)

as desired.

In deriving these corrections we have assumed that we are in the low q limit (q ≤ qc),
limit so that we can replace the QMC structure factor by that found from the RPA.

However, this may not be the case in a QMC simulation where the minimum q is fixed

by

qmin =
2π

L
(5.41)

=
2π

(
4
3πN

)1/3
rs
. (5.42)

Generally speaking, qc(rs,Θ) decreases with both increasing Θ and decreasing rs (in-

creasing density) [169] as shown in Fig. 5.3. We see that for typical simulation sizes

available to us, the values of qc are much smaller than qmin, suggesting that the response

function is not exhausted by the plasmon-pole and, therefore, that the low-odered cor-

rection is not appropriate.

To demonstrate this point further, we calculate the structure factor in DMQMC

using Eqs. (5.16) and (5.17), which we plot in Fig. 5.4 for N = 14, 38, 54, 66 and

ζ = 0. As expected, we find that the structure factor converges remarkably fast with

N . Furthermore, we see that the low q behaviour of S(q) is not well approximated by

Eq. (5.26), shown by the dotted line. Size corrections in the form of Eq. (5.19), which

used this form of S(q), can therefore lead to corrections which are too large. In Fig. 5.5

we show this directly by plotting the size-corrected potential energy per particle as a
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Figure 5.3: Rough determination of qc(rs,Θ) for an unpolarised UEG within the RPA.
Here qc is determined by the maximum q for which Re

[
εRPA(q, ω + iη)

]
= 0 and

Im
[
εRPA(q, ω + iη)

]
= 0. Mild numerical issues coupled with the only approximate

form of this solution are the cause of the noise at higher rs. The horizontal lines repre-

sent values of qmin = 2
(
π

3N

)1/3
kF . The code to evaluate this is available at Ref. [170].

function of N . It is clear that the size corrections to v are very large and that the

low-order corrections do not help convergence much. Indeed, the low-order corrections

can render the potential energy positive for these values of N and Θ [55]. It should

be noted that this problem was understood in Brown’s RPIMC work [11, 59], where a

classical size correction was applied for the highest temperature and density points. The

RPA procedure presented here is more general, as it incorporates both the degenerate

and non-degenerate limits.

A better size correction for v can be found directly from the RPA by going beyond

the small q expression for the structure factor, Eq. (5.26), and calculating the energy

difference in Eq. (5.18) using the full RPA structure factor for both SN (q) and S∞(q).

This is again motivated by the fact that SN converges rapidly with N and that the size

correction vanishes in the limit of N →∞. One can attempt to go further and use local

field corrections to the density response function by setting

χ(q, ω) =
χ0(q, ω)

1− (1−G(q, ω))vqχ0(q, ω)
. (5.43)

It turns out that a particularly good choice is to use the STLS scheme [73], which

matches more accurately with the QMC structure factor than the full RPA form [55].

In practice, however, either scheme yields satisfactory size corrections [55] and the RPA

is easier to implement.
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Figure 5.4: Convergence of the static structure factor with particle number calculated
using i-DMQMC. The systems shown here is has rs = 0.5, Θ = 0.25 and ζ = 0. Also
plotted is the RPA structure factor in the thermodynamic limit using Eq. (5.44) and
the low q form calculated using Eq. (5.26)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N−1

−1.0

−0.5

0.0

0.5

1.0

1.5

v
(H

a
)

DMQMC

DMQMC + ∆v(N)

DMQMC + low-order

0.00 0.02 0.04 0.06 0.08

−0.344

−0.342

−0.340

Figure 5.5: The performance of size corrections for the potential energy applied to
DMQMC data for rs = 0.5,Θ = 8. Here ∆v(N) is the correction found from Eq. (5.18)
using the full RPA structure factor, while the low-order correction is that of Eq. (5.19).
The horizontal dashed line represents the thermodynamic limit result calculated in
Ref. [55] using the same procedure applied to CPIMC data. The shaded region around
the dashed line represents a 1% error; the full-RPA corrected DMQMC data fall within
this band for as few as 14 electrons. The inset shows a close up of this region showing
the residual a 1/N error, which generally requires higher electron numbers to resolve
fully [55].
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In evaluating the structure factor from Eq. (5.20) it is convenient to perform the

frequency integral along the imaginary frequency axis [73], so that we can write

S(q) = − 1

nβ

∑

l∈Z
χ(q, iωl) (5.44)

where iωl = 2iπl/β are the Bosonic Matsubara frequencies (the poles of coth βω
2 ). Work-

ing with reduced units of x = q/kF , y = q/kF , χ0 can be evaluated (in the thermody-

namic limit) as [73]

χ0(x, iωl) = − 3n

4EFx

∫ ∞

0
dy

y

ey2/Θ−η0 + 1
log

∣∣∣∣
(2πlΘ)2 + (x2 + 2xy)2

(2πlΘ)2 + (x2 − 2xy)2

∣∣∣∣ . (5.45)

Eqs. (5.22) and (5.45) allow for a simple evaluation of Eq. (5.44), code for which can be

found at Ref. [170]. Convergence of the summation and integrals need to be carefully

checked with respect to lmax and the upper limit, qmax, of the momentum integral, a

task aided by the use of various low-order forms for Eq. (5.45) [73]. We benchmarked

our results against those found in Ref. [73] for various thermodynamic quantities. For

the size corrections a useful check is to ensure that the full RPA size corrections agree

with the low-order form for high rs and low Θ.

Going back to Fig. 5.5 we demonstrate the improved convergence of the potential

energy with N when this new size correction is used. Any remaining finite-size errors

are too small to be visible on the scale of the figure. The inset shows the residual

bias; to remove this fully one needs to go to larger electron numbers so that a reliable

extrapolation can be performed [55].

5.2.1 Size corrections to the free energy

To parametrise a DFT functional one needs data for fxc across the whole (rs,Θ) plane.

There are at least three ways to achieve this:

1. evaluate fxc directly;

2. evaluate fxc via thermodynamic integration of v [51]:

fxc =
1

r2
s

∫ rs

0
dr′s r

′
sv(r′s,Θ); (5.46)

3. evaluate fxc via uxc [51]:

fxc(rs,Θ)−Θ

(
∂fxc(rs,Θ)

∂Θ

)

rs

= uxc(rs,Θ). (5.47)

Option 3 was deemed the best route for the original fxc fit of Karasiev et al. [51] when

fitting to the RPIMC data [11]. It has the advantage that the internal energy is simpler
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to calculate using most QMC methods but the disadvantage that size corrections for the

kinetic energy cannot be simply expressed in terms of a rapidly converging and easily

calculable function such as the structure factor4.

Option 2, on the other hand, benefits from two advantages. The statistical errors in

v are smaller compared to uxc; and we now know how to obtain reliable and accurate

size corrections for v. Given the limitations of the various existing methods in terms of

regions of validity, option 2 has the additional advantage that all methods can evaluate

v (to within uncontrolled biases), which is not the case for fxc. The downside is that

performing the thermodynamic integration potentially introduces additional biases due

to integration errors or by fitting to a functional form of unknown quality. Note that

this is also a problem for option 3.

Option 1 is in some sense the ideal and most general route given that the Helmholtz

free energy f is the fundamental quantity in canonical statistical mechanics and that all

other properties of the system can be obtained from it using thermodynamic relations.

Also, the entire phase diagram will not always be required or calculable, so a method

capable of providing thermodynamic limit data for fxc is important as more complex

systems are studied. We can conclude that for the purpose of parametrising fxc for

DFT functionals option 2 is perhaps the best route, but that size corrections to fxc bear

some attention.

Size corrections to fxc can in principle be found using thermodynamic integration

using the identity [14, 51] (see also Section 3.2.4)

Fxc =

∫ 1

0
dλ λ−1〈λV̂ 〉λ (5.48)

=
1

r2
s

∫ rs

0
dr′s r

′
sV (r′s,Θ), (5.49)

so that

∆Fxc =
1

r2
s

∫ rs

0
dr′s r

′
s∆V (r′s,Θ), (5.50)

which has the advantage that ∆V is readily available. A computationally simpler ap-

proach is to instead analytically carry out the coupling constant integral which removes

the need to perform the integral in Eq. (5.50) approximately. Using Eq. (5.48) and the

relationship between V and the structure factor, we can write [14, 171]

Fxc =
N

2(2π)3

∫ 1

0
dλ λ−1

∫
dq λvq

[
− 1

nβ

∑

l

χ0(q, iω)

1− λvqχ0(q, iω)
− 1

]
, (5.51)

=
N

2(2π)3

∫
dq

[
1

nβ

∑

l

log
(
1− vqχ0(q, iωl)

)
− vq

]
, (5.52)

4 This was first pointed out by Simon Groth.
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which can be further broken down into an exchange component

Fx =
N

2(2π)3

∫
dqvq

[
− 1

nβ

∑

l

χ0(q, iωl)− 1

]
(5.53)

=
N

2(2π)3

∫
dqvq(SHF(q)− 1), (5.54)

where

SHF(q) = 1− (2− ζ)
V

N(2π3)

∫
dkfk+qfk, (5.55)

and a correlation component

Fc = − V

2(2π)3β

∑

l

∫
dq
[
log
(
1− vqχ0(q, iωl)

)
+ vqχ

0(q, iωl)
]
. (5.56)

Thus, we can write the size corrections to the exchange-correlation free energy as5

∆Fxc = (F∞x − FNx ) + (F∞c − FNc ), (5.57)

where we have

FNx =
N

2V

∑

q 6=0

vq(SHF(q)− 1) +
N

2
ξ, (5.58)

and

FNc = − 1

2β

∑

l

∑

q 6=0

[
log
(
1− vqχ0(q, iωl)

)
+ vqχ

0(q, iωl)
]
, (5.59)

where both SHF(q) and χ0(q, iωl) are again calculated using the infinite system result.

The assumptions here are that the structure factor has converged with respect to N so

that the only differences between the finite and infinite system size free energies are due

to the replacement of the sum with an integral and the omission of the q = 0 term. In

Fig. 5.6 we show the convergence of the size correction with the momentum space cutoff

qmax, showing that the corrections converge rapidly and can be made quite accurate.

There is an additional complication here as, for a fixed value of N , the rapid conver-

gence of the structure factor depends on the value of rs, with SN (q) converging more

rapidly to S∞(q) for larger values of rs. This raises the question whether, the assump-

tion allowing us to perform the coupling constant integral with S∞(q) is justified6. The

other slight concern is that we are using expressions for the exchange and correlation

energy for the finite system in the grand canonical ensemble, which may lead to further

issues (although this has implicitly been the case from the beginning with the potential

energy corrections). Nevertheless, since the size corrections vanish in the N →∞ limit

we can test them out. Indeed, as shown in Fig. 5.7, we see that the corrections perform

5 We have found that this expression converges more rapidly with l and q than that found using the
combined form of Eq. (5.52), although both yield identical results.

6 This was pointed out to me by Simon Groth.
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Figure 5.6: Convergence of the size corrections calculated using Eq. (5.57) with qmax.
The corrections shown here are for a N = 14, ζ = 0 and rs = 1 UEG. We see that the
corrections converge quite rapidly with qmax, particularly at higher temperatures, and
also grow in magnitude with increasing temperature. Here we set lmax = 10000 for both
the sum and the integral.

remarkably well, bringing us to within 1% accuracy of the N = ∞ result and seem to

reveal a convincing residual N−1 behaviour. This suggests that our approach and the

functional form used to perform the thermodynamic integration of the size corrected

potential energy in Ref. [55] are consistent.

5.2.2 Arbitrary size corrections

The utility of finding corrections for fxc can be appreciated when deriving size correc-

tions for other quantities. We can demonstrate this for the exchange-correlation energy

uxc using [51]

fxc(rs,Θ)−Θ

(
∂fxc(rs,Θ)

∂Θ

)

rs

= uxc(rs,Θ), (5.60)

where we have used fxc = uxc − Tsxc, and

S = −
(
∂F

∂T

)

N,V

. (5.61)

The size correction ∆uxc is then found by replacing fxc by ∆fxc in Eq. (5.60) above. The

derivative term in Eq. (5.60) can be evaluated using finite differences, a temperature

step of ∆Θ = 0.001 producing sufficiently accurate results.

The performance of these corrections is shown in Fig. 5.8. Again we see the large

finite size effects present in the raw QMC data and also the good performance of the

analytic corrections. Ref. [55] gives accurate values of fxc in the thermodynamic limit
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Figure 5.7: Performance of new size corrections outlined in Eq. (5.57) applied to
DMQMC data for rs = 0.5,Θ = 8 as in Fig. 5.5. The horizontal dashed line represents
the thermodynamic limit result calculated using a fitted form to the thermodynamic
limit v as outlined in Ref. [55]. The shaded region around the dashed line represents a
1% error. The inset shows a close up of this region where we see the residual 1/N error,
which generally requires higher electron number to resolve fully.

for a finite set of points only. We therefore compare our results to values from the

KSDT fit [51] calculated using Eq. (5.60) and the STLS result [73]. The large errors in

the KSDT result of about 10% are consistent with similar deviations found in Ref. [55].

In the next section we will investigate the extent of these deviations in more detail.
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Figure 5.8: Performance of new size corrections outlined in Eq. (5.60) applied to
DMQMC data for rs = 0.5,Θ = 8 and ζ = 0 as in Fig. 5.5. Here, the horizontal
dashed lines is the STLS approximation from Ref. [73] and the dot-dashed line is the
KSDT result [51]. The shaded region around the dashed line represents a 1% error. No
twist averaging was performed.

5.3 Comparison to other methods

The preliminary results from the previous section give us some confidence that we can

say something meaningful about the thermodynamic limit of the warm dense electron

gas. We mainly focus on relatively high densities and temperatures so that we do not

have to use the initiator approximation. We ran DMQMC simulations for N = 14, 38

and 66 electrons, all of which are magic numbers, for ζ = 0, Θ ≥ 1 and rs = 0.5 and

1. We used the basis set extrapolation techniques discussed previously and also used

importance sampling [133]. The error bars in the figures account for any remaining

systematic basis set errors. For Θ ≤ 1 we also ran i-DMQMC simulations for N = 14

electrons in a relatively small basis set of M = 389 plane waves using Nw ≈ 107 walkers

and applied the basis set corrections for Θ ≥ 0.25. The residual basis set errors are

estimated to be a few milli-Hartrees per particle and should be insignificant on the scales

of the figures and compared to the size corrections. We also performed twist averaging

for uxc using the control variate method outlined in Section 5.1.1 for Θ ≤ 0.125. Here

we used Nw = 7 × 106 walkers, M = 1045 plane waves and averaged over roughly 100

twist vectors.

A comparison of these results for the potential energy, exchange-correlation free and

internal energies for rs = 0.5, 1 are shown in Figs. 5.9 to 5.11. Note that here the
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exchange contribution to the internal energy is [14, 169, 172]7

ux =
3

2
µx − fx, (5.62)

where

µx = −
(
∂Ωx

∂µ

)

µ=µ0

/
(∂2Ω0

∂µ2

)
µ=µ0

, (5.63)

= − 1√
2π
β−1/2I−1/2(η0), (5.64)

where I−1/2(η0) is defined as in Eq. (5.8), and that the exchange contribution to the

free energy is most conveniently calculated as [173]

Fx = −(2− ζ)
V

4π3β2

∫ η0

−∞
dξ I2

−1/2(ξ). (5.65)

The first thing to notice is the overall excellent agreement between the DMQMC data

and the STLS scheme above Θ = 1. We see from the clustering of points for different

particle numbers that the size corrected data, while still containing some residual bias,

are very nearly sufficiently converged. In most cases (on this scale) we cannot distinguish

between our results and the extrapolated CPIMC results from Ref. [55], which typically

used much larger particle numbers and extrapolated the residual particle number bias.

We also see the importance of including correlation effects beyond exchange in the

description of warm dense matter even in this high density regime.

In agreement with Ref. [55], we find that the KSDT fit for the unpolarised gas can

exhibit rather large deviations (up to 10%) from our data at higher temperatures; this

can be attributed to the inaccurate RPIMC results and size corrections in the high

density regime. Towards lower temperatures the KSDT fit seems to perform better,

which can be understood in part by a fortuitous cancellation of the fixed node errors

and errors in the finite size corrections and, it must be said, in the use of a good

functional form for fxc which also incorporates accurate T = 0 data.

For Θ ≤ 1, where the initiator approximation was used, we see that, as expected,

the i-DMQMC results for v and fxc are significantly biased relative to the CPIMC

results. However, as we have seen previously, initiator errors for the internal energy

converge more rapidly and thus our results for uxc should be accurate. We see that that

the STLS approximation substantially overestimates the depth of the minimum in the

warm dense regime. In the T → 0 limit the STLS and KSDT fits agree well with the

7 There is some subtlety here. The exchange contribution arises from the inversion procedure when
passing from the grand canonical to canonical ensemble. By inversion we mean that we first write
µ = µ0 + µx + µc to the same order in the interaction as Ω. We then expand Ω and its derivatives
about µ0 and match coefficients to find µx [14, 25, 27]. One finds that, within the RPA [14], we can
write Fxc ≈ Ωxc(µ0), however other quantities (such as the internal energy) may contain contributions
from the inversion. A useful formula for the evaluation of derivatives of Ω is ∂

∂µ
Iν(η) = βνIν−1(η).
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Figure 5.9: Size corrected DMQMC results for v for the rs = 0.5 and rs = 1.0, ζ =
0 UEG. Also plotted are the CPIMC and STLS results. At Θ = 1 we have data
with and without the initiator approximation, where the point without the initiator
approximation has the larger error bar.

i-DMQMC results, particularly when twist averaging is performed. This is consistent

with the excellent agreement between the STLS scheme and T = 0 QMC results [28].

That being said, larger system sizes have to be addressed before anything definitive is

said here and this is left for future investigation. We also see the importance of having

an accurate fit to form of the free energy in the warm dense regime, with derivatives of

the free energy being sensitive to the precise functional form.
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Figure 5.10: Size corrected DMQMC results for fxc for the rs = 0.5 and rs = 1.0, ζ = 0
UEG. Also plotted are exchange only, CPIMC, STLS and KSDT results. At Θ = 1 we
have data with and without the initiator approximation, where the point without the
initiator approximation has the larger errorbar.
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Figure 5.11: Size corrected DMQMC results for uxc for the rs = 0.5 and rs = 1.0, ζ = 0
UEG. Also plotted are exchange only (ux), KSDT and STLS results. At Θ = 1 we
have data with and without the initiator approximation, where the point without the
initiator approximation has the larger errorbar. The solid markers are twist averaged
results for Θ ≤ 0.125; we estimate (by comparison to higher temperatures and larger
particle numbers) that any residual systematic errors should be accounted for by the
size of the markers.
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5.4 Summary and Conclusions

In this chapter we investigated the use of analytic finite-size corrections for QMC simu-

lations. We saw that, overall, the residual size errors were the most significant source of

remaining error. Existing corrections, which work well at T = 0, were found to be not

well suited to the high density and high temperature regime. By analysing the origin of

these size corrections, we identified the source of this error and suggested an improved

scheme that goes beyond leading order. We also suggested a route to calculating accu-

rate size corrections for the exchange-correlation free and internal energies. Using these

ideas, we believe size corrections for nearly any thermodynamic estimator can be found

using various Maxwell relations. By performing extensive DMQMC calculations for dif-

ferent system sizes, we found that these analytic corrections significantly accelerate the

convergence of QMC data with respect to system size in the warm dense regime and

should be used in any future investigations. We found good agreement between the size

corrected QMC data and the STLS scheme and also the KSDT fit at low temperatures.

The deviations seen at higher temperatures are larger but unlikely to be physically

important.
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Conclusions

One beginning and one ending for a book was a thing I did not agree with.

– unnamed student [174]

In this thesis we have investigated the application of the DMQMC method to the

warm dense uniform electron gas. We first showed the necessity in going beyond the

original DMQMC algorithm when simulating interacting electrons in large plane wave

basis sets. In developing the interaction picture variant, we significantly extended the

scope of the domain of applicability of the DMQMC algorithm. This allowed us to

evaluate the Helmholtz free energy, a capability that sets it apart from most other

QMC methods. The finite basis set corrections we developed also proved crucial and

could easily be adapted for other thermal electronic structure theory methods in the

future.

We then adapted the initiator approximation to DMQMC to allow us to treat larger

system sizes and lower temperatures. We used i-DMQMC to resolve the significant

disagreement present between CPIMC and RPIMC results for the exchange correlation

energy of the UEG and provided new data in the intermediate density regime where none

existed before. These results confirmed that the restricted path approximation can in-

troduce significant uncontrolled errors in the high density and low temperature regimes,

a drawback that had not previously been appreciated or verified. These data for the

polarised UEG at lower temperatures will provide useful input for the reparametrisa-

tion of the exchange correlation free energy of the UEG, with the spin polarised results

playing a central role in understanding the spin interpolation the thermal LDA [51], and

about which there is still some debate [175]. Although i-DMQMC has its limitations,

it is presently complementary to existing path-integral methods (see Fig. 5.12) and is

best suited to lower temperatures and higher densities.

Finally, we addressed the issue of extrapolating with electron number in the warm

dense regime. To address the observed poor performance of existing analytic corrections,

we showed (in collaboration with Tobias Dornheim, Tim Schoof and Simon Groth) the

necessity to go beyond the existing low-order corrections in the high density and high

temperature regimes. These relatively simple corrections we derived were shown to

vastly improve the convergence of thermodynamic estimators, significantly reducing the

computational burden of QMC methods. We further outlined how finite-size corrections

to almost any other observable quantity could be derived using similar principles. These
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Figure 5.12: Regions of the (rs,Θ) plane where different QMC methods are most effi-
cient. i-DMQMC can often bridge the gap between low and high densities, particularly
at lower temperatures.

results could be important when looking at more complicated systems and also at dense

systems at T = 0 [176].

Of course this thesis is far from complete and many loose ends remain. Perhaps the

most critical issue are the large biases introduced by the initiator approximation when

estimating observables that do not commute with the Hamiltonian. Another concern

is the numerical instability of the free energy estimator at low temperatures (and its

error analysis). Beyond these technical issues, a more user-friendly simulation protocol

would be helpful. Too many complicated convergence checks, basis-set corrections, and

finite-size corrections are presently required to obtain accurate results.

Nevertheless, and somewhat unexpectedly, we have seen that we can sample the

full thermal density matrix in Hilbert spaces containing more elements than there are

atoms in the universe. The density matrix contains a wealth of information about a

given system and ways of exploiting this should be investigated in the future8. As to the

problem of warm dense matter, we are now in a position to investigate the performance of

thermal density functional theory and its sensitivity to the choice of exchange-correlation

free energy functional. Here, as in the ground state, QMC methods will be crucial. As

we have seen, thermal density functionals and RPIMC suffer from biases in certain

regimes. The next step should be to adapt DMQMC to simulate the full many-electron

Hamiltonian of a real solid to address the extent to which these biases carry over and

how much they matter.

8 A novel example of this is given in Appendix B, where we attempt to evaluate spectral properties for
one dimensional spin chains.
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Appendix A

Parallel Improvements to FCIQMC-like

Algorithms

A.1 Introduction

An important feature of the FCIQMC algorithm not mentioned in the main text is

its parallel efficiency. The spawning and death steps describe walkers evolving inde-

pendently of each other with only annihilation requiring any communication. As such,

walkers, and hence the computational load, can be efficiently distributed across many

processors in contrast to conventional diagonalisation techniques. These are important

qualities in an algorithm as future computational resources will likely be in the form of

very large parallel computers, so it is vital that any new algorithms can take advantage

of these machines in a cost and energy efficient manner.

The ability of a code to scale to a given number of processors can be categorised

as either strong and weak scaling. Strong scaling involves scaling the code to more

processors while keeping the problem sized fixed, while weak scaling involves increasing

the problem size in proportion to the number of processors. For example, in FCIQMC if

we double the number of cores and kept the number of walkers fixed we would like to see

the running time halved, which would be a demonstration of strong scaling. Typically

weak scaling is easier to achieve than strong scaling, which is largely down to both

giving processors enough to do and also hiding any granularity which emerges when a

job is refined as the processor count increases. Naturally there is a limit to the speed up

that one can achieve for either scaling type, known as Amdahl’s law [177], which states

that the maximum parallel speed is given by

S(Np) =
1

(1− P ) + P/Np
. (A.1)

Here S(Np) is the measured speed up of a code run on Np processors relative to the

serial version and P is the percentage of the code which is parallelisable. Amdahl’s

law ignores a number of other factors which hamper scaling, principal of which is the

overhead associated with communicating information between processors.
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QMC methods are generally highly parallelisable with the P fraction being very close

to one, so one of the biggest hindrances to achieving improved parallel scaling is this

communication overhead. Recently it has been shown that a DMC code CASINO [145]

can overcome some of these issues and be scaled to hundreds of thousands of cores by

using a combination of load balancing of DMC walkers as well as non-blocking MPI

communications [178]. This appendix is concerned with outlining how similar ideas can

be applied to FCIQMC-like algorithms1.

A.1.1 Parallel implementation of FCIQMC

To begin consider the standard parallel implementation of the FCIQMC algorithm, a

more complete description of which can be found in [126]. Each processor stores a

sorted main list of instantaneously occupied determinants containing the determinant’s

bit string representation, walker population as well as any simulation dependent flags.

For each iteration every walker is given the chance to spawn to another connected

determinant, with newly spawned walkers being added to a second spawned walker

array. Given that a walker can spawn to any other connected determinant, which

may in general reside on any processor, the spawned walker array is subdivided into

Np sections for ease of communication. After evolution a collective MPI_AlltoAllv is

set up to communicate the spawned walker array to the appropriate processors. The

annihilation step is then carried out by merging the subsequently sorted spawned walker

array with the main list.

At every point in a simulation one needs to be able to determine which processor a

determinant currently resides on as well as where newly occupied determinants should

reside. Simply dividing the range of integer values a determinant can take among

processors is not likely to ensure an even distribution of determinants given that highly

excited determinants would tend to have larger integer representations. To counteract

this one can use a hash function which maps the determinants bit string representation

to another number within a given range. Determinants are then assigned to processors

as

p→ hash(|Di〉) mod Np, (A.2)

where Np is the number of processors and hash is a hash function. The above procedure,

when implemented efficiently, results in an extremely fast highly parallel algorithm.

A.2 Load Balancing

The workload of the algorithm is primarily determined by the number of walkers on

a given processor, but the above hashing procedure distributes work to processors on

1 These ideas were suggested by Dr. James Spencer who also guided me through their implementation
in HANDE.
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a determinant basis. For hashing to be successful we would need roughly the same

number of walkers and determinants on every processor. When scaling a problem of

a fixed size to more processors, i.e. strong scaling, one observes that the distribution

loses some of its uniformity with certain processors becoming significantly under and

over populated which negatively affects the parallelism [126]. This is to be expected

as in the limit Np → NDets there would be quite a pronounced load imbalance unless

each determinant’s coefficient was of a similar magnitude (which can often be the case

for strongly correlated systems). Naturally this limit is never reached, but the observed

imbalance is largely a consequence of this increased refinement.

Ideally newly spawned walkers would be distributed to processors so as to achieve

a uniform distribution automatically. This would be a computationally expensive task

both in deciding where a psip should go and storing the resulting mapping which would

have to be distributed to every other processor. A scheme is therefore desired which

retains the fast lookup capabilities of hashing while achieving a more even distribution

of walkers for a given number of processors. It was shown in [126] that isolating the

Hartree-Fock determinant on a dedicated processor can significantly improve scaling by

reducing the population imbalance across processors. Here we seek an improvement on

this by allowing determinants to dynamically change processor in a simple fashion.

To start define an array pmap as

pmap(i) = i mod Np, (A.3)

so that its entries cyclically contain the processor IDs, 0, . . . , Np − 1. Determinants are

then initially mapped to processors as

p→ pmap(hash(|Di〉) mod Np ×M). (A.4)

Equation (A.4) reduces to Equation (A.2) when M = 1.

The walker population in each of these M bins on each processor can be determined

and communicated to all other processors. In this way, every processor knows the total

distribution of walkers across all processors. In redistributing the Np × M bins we

adopt a simple heuristic approach by only selecting bins belonging to processors whose

populations are either above or below a certain user defined threshold. By redistributing

bins in order of increasing population we can, in principle, isolate highly populated

determinants while also allowing for a finer distribution. This procedure translates to

a simple modification of pmap so that its entries now contain the processor IDs which

give the determined optimal distribution of bin as demonstrated in Fig. A.1.

Finally, the walkers which reside in the chosen bins have to be moved to their new

processor, which can simply be achieved using a communication procedure similar to

that used for the annihilation stage. Some care needs to be taken that all determinants
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Figure A.1: Demonstration of load balancing procedure. Slots of walkers are distributed
to achieve as even as load balance as possible.

are on their correct processors at a given iteration so that annihilation takes place

correctly.

Once the population of walkers has stabilised the distribution across processors should

be roughly constant, although small fluctuations will persist. With this in mind redis-

tribution should only occur after this stabilisation has occurred and also should not

need to occur too frequently. This ensures that the computational cost associated with

performing load balancing is fairly minor in a large calculation. Additionally as M is

increased the optimal distribution of walkers should be approached, although with an

increase in computational effort.

A.3 Non-Blocking Communication

While load balancing should help in reducing the workload imbalance between pro-

cessors and thus reduce latencies when performing communication, there is additional

overhead in physically communication information between nodes across a network.

Asynchronous or non-blocking communication can help alleviate some of these effects

by overlapping communication with computation. The use of non-blocking communi-

cations was shown to greatly improve scaling in [178] and should potentially have a

significant impact here. In contrast to DMC walkers, walkers are not completely in-

dependent as they must undergo annihilation at the same point in simulation time, so

some modification of the algorithm is required.

To achieve this the following procedure was devised: Consider the evolution of walkers

from τ to τ + ∆τ , then for each processor the following steps are carried out:

1. Initialise the non-blocking receive of walkers spawned onto the current processor
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Figure A.2: Demonstration of modified evolution and annihilation procedure for non-
blocking communications. The main list can be evolved while waiting for all new walkers
to be spawned onto the current processor P , illustrated with a dashed red line. After
which the received list is evolved and annihilation takes place whereby the received
list and the spawned list is meged with the main list. The spawned list is divided
into sections accorinding to which processor a psip resides on, this is indicated here by
the different colour blocks present in the spawned list. Walkers which don’t reside on
the current processor, i.e. the yellow and blue blocks, are then communicated to the
appropriate processors.

from time τ .

2. Evolve the main list to time τ + ∆τ .

3. Complete the receive of walkers.

4. Evolve the received walkers to τ + ∆τ .

5. Annihilate walkers spawned from the evolution of the two lists as well as the

evolved received list with the main list on this processor.

6. Send remaining spawned walkers to their new processors.

Fig. A.2 illustrates these steps.

While this requires more work per iteration, it should result in improved efficiency

if the time take to complete this work is less than the latency time. This also ensures

faster processors can continue doing work, i.e. evolving the main list, while waiting

for other processors to finish evolving their main lists. For communications to be truly

overlapping the slowest processor would need to complete the steps above before the

fastest processor reaches step (3), otherwise there will be latency as the received list

cannot be evolved before all walkers spawned onto a given processor are received.

It should be pointed out that walkers spawned onto a processor at time τ are only

annihilated with the main list after evolution to τ + ∆τ , which differs from the normal

algorithm. While annihilation is vital to attaining converged results [104, 114] the

times at which it takes place is somewhat arbitrary, once walkers are annihilated at

the same point in simulation time [179]. Communication between processors is also

required when collecting statistics, however the usual collectives required for this can
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simply be replaced by the corresponding non-blocking procedures. This does require

that information is printed out in a staggered fashion but this is of minor concern.
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Appendix B

Dynamics from DMQMC

Some of the most difficult to calculate properties of correlated electron systems are

their excited states [180]. Excited states are of great interest due to their relationship

to spectroscopic experiments [64] but traditional techniques struggle with the increased

complexity of the problem.

Band structures calculated from DFT often differ quite markedly from experiments:

the classic example being the overestimation of band gaps in semi-conductors (see, for

example, [72])1. QMC methods mostly work in imaginary time making extracting dy-

namics difficult. Some success has been enjoyed by using the maximum entropy method

[181] to aid in analytically continuing data onto the real axis however the presence of

statistical errors somewhat limit this to sign-problem free models and small but finite

temperatures. DMC and AFQMC can be applied to excited states in both solid state

and molecular systems although the fixed node and fixed phase approximations results

in larger statistical errors than corresponding ground state calculations and are gener-

ally restricted to the first few lowest lying states [82, 83, 182]. Recently dynamical mean

field theory (DMFT) has enjoyed much success in treating strongly correlated electron

systems in the thermodynamic limit [183]. DMFT is thought to take local dynamical

correlations into account accurately although the theory is only strictly exact in the

limit of infinite dimensions [183]. Cluster extensions [184] as well as attempts to use

DMFT to improve upon DFT [185] are active aread of research. Other techniques such

as Time-dependent DFT, GW and Bethe-Salpether theory enjoy success with treating

excitations in weakly to moderately correlated systems [64].

Perhaps the most robust way to calculate excited states is by exact diagonalisation

[180]. While this is even more restricted by matrix size than a corresponding ground

state calculation, often quite a number of indicative features of the many-body spec-

trum can be deduced by studying small clusters [186]. Typically one uses a Lanczos type

method to calculate the first few lowest lying excited states and uses some physical in-

sight to deduce the general features of the corresponding spectral function. A technique

similar to Lanczos, which has been widely used for calculating the local density of states

1 Interpreting the Kohn-Sham eigenvalues as being related to the quasi-particle excitations is also not
necessarily straightforward [64].
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(LDOS) has been the recursion method [187]. Here we demonstrate how and analogue

of the recursion method for operators can be used in the context of DMQMC.

B.1 The Recursion Method

The time evolution of an operator Â in the Heisenberg picture is given as

Â(t) = eiĤtÂ(0)e−iĤt (B.1)

= ei
ˆ̂
LtÂ(0), (B.2)

where
ˆ̂
L is the Liouvillian super-operator,

ˆ̂
LÂ = [Ĥ, Â], and ~ has been set to 1. Then

at zero temperature a time dependent correlation function can be written as

C(t) = −iθ(t)〈ψ0|ei
ˆ̂
LtÂ(0)Â†(0)|ψ0〉, (B.3)

where |ψ0〉 is the ground state eigenfunction of Ĥ and θ(t) is the Heaviside step function.

Inserting complete sets of eigenstates into Eq. (B.3) one gets

C(t) = −iθ(t)
∑

j

|〈ψ0|A|ψj〉|2ei(E0−Ej)t, (B.4)

where the fact that
ˆ̂
L|ψi〉〈ψj | = (Ei−Ej)|ψi〉〈ψj | has been used. Upon Fourier transform

of Eq. (B.4) one finds that

C̃(ω) =
∑

j

〈ψ0|Â|ψj〉〈ψj |Â†|ψ0〉
ω + E0 − Ej + iη

, (B.5)

where η is a small positive constant introduced to ensure convergence of the integral.

One can then define the spectral density of C̃ as

A(ω) = − 1

π
lim
η→0+

Im{C̃(ω)} (B.6)

=
∑

j

|〈ψ0|A|ψj〉|2δ(ω + E0 − Ej). (B.7)

Thus, the spectral density gives a weighted distribution of the excitations possible in

a many body system when acted upon with a perturbation Â. For instance the single

particle Green’s function can be calculated by replacing Â with ĉi, from which the local

density of states could be calculated (once time ordering and anti-commutators are

correctly restored). Naturally, calculating A(ω) requires a knowledge of the eigenstates

of Ĥ which is an impossible task so approximations are necessary.

One way to find an approximation to A(ω) is via the recursion method [187]. In the

past this was an effective technique for calculating the local density of states by trans-
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forming the Hamiltonian into a tridiagonal matrix which could be easily diagonalised.

An extension of this to tridiagonalise the Liouvillian in a basis of operators was sub-

sequently developed by Lee [188]. A good review of both Liouvillian and Hamiltonian

recursion as well as applications to many-body systems can be found in [189].

As in the usual recursion method for the LDOS, the tridiagonal form of the Liovillian

superoperator can be expressed in a basis of orthogonal operators, {û0, û1, . . . , ûn}, in

terms of a three term recurrence

bn+1ûn+1 =
ˆ̂
Lûn − anûn − bnûn−1. (B.8)

The above formula is iterated by specifying a û0 (û−1 = 0̂), and calculating

an = (ûn,
ˆ̂
Lûn) (B.9)

v̂n+1 =
ˆ̂
Lûn − anûn − bnûn−1 (B.10)

b2n+1 = (v̂n+1, v̂n+1) (B.11)

ûn+1 = v̂n+1/bn+1. (B.12)

The inner product , (·, ·), chosen above can take many forms depending on the problem

at hand, once the Liouvillian remains Hermitian with respect to it. For instance, the

Trace-norm inner product

(A,B) =
Tr(A†B)

Tr(I)
, (B.13)

can be used for infinite temperature quantities or the more usual ground state inner

product

(A,B) =
〈ψ0|A†B|ψ0〉
〈ψ0|ψ0〉

, (B.14)

for ground state properties. The inner products emerging during the recursion proce-

dure are just (very complicated) expectation values which DMQMC can, in principle,

calculate. Applying DMQMC to directly calculate the recursion coefficients above is

likely not to succeed as expectation values are only correct on average while Eq. (B.8)

requires the evaluation of inner products at every step.

As pointed out in [190] it is possible to work around this by transforming inner

product. To see this consider the resolvent matrix element we wish to calculate

G00(ω) =

(
û0,

1

ω
ˆ̂
I − ˆ̂

L
û0

)
, (B.15)

where T is the tridiagonal matrix of
ˆ̂
L and ω is a complex number. If the recursion

procedure, Eq. (B.8), is carried out to all levels, then we can write

ˆ̂
Lûn =

∑

m

Tmnûm, (B.16)
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which is true regardless of the inner product used to find the orthogonal operators and

the tridiagonal matrix T. It follows then that

1

ω
ˆ̂
I − ˆ̂

L
ûn =

∑

m

(ωI−T)−1
mnûm, (B.17)

and inserting Eq. (B.17) into Eq. (B.15), where now the inner product is the one deter-

mined by the physics, one finds that

G00(ω) =
∑

n

(ωI−T)−1
n0 (û0, ûn). (B.18)

This allows us to calculate the spectral density at finite or zero temperatures by

1. Finding T and ûi using Liovillian recursion with an inner product such as

Eq. (B.13) which is possible to do exactly.

2. Calculating the overlap elements S0n = (û0, ûn) using DMQMC.

The spectral density found by using recursion depends on the number of recursion

steps one carries out e.g. three levels of recursion will give a spectral density with three

poles. For a many-body system the number of possible transitions, and thus poles, is

enormous making a full tridiagonalisation of the Liovillian impossible for all but the

smallest systems. This is true for both Liovillian and Hamiltonian recursion; however,

what these techniques have in their favour is that for n levels of recursion one gets the

first 2n moments of the spectral function correct, where the moments are defined as

µn =

∫ ∞

−∞
dωωnA(ω). (B.19)

To prove this one can expand Eq. (B.15) as a power series in ω and compare the coeffi-

cients appearing in the expansion with the recursion coefficients an and bn. Therefore,

the recursion method often gives very accurate results for integrals over the spectral

density, which can be used to calculate correlation functions or constrain approximate

determinations of a spectral density.

B.2 Implementation

As mentioned above, the general scheme is to first calculate a set of basis operators

{u0, . . . , un}2, an’s and bn’s via the recursion method Eq. (B.8) using a suitable inner

product, whereupon we can transform the resolvent element Eq. (B.18) using DMQMC

to calculate the overlap elements S0n. The simplest inner product to use is the trace

inner product Eq. (B.13) and the easiest interacting Hamiltonian to implement this for

2 Hats will now be dropped from all (super)operators.
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is the Heisenberg Hamiltonian

H = J
∑

〈ij〉
Si · Sj (B.20)

=
J

4

∑

〈ij〉
σxi σ

x
j + σyi σ

y
j + σzi σ

z
j , (B.21)

where σαi , α = {x, y, z}, are the Pauli matrices, J is the exchange parameter and the

sum runs over all nearest neighbours. The action of L on a given starting vector can

be carried out by hand only for a few levels of recursion before becoming intractable so

a numerical approach is desired. We follow the implementation of Bohm and Leschke

[191] who suggested a compact and fast way in which to carry out the recursion which

will briefly be described here.

Consider an operator appearing during recursion. This will be generally be a product

of Pauli matrices on the various sites of the lattice. The action of L on this complicated

operator can be simplified using the following property of the Liouvillian

L(ABCD . . . Z) = L(A)BC . . . Z + · · ·+ABC . . . L(Z). (B.22)

On each site of a chain there can be one of four operators {I, σx, σy, σz}, which suggests

two bits are required to store this information, explicitly {00, 01, 10, 11}. In this way

any basis element appearing can simply be described using a single integer whose length

is twice that of the number of sites. The action of L on a Pauli matrix can be simplified

using the commutation relations

[σαi , σ
β
j ] = iδijεαβγσ

γ
j , (B.23)

while products of two Pauli matrices on the same site can be reduced to one using

σασβ = δαβI + 2iεαβγσ
γ (B.24)

and summation over repeated indices has been assumed. The commutation can be

achieved numerically using a NAND operation of the on site bits with the mask 11 and

working out the resulting permutation directly from the bit’s integer representation.

Additionally the memory requirements of storing the operators can be significantly

reduced by ensuring the lists of operators remain sorted.

The resulting operators can be output to a file and sorted according to the num-

ber of σx and σy operators they contain. This resorting is to take advantage of the

fact that for a given density matrix element, ρij , only operators which have the same

excitation level as ρij can give a non-zero contribution to the trace. For example, if

ρ̂ij = |011001〉〈100110| the excitation level is 3 and any operator containing 2 Pauli

matrices will automatically be zero in the trace. (Terrible) Code to perform all of this is
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available at Ref. [192]. While this results in a large saving for any DMQMC calculation,

there are potentially millions of operators contained in a given basis element making

large calculations presently intractable.

B.3 Results and Conclusions

As a first example the ground state time dependent correlation function

〈ψ0|σz0(t)σz0(0)|ψ0〉 was calculated using the recursion method for the one dimensional

8 site anti-ferromagnetic, J = 1, chain with periodic boundary conditions.

Fig. B.1 shows the ground-state time-dependent correlation function calculated us-

ing the 4 overlaps calculated from DMQMC. Also shown is the ‘best possible’ result

corresponding to eight levels of Liouvillian recursion using the ground state eigenvector

found from exact diagonalisation.
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Figure B.1: Re{〈ψ0|σz0(t)σz0(0)|ψ0〉} as a function of time. Also shown are the cor-
relation functions calculated from exact diagonalisation as well as the ‘best possible’
approximation defined in the text.

As it can be seen from Fig. B.1 the Monte Carlo data begins to differ from the exact

result at t ≈ 1.8 while the best possible result fairs substantially better. This is due to

the fact that while carrying out recursion directly to n/2 levels reproduces the first n

moments exactly, it also results in smaller errors for the higher order moments, while

the overlap technique only reproduces the first n moments with worse errors beyond

this. The overlap method thus results in an 8 term Taylor series approximation to the

correlation function which can be seen by noting that

C(t) = −iθ(t)
∫ ∞

−∞
dωA(ω)e−iωt (B.25)

= −iθ(t)
∞∑

n=0

∫ ∞

−∞
dωA(ω)

(−iωt)n
n!

(B.26)

130



= −iθ(t)
∞∑

n=0

(−it)n
n!

µn, (B.27)

so a finite number of moments reproduces a truncated Taylor series approximation.

While it is possible to reproduce the continued fraction coefficients which would have

given the best possible result using a technique similar to the recursion method, it turns

out this is quite sensitive to noise. For instance, the DMQMC calculation produced

overlap elements which had errors of O(10−3) while an error of O(10−4 − 10−6) is

required to begin to reproduce the best possible result. It is, in principle, possible

to improve on this error by running the simulation for longer, however, the current

simulation took about eighteen hours running on 36 cores so reducing the error further

by brute force is not computationally efficient. A better solution would be to improve

how the overlap elements are calculated within DMQMC so as to minimise the amount

of bit manipulation required.

Consider a 32 site lattice, i.e. one for which exact diagonalisation begins to become

an issue, there are O(105) operators which potentially need to be evaluated for each

occupied basis element of which there could be O(106) so it is immediately obvious that

this is an expensive task and not possible given the current implementation. For a given

basis element most of these overlaps will give a zero contribution, so developing a fast

mechanism of deciding which operators don’t give a zero contribution is necessary.

Additionally due to these constraints it could be possible that only short time cor-

relation function and only a few (about 5 or 6) excited states could be calculated so

applications could be minimal. That being said, other techniques such as the time de-

pendent density matrix renormalisation group rely on short time correlation functions

for calculating dynamics [193] while the prospect of calculating essentially exact excited

states for small molecules, beyond the reach of exact diagonalisation, could merit further

study in this direction.
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